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В настоящее время к кристаллам GaSe как частному случаю ван-дер-ваальсовых матери-
алов проявляется повышенный интерес исследователей и разработчиков в областях тера-
герцевой оптоэлектроники и интегральной фотоники. С инженерной точки зрения важным
является точное знание нелинейно-оптического коэффициента, в частности на телекомму-
никационных длинах волн. Его изучению уделялось мало внимания, а имеющиеся дан-
ные значительно различаются. В связи с этим в работе проведена независимая оценка

нелинейно-оптического коэффициента deo22 кристаллов GaSe1−xSx (где x = 0; 0,03; 0,12;
0,16 и 0,22), отвечающего за взаимодействие частот излучения оптического (включая те-
лекоммуникационный) и терагерцевого диапазонов. По совокупности данных, полученных
с помощью электрооптических измерений, и предсказаний, основанных на правиле Милле-
ра, показано, что значение deo22 для кристаллов с различным легированием не превышает
20 пм/В для длин волн ближнего инфракрасного диапазона. Полученное значение до 2 раз
меньше, чем представленное в работах других авторов.
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Введение. Кристаллы GaSe (точечная группа симметрии 6̄m2 или 6̄2m) обеспечива-
ют эффективное нелинейное преобразование лазерного излучения в широком спектральном

диапазоне [1]. Его популярность, в частности для создания устройств телекоммуникаци-
онного диапазона, обусловлена исключительными физическими свойствами, такими как:
широкий диапазон прозрачности от 0,62 до >50 мкм, за исключением области фонон-
ного поглощения (38–58 мкм) [2, 3]; большое двулучепреломление no − ne ≈ 0,375 при
λ = 10,6 мкм [4] и ∼0,8 на терагерцевых частотах [5]; высокая нелинейность и значитель-
ный порог оптического пробоя [1]; высокая теплопроводность и др. Недостатком соедине-
ния GaSe является его структура, состоящая из тетраслоёв, внутри которых атомные слои
в порядке Se—Ga—Ga—Se ковалентно связаны. При этом связи замкнуты внутри тетрас-
лоя, поэтому межслоевое взаимодействие обеспечивается слабыми ван-дер-ваальсовыми
силами. Результатами этого являются расслоение кристалла ортогонально оптической оси
и низкая твёрдость по шкале Мооса ≈0. Это затрудняет изготовление элементов с необ-
ходимой ориентацией для эффективного нелинейного преобразования и их эксплуатацию.
Легирование GaSe серой (S) выступает в качестве эффективного решения для улучше-
ния физических свойств кристалла. Селенид галлия является полупроводником p-типа,
а значит, изначально может обладать незаполненными вакансиями Se. Предположитель-
но, атомы серы с меньшим радиусом в первую очередь заполняют эти вакансии и со-
кращают количество точечных дефектов в кристалле. Также более вероятным считается
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дальнейшее замещение Se атомами изовалентной примеси с ростом её концентрации и их
встраивание в межслоевое пространство [6]. В результате этого значительно повышаются
оптическое качество и твёрдость кристалла, который становится пригоден для дальней-
шей нарезки и полировки в произвольных направлениях [7]. Одновременно коэффициент
оптического поглощения в ИК-диапазоне уменьшается в 2–3 раза [8], порог оптическо-
го повреждения увеличивается в 5 раз при оптимальном соотношении компонентов [9], и
оптические свойства в ТГц-диапазоне улучшаются [10, 11].

Развитие актуальных областей терагерцевой оптоэлектроники и интегральной фото-
ники опирается на поиск и применение новых материалов. Большое внимание уделяется
ван-дер-ваальсовым кристаллам, в том числе и селениду галлия [12], к которому в послед-
нее время наблюдается повышенный интерес для применений на телекоммуникационных

длинах волн [13–15].
При этом известно небольшое количество работ, посвящённых нелинейному взаимо-

действию лазерного и терагерцевого полей в кристаллах GaSe. Сообщается, что для дли-
ны волны накачки λ = 10,6 мкм и результирующей частоты в окрестности ν ∼ 1 ТГц
нелинейно-оптический коэффициент deo22 составляет 24,3 [16] или 37 пм/В [17, 18], для на-
качки на длине волны λ = 1,064 мкм deo22 = 43 пм/В [19]. Как можно заметить, значения
существенно отличаются друг от друга. Работы по определению коэффициента deo22 для

легированных кристаллов GaSe, в частности элементами серы, отсутствуют. Также нет
исследований, посвящённых длинам волн накачки в окрестности 1,55 мкм, соответствую-
щим телекоммуникационному диапазону.

В связи с этим целью представленной работы является оценка диапазона достоверных

значений нелинейно-оптического коэффициента deo22 кристаллов GaSe:S, отвечающего за
взаимодействие излучения ближнего инфракрасного (включая телекоммуникационный) и
терагерцевого диапазонов. Оценка осуществлена по ранее проведённым нами и другими
авторами электрооптическим измерениям с применением формализма Миллера.

Методы оценки.
Первый метод. В работе [20] значения линейного электрооптического коэффициен-

та r22 для кристаллов GaSe1−xSx со значениями x: 0; 0,03; 0,12; 0,16 и 0,22 были измерены
и рассчитаны при коллинеарном взаимодействии лазерного излучения с длиной волны

λ = 1,55 мкм и ТГц-волн с частотами 61 ТГц, распространяющимися вдоль оси z кри-
сталла по методу, описанному в [21].

Коэффициент нелинейности кристалла GaSe зависит от трёх частот d22(−Ω, ω1, ω2),
где ω1/2π ≈ ω2/2π > 179 ТГц и Ω/2π < 1 ТГц. Поскольку в нашем случае исполь-
зуется трёхволновое смешение, при котором лишь одна из трёх частот лежит ниже ча-
стот оптических мод решётки (в частности, частота Ω), мы оцениваем значение именно
электрооптического нелинейно-оптического коэффициента deo22(Ω, ω, ω). Для упрощения в
дальнейшем будет использовано обозначение deo22.

Нелинейно-оптический и электрооптический коэффициенты в непоглощающем мате-
риале связаны следующим выражением [22]:

deo22 = −1

4
n2
in

2
jr

eo
22, (1)

где ni, nj — показатели преломления на длине волны лазерного излучения λ = 1547 нм,
измеренные в работе [20] и равные обыкновенному показателю преломления no. С исполь-
зованием выражения (1) рассчитаны значения deo22, которые представлены в таблице.

Основываясь на измерениях линейного электрооптического коэффициента GaSe, вы-
полненных другими авторами на длинах волн 1,04 [17] и 1,064 мкм [18], мы также опре-
делили коэффициент deo22, используя выражение (1), значения которого составили 19,95 и
19 пм/В соответственно.
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Т а б ли ц а

Значения нелинейно-оптического коэффициента deo
22 кристаллов GaSe1−xSx

Значение x |r22|, пм/В |deo22|, пм/В

0 0,98 13,94
0,03 1,01 14,34
0,12 1,26 17,61
0,16 0,81 10,98
0,22 0,76 10,07

Второй метод основан на применении правила Миллера, которое выражает зависи-
мость восприимчивости второго порядка χ(2) от произведения её линейных компонент χ(1)

на соответствующих частотах [23]:

d
(2)
ijk(ω, ω,Ω) = χ

(1)
ii (ω)χ

(1)
jj (ω)χ

(1)
kk (Ω) ∆ijk. (2)

С учётом следующих соотношений для диэлектрической проницаемости ε:

ε = χ(1) + 1, ε = (n− ik)2,

(3)
dijk =

1

2
χ

(2)
ijk,

при малом поглощении взаимодействующих волн (k � n) правило Миллера в нашем
случае можно упростить до следующего вида:

d22 =
1

2
(n2

o − 1)2(n2
Ω − 1) ∆222, (4)

где ∆222 — коэффициент Миллера, принимающий значение 0,073 пм/В для GaSe в соот-
ветствии с работой [16]; no(λ) — обыкновенный показатель преломления, рассчитанный
для диапазона 0,63–1,55 мкм по уравнениям Зельмейера из [24]; nΩ — обыкновенный по-
казатель преломления для ν = Ω/2π = 300 ГГц, ранее измеренный в [20]. Результаты
расчёта по формуле (4) представлены на рисунке (кривая 2).

Отдельно стоит отметить, что в работе [25] присутствует дополнительный член при
расчёте deo22, несущий в себе информацию об ионном вкладе в нелинейно-оптический коэф-
фициент:

deo = do + χi(χe)2 ∆C . (5)

Оценённая величина ионного вклада оказалась пренебрежимо мала, и её значение
укладывается в пределы погрешности теоретических оценок (∼1,1 пм/В) — менее 10 %.
В связи с этим можно сделать вывод о том, что использованный в представленной работе
подход является корректным.
Третий метод. На основе данных работы [16] для экспериментально полученных зна-

чений |2n3
or22| в постоянном электрическом поле, применяя формулу (1), оценены значения

deo22, которые приведены на рисунке (кривая 1). Согласно выражению (5), для дополни-
тельной оценки также применена теоретическая модель для расчёта deo22 с учётом ионного

вклада, величина которого, как и во втором методе, вписывается в пределы погрешности
оцениваемой в данной работе величины.
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Дисперсия нелинейно-оптического коэффициента deo22 (выражение (4)), отвечаю-
щего за взаимодействие излучения оптического и терагерцевого диапазонов: 1 —
оценка по Соколову и др. [16]; 2 — по правилу Миллера [23]; 3 — по Song и др. [17]
на λ = 1,04 мкм; 4 — по Cingolani и др. [18] на λ = 1,064 мкм; 5 — по нашим

измерениям [20] на λ = 1,55 мкм

Обсуждение. Для экспериментальной и расчётной кривых, отображённых на рисун-
ке (кривая 1 и 2), наблюдается уменьшение значения deo22 кристалла GaSe по мере увели-
чения длины волны, за исключением области 0,63–0,66 мкм. Такое поведение дисперсии
нелинейно-оптического коэффициента характерно для электронных переходов, формирую-
щих край оптического поглощения полупроводника при энергии фотонов меньше ширины

запрещённой зоны. Для качественного объяснения поведения deo22 вблизи края межзонного

поглощения в диапазоне длин волн 0,63–0,66 мкм (см. на рисунке кривую 1) достаточно
учесть наличие в этой области экситонного поглощения [16]. Для описания такого пове-
дения авторы работы [16] представили феноменологическую модель, основанную на двух
взаимодействующих осцилляторах: электронном и экситонном. Ангармонизм обоих осцил-
ляторов обеспечивает нормальную дисперсию показателя преломления на частотах ниже

максимума экситонного поглощения. На более высоких частотах ангармонизм электрон-
экситонного взаимодействия приводит к увеличению аномальной дисперсии показателя

преломления, обусловленной экситонным осциллятором, в результате деформации состо-
яний в валентных зонах приложенным электрическим полем. Современные знания, веро-
ятно, позволят провести квантово-механические расчёты deo22(λ) в этой области частот,
поскольку появилось достаточное количество данных о зонной картине GaSe, массах и
подвижностях электронов и экситонов, однако, это не входит в задачу данной работы.

Основываясь на выражении (5), произведена дополнительная оценка величины ионно-
го вклада в значение нелинейно-оптического коэффициента deo22. Установлено, что величина
ионного вклада составляет менее 10 % от величины оцениваемого значения deo22. Настоль-
ко малое влияние ионного вклада мы связываем с тем, что частоты νТГц = 300 ГГц и
νопт ≈ 179 ТГц находятся на большом отдалении от собственных решёточных мод кри-
сталла, ближайшая из которых расположена на частоте 6,3 ТГц [26], что подтверждается
результатами других авторов в работах [18, 25].
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Оценки reo22, приведённые в [17, 18] в пересчёте на нелинейно-оптический коэффици-
ент deo22 (см. точки 3, 4 на рисунке), имеют более высокие значения, чем данные, получен-
ные в работе [16] и наших исследованиях [20]. Разница в значениях может быть связана
с качеством изготовления исследованных образцов GaSe. Как видно на рисунке, значе-
ние deo22, полученное в данной работе для нелегированного образца, достаточно хорошо
согласуется с экспериментальными значениями, представленными в [16], и теоретической
моделью, основанной на правиле Миллера.

Отдельного обсуждения требует нелинейный характер изменения величины deo22 по ме-
ре роста содержания атомов серы в структуре GaSe1−xSx. Вплоть до значения содержания
серы x = 0,12 наблюдается увеличение значения нелинейного коэффициента, за которым
следует резкий спад (см. таблицу).

Данное поведение коэффициента нелинейности в зависимости от степени легирования

кристаллов GaSe серой может быть объяснено влиянием двух конкурирующих процессов.
С одной стороны, по мере роста содержания серы в структуре кристалла до x = 0,12 проис-
ходят увеличение ширины запрещённой зоны [27] и смещение без заметного изменения ве-
личины и формы пиков экситонного поглощения в коротковолновую область спектра [10].
Кроме того, по данным работы [11], кристаллы GaSe1−xSx демонстрируют наивысшую

эффективность процессов преобразования частоты при x ≈ 0,08–0,12.

С другой стороны, при дальнейшем повышении содержания серы пики экситонного
поглощения уширяются и исчезают, и происходит переход от нецентросимметричной фа-
зы, соответствующей GaSe, к центросимметричной фазе GaS, где величина нелинейности
близка к нулю. Данный переход осуществляется при значении x ∼ 0,5 [10].

Заключение. В представленном исследовании впервые произведена оценка величины
нелинейно-оптического коэффициента в кристаллах GaSe:S, рассчитанная на основе элек-
трооптических измерений в ТГц-диапазоне частот при длине волны лазерной накачки

1,55 мкм. Значения deo22 для нелегированного GaSe и образца GaSe0,88S0,12 с легировани-
ем, близким к оптимальному, составили 13,94 и 17,61 пм/В соответственно. Приведённые
данные при решении задачи детектирования ТГц-излучения электрооптическим методом
имеют расхождение с результатами работ других авторов, полученными в процессах ге-
нерации терагерцевого излучения на других длинах волн (в частности, 10,6 мкм, где deo22
составляет 24,3 или 37 пм/В). Такое различие значений нелинейного коэффициента обу-
словлено тем, что в электрооптических измерениях на длине волны 1,55 мкм отсутствует
ионный решёточный вклад, а на 10,6 мкм, вероятно, присутствует значительный вклад
колебаний решётки в области края фундаментального ИК-поглощения при λ > 16 мкм.

Представленные в данной работе оценки коэффициента нелинейности кристаллов

GaSe:S могут быть использованы при разработке и создании устройств интегральной фо-
тоники, работающих на принципах нелинейной оптики, а также модуляторов телекомму-
никационных длин волн, функционирующих в окрестности 1,5 мкм.
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высшего образования РФ в рамках проектов государственного задания Новосибирского

государственного университета № FSUS-2024-0020 и Института автоматики и электро-
метрии СО РАН № FWNG-2024-0025.
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