УДК 536.23

Теплопроводность смеси R -32/R -125 (15/85) в паровой фазе*

Е.П. Расчектаева, С.В. Станкус

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: raschektaevaep@gmail.com

Исследуется теплопроводность смеси R-32/R-125 (15/85) в интервале температур 305 – 411 К и давлений 0,1 – 1,8 МПа. Измерения выполнялись стационарным методом коаксиальных цилиндров. Погрешность экспериментальных данных по теплопроводности составляла 1,5 – 2,5 %, погрешности измерения температуры и давления не превышали 0,05 К и 4 кПа соответственно. Получено обобщающее уравнение для расчета теплопроводности в зависимости от давления и температуры. Определена теплопроводность на линии конденсации и в идеально-газовом состоянии.

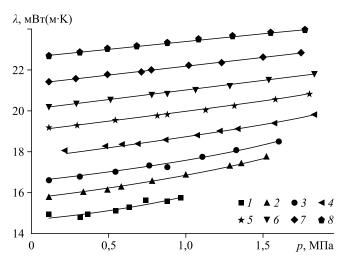
Ключевые слова: теплопроводность, смесевой хладагент, паровая фаза.

Бинарные смеси гидрофторуглеродов (ГФУ) R-32/R-125 относятся к классу озонобезопасных соединений и являются альтернативой для фреона R-22 в холодильной технике, тепловых насосах и для кондиционирования воздуха. ГФУ не разрушают озоновый слой, однако могут оказывать влияние на процесс глобального потепления. Согласно Кигалийской поправке 2016 г. к Монреальскому протоколу, в России планируется сокращение производства и потребления ГФУ на 85 % на период до 2036 г. [1]. Разнообразие смесевых хладагентов, постоянный поиск и создание новых хладагентов, а также их широкое применение делает изучение теплофизических свойств смесей актуальной и современной задачей. Ранее авторами уже рассматривались смеси, состоящие из компонентов R-32 и R-125: R-32/R-125 (40/60) [2] и R-32/R-125 (75/25) [3]. Исследование смесей одних и тех же компонентов в разном массовом соотношении позволяет изучить поведение теплопроводности в зависимости от состава и дает основу для построения обобщающих зависимостей. В настоящей работе экспериментально исследуется теплопроводность паров смеси хладагентов R-32/R-125 (15/85) (15,2 мас. % R-32 и 84,8 мас. % R-125), проводится обобщение полученных данных, анализируется зависимость теплопроводности смеси от температуры в идеально-газовом состоянии и на линии конденсации.

Приготовление смеси осуществлялось в лаборатории весовым методом. Погрешность определения концентрации составляла 0.05-0.08 мас. %. В качестве компонентов состава использовались образцы хладагентов R-125 (производства Китая) чистотой 99,5 % и R-32 (производства России) чистотой 99,9 %. Образцы взвешивались на лабораторных весах AND GX-6100 (разрешение $10 \, \text{мr}$, абсолютная погрешность $50 \, \text{мr}$).

 $^{^*}$ Работа выполнена в рамках государственного задания ИТ СО РАН № 121031800219-2.

[©] Расчектаева Е.П., Станкус С.В., 2022


Измерения теплопроводности смеси выполнялись стационарным методом коаксиальных цилиндров в относительном варианте. Методика измерений и проведения эксперимента детально описывалась в работах [4, 5, 6]. Измерительная ячейка состояла из двух расположенных вертикально соосных никелевых цилиндров, образующих кольцевой зазор. Внешний цилиндр имел длину 140 мм, внутренний — 101,3 мм. Средняя (по длине и диаметру) ширина кольцевого зазора между цилиндрами составляла 0.366 ± 0.005 мм. Электрический нагреватель, представляющий собой нихромовый провод, равномерно намотанный на керамическую трубку, располагался в отверстии диаметром 4 мм по центру внутреннего цилиндра. Исследуемый хладагент заполнял кольцевой зазор и две торцевые полости, образуемые соосными цилиндрами. Термометрия в заданных точках проводилась с помощью медь-константановых термопар. Электродвижущая сила термопар измерялась потенциометром Р-348 класса 0,002. Влияние свободных концов на значения теплопроводности учитывалось введением соответствующих поправок [4]. Заполнение измерительной ячейки осуществлялось из жидкой фазы, чтобы избежать изменения в составе смеси. Установка тарировалась на аргоне чистотой 99,998 об. %. Погрешность измерения температуры составляла 0,05 К. Давление в экспериментах определялось манометрами с погрешностью не более 4 кПа. Оцениваемая погрешность измерений теплопроводности 1,5-2,5 % была подтверждена в экспериментах с хорошо исследованным хладагентом R-134a [7].

Газообразная смесь R-32/R-125 (15/85) исследовалась в интервале температур $305-411~\rm K$ и давлений $0,1-1,8~\rm M\Pi a$. Было получено 68 экспериментальных значений по теплопроводности на 8 изотермах. В табл. 1 приведены экспериментальные значения теплопроводности. Обработка первичных данных была выполнена посредством аппроксимации эмпирической зависимостью [4]

$$\lambda(p,T) = a_{00} + a_{10} \frac{T}{100} + a_{20} \frac{100}{T} + p \left(a_{11} \frac{T}{100} + a_{21} \frac{100}{T} \right) + p^2 \left(a_{12} \frac{T}{100} + a_{22} \frac{100}{T} \right), \tag{1}$$

где T — температура в K, p — давление в МПа, λ — теплопроводность в мВт/(м·K). Коэффициенты уравнения a_{ij} приведены в табл. 2.

На рис. 1 представлены результаты измерений теплопроводности в паровой фазе в виде квазиизотерм. Видно, что теплопроводность газообразной смеси на изотермах

Puc. 1. Изотермы теплопроводности пара смеси R-32/R-125 (15/85).

Символы — экспериментальные данные, линии — аппроксимация (1); $306\ (I), 323\ (2), 335\ (3), 351\ (4), 368\ (6), 396\ (7), 411\ (8)$ К.

Таблица 1 Результаты измерений теплопроводности смеси R-32/R-125 (15/85) в паровой фазе

T, K	p, МПа	λ , mBt/(m·K)	T, K	p, МПа	λ, mBt/(m·K)	
305,92	0,123	14,93	368,01 0		19,30	
306,00	0,328	14,81	367,99	0,553	19,51 19,76 20,03	
305,95	0,367	14,94	367,97	0,822		
305,99	0,551	15,11	367,95	1,131		
305,98	0,638	15,26	368,00	1,312	20,22	
305,95	0,749	15,58	368,02	1,580	20,51 20,77	
305,97	0,970	15,74	368,04	1,793		
323,42	0,126	15,76	380,96	0,128	20,24	
323,39	0,346	16,01	380,96	0,303	20,38	
323,36	0,587	16,25	380,96	0,522	20,59	
323,23	0,786	16,48	380,96	0,787	20,78 21,02 21,20	
323,27	0,786	16,54	380,91	1,067		
323,21	1,004	16,82	380,90	1,286		
323,16	1,282	17,24	380,86	1,538	21,50	
323,26	1,361	17,39	380,88	1,830	21,76	
323,30	1,517	17,72	396,51	0,125	21,43	
335,12	0,128	16,60	396,50	0,299	21,58	
335,08	0,326	16,79	396,50	0,502	21,75	
335,05	0,553	17,01	396,51	0,723	21,92	
335,06	0,770	17,30	396,02	0,782	21,96	
335,06	1,110	17,73	396,01	1,022	22,19	
335,09	1,328	18,04	396,03	1,236	22,33	
335,08	1,602	18,45	395,98	1,501	22,57	
351,25	0,228	18,07	395,91	1,744	22,78	
351,20	0,491	18,29	411,26	0,125	22,72	
351,26	0,598	18,34	411,26	0,326	22,90	
351,29	0,697	18,40	411,25	0,501	23,03	
351,28	0,877	18,58	411,22	0,690	23,18	
351,26	1,082	18,81	411,21	0,885	23,32	
351,23	1,228	19,00	411,17	1,089	23,50	
351,22	1,340	19,07	411,17	1,087	23,51	
351,21	1,578	19,34	411,25	1,304	23,62	
351,18	1,830	19,76	411,24	1,551	23,78	
368,03	0,128	19,14	411,19	1,768	23,90	

Коэффициенты уравнения (1)

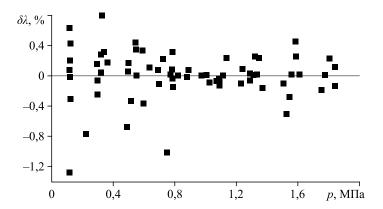
Таблица 2

Индексы <i>ij</i> коэффициента <i>a</i>	00	10	20	11	21	12	22
Значение коэффициента a_{ij}	-39,995	11,965	55,173	0,189	0,433	-0,219	3,336

практически линейно увеличивается с ростом давления. Относительные отклонения полученных экспериментальных данных от сглаженных по зависимости (1) представлены на рис. 2. Отклонения не превышают 1,3 % во всем диапазоне измерений. Среднеквадратичное отклонение составляет 0.3 %.

На основании экспериментальных данных авторами определялась температурная зависимость теплопроводности в идеально-газовом состоянии λ_0 ($p_0=0,101325$ МПа) для смеси R-32/R-125 (15/85). Значения λ_0 были получены двумя способами: аппроксимацией каждой изотермы $\lambda(p)$ полиномом второй степени с последующей экстраполяцией к p_0 и расчетом из обобщающего уравнения (1). Ввиду того, что расхождения в расчетах не превышали 1,5 %, для определения λ_0 был выбран второй способ. Исходя из формы уравнения (1), зависимость для λ_0 (T) приняла вид:

$$\lambda_0 = c_1 + c_2 \cdot T + c_3 / T, \tag{2}$$


где $c_1 = -39,995$, $c_2 = 0,1198$, $c_3 = 5525,1$.

Теплопроводность на линии конденсации $\lambda_{\rm d}$ рассчитывалась аналогичным образом из обобщающего уравнения (1). Данные по давлению пара на линии конденсации были заимствованы из [8]. Полученные значения $\lambda_{\rm d}$ аппроксимировались зависимостью

$$\lambda_{\mathbf{d}} = b_1 + b_2 \cdot T + b_3 \cdot T^2, \tag{3}$$

где $b_1 = 88,385$, $b_2 = -0,61323$, $b_3 = 12,459 \cdot 10^{-4}$.

Значения λ_0 для смеси R-32/R-125 (15/85) были определены также в аддитивном приближении. Значения теплопроводности в идеально-газовом состоянии для чистых компонентов R-32 и R-125 также были взяты из [8]. Расхождения между значениями, рассчитанными указанным образом, и экспериментальными данными лежат в пределах 0,4-3,1%. Это позволяет оценить возможную погрешность расчета $\lambda_0(T)$ по законам идеальных растворов для данного класса смесевых хладагентов.

 $Puc.\ 2.$ Относительные отклонения экспериментальных данных R-32/R-125 (15/85) от сглаженных по зависимости (1).

Заключение

Получены новые экспериментальные данные по теплопроводности хладагента R-32/R-125 (15,2 мас. %/84,8 мас. %) в паровой фазе в интервале температур $305-411~\rm K$ и давлений $0.1-1.8~\rm M\Pi a$ и оценены их погрешности. Установлено, что аппроксимирующее уравнение (1) описывает теплопроводность исследованной смеси в широкой области параметров состояния: от идеально-газового до линии конденсации. Получены температурные зависимости теплопроводности в идеально-газовом состоянии и на линии конденсации. Проведены оценки теплопроводности в аддитивном приближении.

Список литературы

- 1. Цветков О.Б., Лаптев Ю.А., Митропов В.В., Просторова А.О., Зайнуллина Э.Р. Кигалийская поправка в контексте глобальных климатических императивов // Холодильная техника. 2019. № 4. С. 24–30.
- 2. Raschektaeva E.P., Stankus S.V., Verba O.I. Thermal conductivity of R-32/R-125 (40/60 wt. %) mixture in the vapor phase // J. of Physics: Conference Series. 2020. Vol. 1677. P. 012173-1-012173-4.
- 3. Raschektaeva E.P., Stankus S.V. Experimental study of R-32/R-125 (75/25 wt. %) thermal conductivity mixture in the vapor phase // J. of Physics: Conf. Series. 2021. Vol. 2119. P. 012144-1–012144-4.
- **4. Верба О.И., Груздев В.А.** Теплопроводность гептафторпропана HFC-227ea // Теплофизика и аэромеханика. 2002. Т. 9, № 3. С. 467–476.
- **5. Верба О.И., Расчектаева Е.П., Станкус С.В.** Теплопроводность хладагента R-415A в паровой фазе // Теплофизика и аэромеханика. 2013. Т. 20, № 4. С. 487—489.
- **6. Верба О.И., Расчектаева Е.П., Станкус С.В.** Теплопроводность смеси R-410A в паровой фазе // Теплофизика и аэромеханика. 2017. Т. 24, № 1. С. 137–141.
- 7. Куйбина Е.П. Теплопроводность хладагента R-134a в паровой фазе // Сб. тр. XVI Междунар. научн.-практ. конф. студентов, аспирантов и молодых ученых "Современные техника и технологии СТТ 2010". В 3 т. Т. 3. Томск: Национальный исследовательский Томский политехнический университет, 2010. С. 188.
- Lemmon E.W., McLinden M.O., Huber M.L. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. Version 8.0. Standard Reference Data Program. Gaithersburg, Maryland: National Institute of Standards and Technology, 2002.

Статья поступила в редакцию 16 июня 2022 г., после доработки — 22 июня 2022 г., принята к публикации 2 сентября 2022 г.