явлениями, происходящими в жидкостях. Ведь, если судить по величине показателя степени при U, его роль в процессе импульсного разрушения существенна.

Полученные результаты импульсного разрушения крупной одиночной капли жидкости имеют значение в связи с проблемой низкозергетического распыления и могут служить как для дальнейших теоретических исследований, так и для разработок ударно-отражательных распылителей жидкостей.

Поступила 6 V 1980

ЛИТЕРАТУРА

3. Харитон, Хемзит, Ягн. Гидродинамические явления при высокоскоростном соударении капли жидкости с жесткой поверхностью.— Труды Америк. общества инж.-мех. Теоретические основы инж. расчетов, 1973, т. 95, № 12.
4. Назаров О. И., Панаров О. А., Ячмень И. А. Удар капли о плоскую движущуюся пластину.— Теплоэнергетика, 1975, № 4.
6. Гельфанд Б. Е., Губин С. А., Когарко С. М. Разновидности дробления капель в ударных волнах и их характеристики.— Инж.-физ. журн., 1974, т. 27, № 1.
7. Гельфанд Б. Е., Губин С. А., Когарко С. М., Комар С. С. Разрушение капель жидкости в потоке ударных волн с третичным профилем и изменением скорости газа.— Изв. АН СССР. МЖТ, 1973, № 5.
8. Корнефельд М. Упругость и прочность жидкостей. М.— Л., ГИТЛ, 1951.
10. Фишель В. М. Физика разрушения. М., Металлургия, 1970.

УДК 532.5 : 532.135

ОБ ОДНОЙ МОДЕЛИ ДВИЖЕНИЯ ЖИДКОСТИ ВБЛИЗИ ТВЕРДОЙ ПОВЕРХНОСТИ

В. С. Шоркин

(Орел)

Рассматривается возможность использования модели микрополярных сред [1] для описания аномального изменения механических свойств и связанного с этим проявления масштабного эффекта в границных слоях некоторых жидкостей.

1. В ряде работ [2—6] показано, что поверхность твердого тела способна менять структурно-чувствительные свойства прилегающих слоев жидкости толщиной порядка 10^{-4}—10^{-5} см. Действие твердой поверхности на структуру жидкости передается от слоя к слою за счет ориентирующего влияния эпитаксиальных центров и различных межмолекулярных сил, в частности наиболее мощной из них — водородной связи. В результате изменяется теплообменность, сдвиговая упругость, вязкость и ряд других свойств, и молекулы приобретают определенную пространственную ориентацию. Приведенные данные рассматриваются [3] как свидетельство особого строения границочной фазы, механизма образования которой подобен соответствующему механизму образования жидких
В. С. Щоркин

крystalлов [7]. Наличие особого строения граничной фазы отмечается у полимерных жидкостей, в структуре которых значительную роль играет водородная связь, а также у неполярных, содержащих примеси полирных молекул [6].

В общем случае, согласно [8], для характеристики движущейся жидкости, помимо вектора трансляционной скорости \(\mathbf{v} \), необходимо использовать вектор скорости микровращения \(\boldsymbol{\omega} \), кинематически независимый от \(\mathbf{v} \). Пусть \(V \) — элементарный объем жидкой среды, \(N \) — количество молекул, содержащихся в нем, \(\mathbf{L}^i \ (i = 1, 2, \ldots, N) \) — единичный вектор, характеризующий направление большой оси \(i \)-й молекулы. Тогда угловую скорость отдельной молекулы можно выразить через \(\mathbf{L} \) с помощью равенства [7]

\[
\boldsymbol{\omega}^i = \mathbf{L}^i \times \frac{d\mathbf{L}^i}{dt} + a^i \mathbf{L}^i,
\]

где \(a^i \) — проекция вектора \(\boldsymbol{\omega} \) на направление вектора \(\mathbf{L}^i \); \(t \) — время. После этого вектор средней скорости микровращения \(\boldsymbol{\omega} \) в объеме \(V \) можно определить с помощью выражения

\[
\boldsymbol{\omega} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\omega}^i = \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{L}^i \times \frac{d\mathbf{L}^i}{dt} + a^i \mathbf{L}^i \right).
\]

В случае, когда все векторы \(\mathbf{L}^i \) совпадают по направлению, т. е. \(\mathbf{L}^i = \mathbf{L} \), можно записать

\[(1.1) \quad \boldsymbol{\omega} = \mathbf{L} \times \frac{d\mathbf{L}}{dt} + a \mathbf{L}.
\]

Здесь \(a = \frac{1}{N} \sum_{i=1}^{N} a^i \) — среднее значение проекций угловых скоростей отдельных молекул на направление их преимущественной ориентации, характеризуемое вектором \(\mathbf{L} \). Выражение (1.1) совпадает с определением скорости микровращения в гидродинамике жидкости [7]. В изотропной ньютоновской среде нельзя выделить преимущественную ориентацию молекул, а вектор \(\boldsymbol{\omega} \) совпадает с половиной ротора трансляционной скорости

\[(1.2) \quad \boldsymbol{\omega} = \frac{1}{2} \text{rot} \mathbf{v}.
\]

Учитывая вышесказанное, можно предположить, что при удалении от границы разделя фаз свойства поверхностно-активной жидкости изменяются от свойств, подобных свойствам жидкого кристалла, до свойств, характерных для ньютоновских сред. При этом вектор \(\boldsymbol{\omega} \) изменяется от значения, определяемого выражением (1.1), до значения, определяемого выражением (1.2). Необходимо учитывать также, что под действием градиента давления [3] пограничная структура жидкости может частично разрушаться, следовательно, даже на границе разделя фаз во отсутствии (1.1) может не выполняться.

Приведенные рассуждения служат основой для гипотезы о том, что движение жидкости вблизи границы разделя фаз в некоторых случаях можно описать на основании модели микрополярных сред [1], основанной особенностью которой является использование понятия моментного напряжения, кинематическая независимость векторов \(\boldsymbol{\omega} \) и \(\mathbf{v} \), а также отсутствие среди динамически переменных векторов \(\mathbf{L} \). Для подтверждения высказанной гипотезы делается попытка описать аномальное поведение пограничных слоев некоторых жидкостей при изучении их механических свойств методом сдувания.
2. Суть эффекта заключается в следующем [9—12]. В плоский канал ширины \(D \) вставляется пластина, на которую нанесен клиновидный слой исследуемой жидкости (фиг. 1), толщина которого \(h \) много меньше ширины канала \(D \). Затем в течение времени \(t \) жидкость сдувается потоком газа, движущегося под действием постоянного градиента давления. Будем считать [9], что движение жидкости плоскопараллельное, а величина касательного напряжения на ее открытой поверхности равна значению касательного напряжения, развиляемого газовым потоком на стенке канала при отсутствии в нем жидкости. Номестим начало отсчета (точка \(O \) на фиг. 1) прямоугольной системы координат на передней кромке клиновидного слоя жидкости, ось \(Ox \) направим вдоль обтекаемой поверхности, ось \(Oy \) — перпендикулярно к ней. Пусть в начальный момент времени уравнение профиля жидкости пленки имело вид

\[
x = x(h).
\]

Через достаточно большой отрезок времени \(t \), согласно гипотезе о характере течения, профиль должен получить форму, описываемую зависимостью

\[
x = x(h) + u(h)t = x(h) + x(h)/t \approx tu(h),
\]

где \(u(h) \) — скорость трансляционного движения сдуваемой жидкости вдоль твердой поверхности при \(y = h \). Для ньютоновской среды можно получить

\[
x = \tau D h/\eta,
\]

где \(\eta \) — коэффициент объемной вязкости исследуемой жидкости. Следовательно, конечная форма профиля сдуваемой пленки должна быть прямоугольной. Однако результаты экспериментов с поверхностно-инертным вазелиновым маслом [10], поверхностно-активным полидиметилсилоксановым олигомером [11] и 2%-ным раствором каучука в вазелиновом масле [12] соответствуют классическим представлениям лишь в первом случае. Профиль раствора каучука на металлической пластине оказывается выпуклым, профиль олигомера выпуклый на стекле, а на металле — вогнутый. Отличие от классических свойств наиболее значительное влечение пленки, а при удалении от нее профили приобретают прямоугольный вид. Если положить [10], что

\[
dh/dx = \eta_0 /\tau D,
\]

где \(\eta_0 \) — коэффициент кажущейся вязкости, то при \(\tau = \text{const} \), \(D = \text{const} \) тангенс угла наклона касательной к профилю пропорционален местному значению коэффициента кажущейся вязкости. С учетом этого отмеченное в [11, 12] искривление профиля свидетельствует о зависимости кажущейся вязкости от расстояния до стенки.

\[
(\gamma + \frac{\gamma}{2} \frac{d^2 \omega}{dy^2}) + \frac{\gamma}{2} \frac{d \omega}{dy} = 0, \quad \theta \frac{d^2 \omega}{dy^2} - \gamma \left(\omega + \frac{1}{2} \frac{du}{dy} \right) = 0,
\]

где \(\omega \) — скорость микровращения вокруг оси, перпендикулярной плоскости движения; \(\gamma \), \(\theta \) — константы вязкости, \(\gamma > 0 \), \(\theta > 0 \). Так как ни
в одном из перечисленных выше экспериментов проскальзывание жидкости не замечено, будем полагать

(3.2) \[u = 0 \quad \text{при} \quad y = 0. \]

Второе граничное условие на твердой поверхности предлагается записать в виде

(3.3) \[\sigma = \eta \alpha \frac{du}{dy}, \quad \eta \beta = \beta \eta \quad \text{при} \quad y = 0. \]

Учитывая изложенное выше, в записанном равенстве для прямолинейного, выпуклого и вогнутого профилей соответственно должны выполняться условия

(3.4) \[\alpha = 1, \quad \beta > 1, \quad \beta < 1 \quad \text{при} \quad \eta = \eta, \quad \eta = \eta, \quad \eta \beta = \eta. \]

Используя константу соотношения для касательных напряжений, которые в рассматриваемом случае имеют вид [1]

\[\sigma = \left(\eta + \frac{\gamma}{4} \right) \frac{du}{dy} + \frac{\gamma}{2} \omega, \]

граничное условие (3.3) можно переписать следующим образом:

(3.5) \[\omega = -\alpha \sigma / \eta, \quad \alpha = 1 + (1 - \beta) / \epsilon, \quad \epsilon = \gamma / (4 \eta + \gamma) \quad \text{при} \quad y = 0. \]

Здесь постоянная \(\alpha \) определяет значение скорости микроповреждения в долях классической угловой скорости. Поскольку движение жидкости происходит под действием газового потока, который считается ньютоновской средой, вторая пара граничных условий записывается в виде

(3.6) \[\left(\eta + \frac{\gamma}{4} \right) \frac{du}{dy} + \frac{\gamma}{2} \omega = \sigma, \quad \frac{d\omega}{dy} = 0 \quad \text{при} \quad y = h. \]

Используя решение задачи (3.1), (3.5), (3.6), уравнение профиля слюдяной жидкой пленки можно получить в форме

(3.7) \[x = \frac{1}{a} \left[h - \frac{\eta}{\lambda} (1 - \alpha) \theta (h) \right], \quad \Phi = \gamma / \lambda D, \quad \lambda^2 = (1 - \epsilon) \gamma / \theta. \]

Из выражения (3.7) видно, что если \(\alpha < 1 \), то профиль выпуклый и \(\eta < 1 \), если \(\alpha > 1 \), то профиль вогнутый и \(\eta > 1 \). В то же время перечисленными значениями \(\alpha \), согласно (3.5), соответствуют такие значения \(\beta \), которые на основании соотношений (3.4), записанных с учетом изложенных экспериментальных данных, находится в соответствии с полученными соотношениями между \(\eta \) и \(\eta \), что служит качественным подтверждением правильности выбора модели микрополярного сред для описания движения жидкости вблизи границ разделя фаз.

4. Для четырех точек, расположенных на графике зависимости \(h = h(x) \), полученную экспериментально для олигомера на стеклянной пластине и раствора каучука в вазелиновом масле, построены уравнения

(4.1) \[F_k(\epsilon (1 - \alpha); \lambda) = 0, \quad k = 1, 2, 3, 4. \]

Так как \(\epsilon (1 - \alpha) \) и \(\lambda \) характеризуют свойства жидкости, то должна существовать единственная пара значений этих величин, удовлетворяющая системе (4.1), что может служить свидетельством независимости констант вязкости модели микрополярных сред от масштаба проводимого эксперимента. В результате решения уравнений (4.1) (фиг. 2 — решение для олигомера, фиг. 3 — для раствора каучука) получено, что величины \(\epsilon (1 - \alpha) \) и \(\lambda \) не зависят от выбора экспериментальных точек, причем для олигомера на стекле \(\epsilon (1 - \alpha) = 0,65, \lambda = 14,2 \mu \text{мк} \) и для раствора каучука на металле \(\epsilon (1 - \alpha) = 0,81, \lambda = 400 \mu \text{мк} \). Для найденных значений \(\epsilon (1 - \alpha) \) и \(\lambda \) построены теоретические профили слюдяных пленок.
(сплошная линия на фиг. 4 — для олигомера, на фиг. 5 — для раствора каучука), которые удовлетворительно согласуются с экспериментальными точками.

Так как при сдуве пленки полидиметилсиликонового олигомера с металлической пластиной по сравнению со сдувом его со стеклянной пластины меняются лишь условия на границе, то на металлической пластине для значений \(\lambda \), полученных на стекле, где \(\alpha < 1 \), параметр \(\varepsilon(1 - \alpha) \) должен удовлетворять условию

\[
\varepsilon(1 - \alpha) = \text{const}, \quad \alpha > 1.
\]

Условие (4.2) проверено для пяти точек экспериментального профиля, отмеченных на фиг. 6, взятых в порядке удаления от начала отсчета. В результате оказалось, что для этих точек \(\varepsilon(1 - \alpha) = -2,32; -2,42; -2,18; -2,36; -2,36 \), т. е. условие (4.2) выполняется.

Таким образом, изложенные выше результаты обработки экспериментальных данных по изучению вязкости полидиметилсиликонового олигомера, раствора каучука в вазелиновом масле и вазелинового масла вблизи твердой поверхности методом сдувания на основе модели микрополярных сред подтверждают гипотезу о возможности применения этой модели для учета влияния границы раздела фаз на механические свойства прилегающих слоев жидкости.

По: Новое 5 V 1980
ПАРАМЕТРЫ СТРУЙ ВЗРЫВНОГО ГАЗОВОГО КОМПРЕССОРА
Ю. И. Киселев, К. Л. Самоньи, В. Д. Христофоров
(Москва)

Из взрывных устройств, преобразующих путем кумуляции энергию взрыва в энергию высокоскоростной плазменной струи, наиболее скорости строи достигаются с помощью взрывного газового компрессора (ВГК) [1, 2]. Большая энергетика плазменной струи ВГК позволяет успешно применять его для создания мощных источников излучения [3, 4], генерации сильных ударных волн [5], термообработки поверхности металлов [6]. Теоретический расчет работы ВГК [7, 8] из-за сложности двумерного течения в камере сжатия и сильного влияния излучения пока является оценочным. А экспериментальные результаты относятся в основном к таким величинам, как максимальная скорость струи и ее полная энергия [9], которые являются недостаточными для расчета конкретных задач.

В данной работе исследовалось распределение удельной энергии и плотности по длине струи ВГК, а также излучение, испускаемое при торможении струи на препаратуре. Использовался ВГК, имеющий камеру сжатия и в диапазоне сегмента с радиусом кривизны 80 мм и диаметром основания 96 мм. Ударная волна из линии токонесущей 2 мм металла в пустоте достигает местной скорости 1,71 km/c, генерируемой с полной энергией 4,27 МДж.

Первоначально по методике, предложенной в работе [9], была определена полная энергия плазменной струи, которая для случая заполнения камеры сжатия ВГК воздухом нормальной плотности равнялась 57 кДж, т. е. составляла 1,3% от энергии взрыва. Средняя скорость ударной волны, генерируемой плазменной струей в трубке диаметром 8 мм, измеренная индукционными датчиками на базе 75 мм, равнялась 31 km/c.