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Представлены результаты термодинамических расчетов и экспериментальных исследований пиролиза 

углеводородного газа при атмосферном давлении в совмещенном плазмохимическом реакторе с получением 

водорода и технического углерода (сажи), содержащего наноуглеродные структуры. Технология плазменного 

пиролиза заключается в нагреве углеводородного газа в электродуговом совмещенном реакторе до темпе-

ратуры, обеспечивающей его диссоциацию на водород и технический углерод в едином технологическом 

процессе.  
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Введение 

Согласно Концепции низкоуглеродного развития Казахстана, предусматривается 

декарбонизация экономики и развитие «зеленой» энергетики, что к 2060 г. позволит 

Казахстану достигнуть углеродной нейтральности. Развитие водородной энергетики 

и технологий по улавливанию и хранению углерода обеспечит достижение этой цели. 

В последние годы в мире наблюдается непрерывное увеличение потребления элект-

рической и тепловой энергии. Согласно статистическому обзору [1], за последние 

10 лет мировой прирост выработки электрической энергии составил 25 %. Несмотря 

на бурное развитие возобновляемых источников энергии, их доля в энергетическом 

мировом балансе остается около 10 %, а основная часть энергии (62,8 %) вырабаты-

вается на тепловых электростанциях, сжигающих ископаемое топливо. При этом обра-

зуется значительное количество диоксида углерода (СО2), являющегося основным пар-

никовым газом, способствующим глобальному потеплению. Для снижения отрица-

тельного влияния на климат актуальной задачей при выработке энергии представ-

ляется переход от ископаемых топлив, являющихся одним из основных источников 
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выбросов парниковых газов, к экологически чистому альтернативному топливу — 

водороду как самому распространенному элементу в мире.  

В мире ежегодно уже производится и потребляется в различных отраслях 

промышленности более 70 млн т водорода [2]. К 2050 г. прогнозируется 10-кратное 

увеличение потребности в водороде, что позволит снизить выбросы CO2 на 25 %. При 

этом доля водорода в мировом энергетическом балансе составит 18 %, а потенциаль-

ный рынок водорода и водородных технологий возрастет до 2,5 трлн долл. в год. 

В России исследования и разработки в области водорода и водородных технологий 

велись в рамках государственной программы «Водородная энергетика». В результате 

была создана концепция водородной энергетики с производством водорода на базе 

атомных электростанций [3]. Необходимость разработки водородных технологий упо-

минается в ряде стратегических документов Российской Федерации (РФ). Один из них — 

Энергетическая стратегия России на период до 2035 г. (ЭС-2035), принятая в 2020 г. 

Задачей водородной энергетики, согласно ЭС-2035, является развитие производства, 

потребления и экспорта водорода. В настоящее время производство водорода в России 

составляет около 5 млн т в год, к 2050 г. его производство достигнет 50 млн т/год. 

В Казахстане Министерство экологии, геологии и природных ресурсов прис-

тупило к разработке Концепции низкоуглеродного развития Казахстана до 2050 г. [4]. 

Согласно этой Концепции, предусматривается декарбонизация экономики и развитие 

«зеленой» энергетики. Под декарбонизацией понимается снижение выбросов диоксида 

углерода и выработка электроэнергии с помощью возобновляемых источников 

энергии. Это позволяет в разы снизить вредное воздействие на окружающую среду. 

Для декарбонизации энергетики Евросоюз внедряет «пограничный углеродный налог» 

на импортируемую продукцию из стран с высоким уровнем выбросов, включая 

Казахстан. Это подтверждает необходимость сокращения выбросов СО2 и развития 

водородной энергетики, технологий по улавливанию и хранению углерода с целью 

повышения конкурентоспособности экспорта Казахстана на европейских рынках.  

В настоящее время большая часть производимого в мире в промышленном масш-

табе водорода получается в процессе паровой конверсии (риформинга) газообразных 

углеводородов, являющейся многостадийным процессом с использованием дорогостоя-

щих катализаторов и образованием балластирующего парникового газа — диоксида 

углерода, разбавляющего целевой продукт (водород) [5]. Каталитическая конверсия 

углеводородных газов дает возможность получить водород и углеродные структуры 

при относительно невысоких температурах [6]. Применение известных методов плаз-

менного получения водорода и технического углерода из углеводородных газов позво-

ляет исключить многостадийность процесса и использование катализаторов, но не иск-

лючает разбавление целевого продукта плазмообразующими газами. Как правило, про-

цесс осуществляется в двухкамерных плазменных устройствах [7]. В первой камере 

генерируется плазменная струя, а во второй камере (химическом реакторе), куда посту-

пает плазменная струя и подаются углеводороды, осуществляется процесс плазменного 

пиролиза углеводородов. Технология конверсии метана в электродуговой вакуумной 

камере получила развитие в цикле работ Института теплофизики им. С.С. Кутателадзе 

СО РАН [8 – 13]. Достигнутая эффективность конверсии метана составила 80 % с полу-

чением водорода и нанокристаллического углерода с размером частиц 20 – 50 нм. 

По сравнению с методом паровой конверсии и известными плазменными методами 

предлагаемая плазменная технология получения водорода из углеводородных газов 

осуществляется в одну стадию, не требует использования катализаторов, создания 
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вакуума в реакторе, а получаемый водород не разбавляется балластирующими газами 

[14 – 16]. Принципиальные отличия плазменной технологии получения водорода из угле-

водородных газов СnHm (метан, пропан, бутан и др.) от существующих технологий зак-

лючаются в использовании плазмохимического реактора совмещенного типа для осу-

ществления термической диссоциации углеводородных газов с образованием водорода 

и технического углерода. 

Технический углерод (сажа) — высокодисперсный продукт термического или тер-

моокислительного распада углеводородов из природных и технических газов, нефти 

и каменноугольных масел. Средний размер частиц сажи составляет около 50 нм. Плаз-

менный метод имеет ряд существенных технологических преимуществ: уменьшение 

объема реактора в 6 – 8 раз (при сохранении производительности по водороду) и соот-

ветствующее уменьшение площади необходимых производственных помещений, 

значительное снижение объема отходящих газов и увеличение температуры в реакцион-

ной зоне плазмохимического реактора до 2000 K и более, позволяющее повысить 

эффективность пиролиза углеводородного газа. Плазмохимический реактор совмещен-

ного типа (с совмещением зон выделения и поглощения энергии) позволяет проводить 

термическую диссоциацию газообразных углеводородов в режиме пиролиза без исполь-

зования дополнительных плазмообразующих газов при умеренных удельных энерго-

затратах на получение водорода (17,25 кВтч/кг Н2 [15]).  

Термодинамический расчет  

Технология плазменного пиролиза заключается в нагреве углеводородного газа 

в электродуговом реакторе совмещенного типа до температуры, обеспечивающей его 

диссоциацию на водород и технический углерод в едином технологическом процессе. 

После выделения технического углерода из потока продуктов пиролиза водород направ-

ляют на очистку и компримирование. Исследование пиролиза углеводородных газов 

выполнено на примере пропанобутановой газовой смеси (ПБС): 50 % C3H8 + 50 % C4H10. 

Для определения принципиальной возможности плазменного пиролиза углеводородного 

газа в реакторе при атмосферном давлении были проведены термодинамические рас-

четы. При расчетах использовали программу TERRA, имеющую собственную базу тер-

мохимических свойств 3500 индивидуальных веществ в газообразных, ионизированных 

и конденсированных состояниях в диапазоне температур от 300 до 6000 K. В отличие 

от традиционных в химико-термодинамических методах расчета параметров равновесия 

с использованием энергии Гиббса, константы равновесия и активного закона масс 

Гульдберга и Вааге, программа TERRA основана на принципе максимизации энтропии 

для изолированных термодинамических систем, находящихся в равновесии [17]. 

Расчеты выполнены в интервале температур 300 – 5000 K при давлении 1 атм. 

На рис. 1, 2 показан состав продуктов плазмохимического пиролиза ПБС. Видно, что 

концентрация водорода (см. рис. 1) близка к 100 % во всем интервале температур  

(Т = 1500 – 2800 K). Молекулярная форма водорода (Н2) наблюдается до 3000 K, 

но с повышением температуры преобладает атомарная форма водорода (Н). В интервале 

температур 2500–5000 K в газовой фазе присутствуют различные углеводороды (С3Н, 

С2Н2, С4Н2 и др.). При температуре, приближающейся к 5000 K, они диссоциируют 

на составляющие их элементы: водород и углерод. Конденсированный углерод (С(с)) 

полностью переходит в газовую фазу при температуре выше 3200 K (см. рис. 2). 

Как показали расчеты, удельные энергозатраты на процесс монотонно возрастают от 0 

до 33 кВтч/кг (Т = 300 – 5000 K). 



Мессерле В.Е., Устименко А.Б. 

590 

Эксперимент  

Эксперименты по плазменному пиролизу углеводородного газа с получением 

водорода и сажи (технического углерода) проведены на экспериментальной плазменной 

установке (рис. 3). Основной узел установки — вертикальный плазменный реактор 

постоянного тока — состоит из водоохлаждаемого металлического корпуса, футерован-

ного изнутри графитом в виде кольцевой вставки, выполняющей функцию кольцевого 

анода [16, 18, 19]. Катодом является подаваемый стержневой графитовый электрод, 

расположенный в центре крышки плазменного реактора. Центральный графитовый 

электрод работает в режиме термокатода, обеспечивая необходимую эмиссию электро-

нов. Температура поверхности катода при достижении стационарного теплового режима 

реактора варьировалась в интервале 2200 – 2400 K. Внутренний диаметр реактора сос-

тавляет 150 мм, высота реактора — 300 мм. Номинальная мощность реактора составляет 

100 кВт. Плазменный реактор проточного типа работает при давлении 1 атм, поэтому 
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Рис. 1. Массовые концентрации компонентов 

при пиролизе пропанобутановой смеси 

в зависимости от температуры. 

С(с) — углерод в конденсированном состоянии. 
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Рис. 2. Состав газовой фазы при пиролизе 

пропанобутановой смеси в зависимости от температуры. 
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средства вакуумирования не исполь-

зовались. При изменении расхода газа 

давление в реакторе регулировалось 

с помощью вытяжного вентилятора, 

обеспечивающего разряжение в реакторе около 10 мм водяного столба. 

При плазменном пиролизе ПБС подавалась через патрубки подачи угольной пыли, 

установленные на крышке. На рис. 4 приведена фотография экспериментальной уста-

новки. Чтобы избежать короткого замыкания между центральным графитовым электро-

дом и крышкой реактора из-за конденсации образующегося в процессе пиролиза тех-

нического углерода, два патрубка подачи ПБС, выполненные из алундовых трубок, были 

выдвинуты в реактор на расстояние 5 см от внутренней поверхности крышки. 

После включения реактора и прогрева в течение 3 мин в реактор подается не-

большое количество ПБС. В реакторе происходит нагрев и пиролиз ПБС при ее взаи-

модействии с вращающейся электрической дугой. При этом из ПБС по реакции C3H8 + 

+ C4H10 = 7C + 9H2 образуется технический углерод и водород. Отходящие газы выводят-

ся из реактора с помощью вытяжного вентилятора. 

Методика проведения эксперимента заключается в следующем. Методом взрыва 

проволоки зажигается дуга между стерж-

невым и кольцевым электродами. Затем 

углеводородный газ подается в зону горе-

ния дуги через эжектор, установленный 

на крышке реактора. Углеводородный газ 

попадает в зону электрической дуги, вра-

щающейся в электромагнитном поле, и на-

гревается до высоких температур, образуя 

двухфазный плазменный поток, в основ-

ном состоящий из углерода и водорода. 

Дополнительная интенсификация процес-

са плазмохимического пиролиза обеспе-

чивается организацией вращения электри-

ческой дуги в реакционной зоне с помощью 

внешнего электромагнитного поля с ин-

дукцией 0,015 Тл. Полученный в процес-

се конденсированный углерод удаляется 
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Рис. 3. Общий вид экспериментальной 

установки для плазменного пиролиза 

углеводородного газа. 

1 — плазмохимический реактор, 

2 — электромагнитная катушка, 
3 — камера разделения водорода 

и технического углерода, 

4 — сборник технического углерода, 
5 — подъемник сборника, 

6 — камера охлаждения отходящих газов, 

7 — защитный клапан, 
8 — камера удаления отходящих газов. 

 
 

 

Рис. 4. Экспериментальная установка для 

плазменного пиролиза углеводородного газа. 
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в сажесборник. Газообразные продукты подаются через камеру разделения газа и сажи 

в камеру охлаждения газа. Затем газообразные продукты выводятся в вентиляционную 

систему.  

В экспериментах использовался бытовой сжиженный газ из баллонов емкостью 50 л. 

Время проведения эксперимента составляло 35 мин, необходимых для выхода плазмо-

химического реактора на стационарный тепловой режим и измерения основных электро- 

и теплотехнических параметров и отбора газовых проб по длине реакционной зоны. 

Результаты эксперимента приведены в табл. 1. Напряжение холостого хода источника 

электропитания плазмохимического реактора составляет 540 В, разряжение в реакторе — 

10 мм водяного столба. Температура охлаждающей воды на входе в реактор 18 ℃. 

Из табл. 1 следует, что ток дуги измерялся от 220 до 260 А, напряжение на дуге — 

от 190 до 300 В, соответственно электрическая мощность варьировала со 47,5 до 72 кВт. 

При этом расход газа в процессе эксперимента увеличивался от 15 до 38 л/мин. Отбор 

газовых проб начинался во время работы установки с 15-й минуты от запуска реактора. 

Пробы отбирались из камеры охлаждения газа через специальные лючки в бюретки 

методом вакуумного отсоса. Лючки расположены на расстоянии 30 и 60 см от камеры 

разделения газа и сажи. Пробы конденсированного углерода отбирались из всех узлов 

установки после ее выключения и охлаждения. 

Анализ газовой фазы продуктов плазменного пиролиза ПБС (50 % С3Н8 + 50 % 

С4Н10) проводился с использованием хроматографа «Хроматэк-Газохром-2000». Резуль-

таты газового анализа представлены в табл. 2. Из табл. 2 следует, что после установ-

ления стационарного теплового режима плазменной установки (через 15 мин после 

зажигания электрической дуги) концентрация водорода составляет 97 %, а примеси N2, 

CH4 и СО не превышают 1,3, 1,0 и 0,7 % соответственно. Наличие примесей СО и N2 

в продуктах плазменного пиролиза ПБС связано с незначительными присосами воздуха 

по тракту установки. С увеличением расхода ПБС с 15 до 38 л/мин концентрация водо-

рода повышается до 98 %, а суммарная концентрация примесей снижается с 3 до 2 %. 

Та б лица  1  

Параметры экспериментов по плазменному пиролизу ПБС 

Время, мин Ток, А Напряжение, В Мощность, кВт Расход газа, л/мин 

0 250 190 47,5 0 

15 240 210 50,4 15 

20 240 240 57,6 30 

25 220 290 63,8 38 

30 240 280 67,2 38 

35 240 300 72,0 38 

 

Та б лица  2  

Результаты газового анализа продуктов плазменного пиролиза ПБС 

Время, мин Мощность, кВт Расход газа, л/мин 
Состав газа, об. % 

H2 N2 CH4 CO 

0 47,5 0 – – – – 

15 50,4 15 97,0 1,3 1,0 0,7 

20 57,6 30 97,5 1,2 0,8 0,5 

25 63,8  38 97,6 1,2 0,8 0,4 

30 67,2 38 97,8 1,2 0,7 0,3 

35 72,0 38 98,0 1,0 0,7 0,3 
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Отметим, что при малых расходах газа до выхода реактора на стационарный тепловой 

режим газовый анализ не проводился. 

Доля углерода в конденсированных продуктах плазмохимического пиролиза ПБС 

определялась абсорбционным весовым методом. При определении общего углерода 

по абсорбционному весовому методу образующийся при сжигании пробы диоксид угле-

рода поглощается аскаритом (KОН или NaOH, нанесенные на асбест) по реакции  

СО2 + 2NaOH = Na2CO3 + H2O. 

Образующаяся при этом вода поглощается тем же абсорбционным веществом, которое 

поглощает диоксид углерода, или другим специально вводимым в поглотительный аппарат. 

Определенная таким образом концентрация углерода в конденсированных продук-

тах плазмохимического пиролиза ПБС достигала 98 %. Полученные значения концент-

рации углерода коррелируются со значениями, полученными методом электронной мик-

роскопии. 

Исследование с помощью электронного микроскопа Quanta 3D (США) с энергодис-

персионной приставкой показало (рис. 5), что конденсированные продукты плазменного 

пиролиза ПБС состоят из углерода (97,76 ат. %) и кислорода (2,24 ат. %). На рис. 5 

представлена электронная микрофотография образца конденсированных продуктов 

O
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b c

 
 

Рис. 5. Общий вид (b) образца конденсированных продуктов плазмохимического пиролиза 

пропанобутановой смеси, его энергодисперсионный спектр (а) 

и состав, определенный с помощью рентгеноспектрального микроанализа (с). 
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плазменного пиролиза пропанобутановой смеси. Хорошо виден массив глобулярного 

(абсолютно черного) наноуглерода, образовавшийся на основании — стеклоуглероде 

(его поверхность имеет серебристый металлический блеск). Энергодисперсионный спектр 

снят с площадки глобулярного наноуглерода, указанной красным квадратом. Наряду 

с углеродом (97,76 %) имеется небольшая примесь кислорода (2,24 %). Как показали 

Раман-спектроскопия и анализ на электронном микроскопе, стеклоуглерод, являющийся 

основанием, на котором растут наноглобулы, не содержит кислорода и полностью со-

стоит из углерода. 

Физико-химический анализ образцов конденсированного углерода проводили так-

же с помощью просвечивающего электронного микроскопа. Оптическая схема элек-

тронного микроскопа для исследования в проходящих лучах аналогична схеме оптиче-

ского проекционного микроскопа. В отличие от последнего в электронном микроскопе 

все оптические элементы оптического проекционного микроскопа заменены соответ-

ствующими электромагнитными элементами. После применения системы линз для уве-

личения картинки и устранения различных искажений изображение исследуемого нано-

объекта формируется на дисплее в нижней части микроскопа. Для обеспечения свобод-

ного прохода электронов форвакуумный и диффузионный насосы поддерживают глубо-

кий вакуум (до 0,1 Па) в колонке микроскопа. Под колонкой микроскопа находится 

фотокамера. На рис. 6 представлены фотографии нескольких образцов технического 

углерода, полученного плазменным пиролизом ПБС. Сконденсировавшиеся на стенках 

9104

9094

9110

1000 нм

100 нм100 нм

100 нм

 
 

Рис. 6. Фотографии углеродных наноструктур, полученные 

с помощью трансмиссионной электронной микроскопии. 



Теплофизика и аэромеханика, 2024, том 31, № 3 

595 

плазмохимического реактора продукты плазменного пиролиза ПБС представляют собой 

различные углеродные наноструктуры, преимущественно в виде «гигантских» нанотру-

бок [20, 21]. Негатив 9091 показывает, что образец состоит в основном из крупных 

«мохнатых» углеродных нанотрубок диаметром около 100 нм и длиной более 5 мкм. 

На негативе 9094 продемонстрированы гигантские углеродные нанотрубки с каплевид-

ной металлической фазой внутри. Диаметр этих трубок достигает 300 нм. Негатив 9104 

представляет собой «колено» углеродной нанотрубки диаметром более 200 нм с внут-

ренней перегородкой. Гигантскими нанотрубками могут быть структуры в виде «окто-

пуса» (негатив 9110). Диаметр такого «октопуса» в месте соединения трубок составляет 

около 400 нм. Характерно, что толщина гигантских нанотрубок может варьироваться 

от 30 нм (негатив 9104) до 100 нм (негативы 9094 и 9110).  

Эксперименты подтвердили возможность получения водорода и конденсированных 

углеродсодержащих наноструктур в виде гигантских углеродных нанотрубок. Физико-

химическое исследование технического углерода показало наличие в нем наноструктур 

в виде гигантских углеродных нанотрубок, обладающих высокой электропроводностью 

и механической прочностью, в 30 раз превышающей прочность кевларовой ткани. Угле-

родные нанотрубки обладают высокой эмиссионной способностью, химической инерт-

ностью при большой напряженности электрического поля (10
7
 – 10

8
 В/м) и бомбардиров-

ке ионами остаточных газов. Полученные результаты позволили разработать техничес-

кое решение по плазменному крекингу углеводородных газов на опытно-промышленной 

установке мощностью 1 МВт и производительностью по природному газу 330 м
3
/ч. Пер-

спективный выход целевых продуктов составит 74 % (171 кг/ч) по техническому углеро-

ду и 25 % (58 кг/ч) по водороду.  

Как показал эксперимент, гигантские углеродные нанотрубки в процессе плазмен-

ного пиролиза пропанобутановой смеси образуются при атмосферном давлении 

и удельных энергозатратах на процесс не менее 11,6 кВтч/кг. 

Для подтверждения обоснованности плазменной технологии получения водорода 

из углеводородных газов было выполнено сравнение экспериментальных данных и ре-

зультатов термодинамических расчетов процесса плазменного пиролиза углеводородных 

газов (табл. 3). Электрическая мощность водоохлаждаемого плазмохимического реактора 

составляла 63,8 кВт при тепловом КПД 80 %. Расход ПБС составлял 4,4 кг/ч. Из табл. 3 

следует, что при совпадении экспериментальных и расчетных концентраций газообраз-

ных продуктов (расхождение по водороду менее 1 %) значения температуры и удельных 

энергозатрат на процесс плазменного пиролиза пропанобутановой смеси заметно разли-

чаются. Это связано с тем, что значения термодинамических параметров являются оп-

тимальными при достижении равновесного состояния системы. В реальных условиях 

эксперимента в плазмохимическом реакторе время пребывания реагентов ограничено 

и состояние равновесия не достигается. Тем не менее выход водорода в обоих случаях 

Та б лица  3  

Сравнение результатов эксперимента и расчета плазменного пиролиза ПБС 

Температура, K Удельные энергозатраты, кВтч/кг 
Состав газа, об. % 

H2 N2 CH4 CO 

Эксперимент 

3150 11,6 98,0 1 0,7 0,3 

Термодинамический расчет 

2600 3,8 98,1 – 0,2 – 
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достигает 98 %. Расчеты показали, что полный пиролиз углеводородного газа при атмо-

сферном давлении с получением водорода и конденсированного углерода обеспечивает-

ся при температуре 2600 K, тогда как в эксперименте среднемассовая температура со-

ставила 3150 K. 

Заключение  

В результате термодинамического анализа показана возможность получения водо-

рода и конденсированного углерода в интервале температур 1500 – 3000 K путем пиро-

лиза углеводородного газа при атмосферном давлении. 

Методом пиролиза углеводородного газа при атмосферном давлении в плазмохи-

мическом реакторе постоянного тока были получены водород и технический углерод. 

Физико-химические исследования технического углерода выявили наноструктуры 

в виде гигантских углеродных нанотрубок, обладающих высокой электропроводностью 

и механической прочностью, в 30 раз превышающей таковую у кевларовой ткани. 
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