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Разработан алгоритм поиска малоразмерных (порядка 10 пикселей) объектов с постоянной
яркостью на неоднородном случайном фоне. В основе алгоритма лежит процедура поиска
условного максимума произведения вероятностей, с которыми объект и локальный фон
имеют определённые значения яркости. Для фона эти вероятности оцениваются по гисто-
грамме, построенной для сегмента изображения. Алгоритм реализован для случая, когда
все яркости объекта в допустимом диапазоне равновероятны. Вычислительный экспери-
мент производился на 20 фотографиях облаков размером 1200×1200 пикселей, на которые
были нанесены круги радиусом два пикселя. Из 200 заданных таким образом объектов
было найдено 169, при этом количество ошибок второго рода составило 280.
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Введение. В предлагаемой работе исследуется задача поиска на полутоновых изоб-
ражениях объектов, имеющих малый размер (порядка 10 пикселей). Предполагается, что
фон, на котором производится поиск объекта, является наложением пространственно неод-
нородных случайных текстур, обладающих различными статистическими свойствами.
Примером такого фона может служить поверхность Земли, наблюдаемая через облачный
слой с борта летательного аппарата или со спутника. В обзорной работе [1] отмечается, что
в рассмотрении проблемы обнаружения и идентификации объектов на изображении мож-
но выделить два подхода. Первый из них — это применение цифровых фильтров, которые
обычно проектируются, исходя из математических моделей искомого объекта и фона. Во
втором же использованы нейронные сети, обучающиеся на библиотеках реальных снимков.
Применение нейронных сетей для решения рассматриваемой здесь задачи представляет-
ся затруднительным, поскольку отсутствуют наборы данных, пригодные для адекватного
обучения. Действительно, для обучения нужно иметь достаточно большой набор фото-
снимков, на которых запечатлён малоразмерный объект на фоне текстуры, соответствую-
щей постановке задачи (например, на фоне облаков). Но таких снимков немного, и не для
каждого из них можно с уверенностью сказать, присутствует на нём изображение какого-
нибудь реального объекта, или то, что им представляется, на самом деле является либо
случайной особенностью фона, либо артефактом, вызванным регистрирующей системой.
Предлагаемый метод относится к первому подходу.

Когда решение о наличии объекта принимается человеком, в обработку изображения
целесообразно включать процедуры фильтрации, способствующие улучшению визуальной
различимости малоразмерных структур. Систематическое изложение связанных с этим
вопросов содержится, например, в [2]. Для объекта известного размера был разработан ал-
горитм повышения его видимости, основанный на разложении по вейвлетным базисам [3].
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В настоящее время при решении важных практических задач всё чаще требуется, чтобы
система наблюдения регистрировала объект автоматически (без участия человека). Эта
операция осуществляется посредством разного рода классификаторов. Если, как в рас-
сматриваемой здесь задаче, нужно только определить, присутствует ли малоразмерный
объект на изображении или нет, наиболее эффективным является бинарный пороговый
классификатор по яркости.

Хотя описанный в следующем разделе алгоритм может применяться при любом соот-
ношении яркостей объекта и окружающего локального фона, для определённости и упро-
щения записи формул будем предполагать, что объект более яркий, чем искомый фон. В
этом случае классификатор должен относить к объекту пиксели, яркость которых пре-
восходит некоторый порог Bth. Поскольку свойства фона отличаются в различных частях
изображения, оно делится на области, для каждой из которых устанавливается своё значе-
ние Bth. Проблемы сегментации изображений рассматривались в работах [4–6]. Для опре-
деления величины Bth широко используются методы, основанные на критериях Байеса и
Неймана— Пирсона [2, 7–10]. Эти методы в общем случае требуют знания статистических
свойств фона и объекта. Способы их оценки можно найти в [11].

Часто вместо того, чтобы извлекать из самого изображения статистические свойства
входящих в него структур, строятся их модели [12–14]. Широко используется модель изоб-
ражения в виде смеси двумерных коррелированных случайных сигналов, представляющих
фон, и аддитивного некоррелированного шума. В частности, в [14] разработана модель
фона, состоящая из двух текстур с регулируемым отношением занимаемых ими площа-
дей на изображении. Каждая из текстур являлась случайным сигналом с корреляционной
функцией, представляющей собой наклонённый к осям изображения эллипс с экспонен-
циальным или гауссовым распределением амплитуды, модулированным гармонической

функцией. Модельные изображения показали большое визуальное сходство с фотографи-
ями поверхности Земли, сделанными с борта летательного аппарата в облачную погоду.
Однако насколько бы мало смоделированные снимки не отличались от реальных, это ещё
не даёт гарантии того, что их статистические свойства будут также близки. Разрабо-
танный метод не предполагает построения модели фона. Статистическая информация о
нём, необходимая для выполнения алгоритма, берётся непосредственно из анализируемого
изображения.

Предлагаемый метод. В работе рассматривается следующая задача. Имеется полу-
тоновое изображение размером I×J пикселей, на котором запечатлена сложная случайная
текстура (пример приведён во введении). На фоне этой структуры, предположительно, со-
держится маленький объект, занимающий K пикселей, причём K � I, K � J . Все эти
пиксели имеют одинаковую яркость β, являющуюся случайной величиной с известным
распределением. Требуется найти объект с указанием его локализации.

Метод предполагает работу с изображением, которое полностью покрывается доста-
точно большими сегментами, где его статистические свойства приблизительно постоянны.
Возьмём один из таких сегментов. Просканируем его окном размером n×n пикселей. С од-
ной стороны, этот размер должен быть достаточно мал, чтобы считать, что в отсутствие
объекта фон в створе окна с высокой вероятностью имеет постоянную яркость, с другой —
хотя бы в одном положении окно должно полностью покрывать искомый объект. Пусть
n — нечётное число, тогда окно имеет центральный пиксель. Будем определять положение
окна его индексацией. Обозначим черезWn(i, j) область, попавшую в створ окна с центром
в пикселе (i, j), a через B̄(i, j, n) — среднюю яркость этой области.

В процессе сканирования центр окна перемещается либо на один пиксель по горизон-
тали, либо на один пиксель по вертикали до тех пор, пока не будет пройден весь сегмент.
Предположим, что в некоторой области Wn(i, j) содержится искомый объект, тогда для
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неё приближённо должно выполняться соотношение

B̄(i, j, n) =
1

n2
((n2 −K)α +Kβ), (1)

где α — яркость фона в рассматриваемой области, которую также будем считать слу-
чайной величиной. Обозначим вероятности того, что фон и объект имеют яркости α и β
через Pbg(α) и Pob(β) соответственно. То, что каждая из вероятностей зависит только от
одной переменной, вытекает из предположения о независимости величин α и β. Из это-
го же следует, что вероятность того, что фон имеет яркость α, и в то же время объект
имеет яркость β, равна произведению Pbg(α)Pob(β). Идея предлагаемого метода состоит
в поиске таких значений α и β, для которых это произведение принимает максимальное
значение при дополнительном условии (1). Будем решать эту задачу методом Лагранжа,
т. е. искать экстремум функции:

L(α, β) = Pbg(α)Pob(β) +
λ

n2
((n2 −K)α +Kβ), (2)

где λ — неопределённый множитель. Дифференцируя (2) по переменным α и β, приходим
к системе уравнений: 

dPbg(α)

dα
Pob(β) + λ

(
1− K

n2

)
= 0;

Pbg(α)
dPob(β)
dβ + λ K

n2
= 0.

(3)

Решение системы (3) значительно упрощается, если предположить, что яркость объек-
та имеет равномерное распределение. В этом случае производная dPob(β)/dβ обращается
в нуль тождественно. Тогда из второго уравнения следует λ = 0. Первое же уравнение
приводит к тому, что в точке условного максимума должно быть

dPbg(α)

dα
= 0. (4)

Области Wn(i, j) принадлежат одному сегменту, в котором по предположению ста-
тистические свойства изображения остаются неизменными. Поэтому вероятности Pbg(α)
могут быть оценены из гистограммы, составленной по значениям B̄(i, j, n), которые найде-
ны экспериментально для всех положений окна на рассматриваемом сегменте. Обозначим
эту гистограмму Hbg(νm), где νm — частота попаданий средней яркости области в m-й
карман гистограммы. Вероятность того, что средняя яркость некоторой области попала в
интервал [Bm, l;Bm, r], положим равной Hbg(νm). Здесь Bm, l и Bm, r — левая и правая гра-
ницы m-го кармана гистограммы соответственно. Производную от вероятности в точке

Bm, l оценим конечной разностью:

dPbg(α)

dα

∣∣∣
α=Bm, l

=
Hbg(νm+1)−Hbg(νm)

∆
. (5)

Здесь ∆ — размер кармана гистограммы.
Для решения уравнения (4) разработан следующий алгоритм. По уравнению (5) вы-

числяются значения производной в точках B1, l, B2, l, . . . , BM−1, l (M — число карманов

гистограммы). Из них отбираются те, модуль которых меньше установленной величи-
ны δ, характеризующей точность выполнения условия (4). Если таких не находится, то
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считается, что изображение внутри сегмента не удовлетворяет условиям статистической
однородности, и метод не может быть использован ни для одной из входящих в него об-
ластей. В этом случае следует либо изменить сегментацию, либо отказаться от поисков
в этой части изображения и перейти к следующему сегменту. В противном случае для
отобранных Bm, l проверяется неравенство:

Hbg(νm−1) 6 Hbg(νm) 6 Hbg(νm+1). (6)

Если оно не выполняется ни для одного из них, то сегмент также непригоден для приме-
нения на нём метода.

Пусть неравенство (6) имеет место для одного или нескольких значений, которые
пронумеруем индексом m∗. Примем все Bm∗, l за точки локального максимума производной
dPbg(α)/dα. Тогда в любой из областей Wn(i, j), получающихся при сканировании сегмен-
та, может содержаться объект. Поэтому для всех них проводится нижеописанная проверка.
Возьмём некоторую область Wn(i0, j0). Величину её локального фона α положим равной
той Bm∗, l, которая ближе всего к B̄(i0, j0, n). Используя равенство (1), находим яркость
объекта:

Bob =
n2

K

(
B̄(i0, j0, n)−

(
1− K

n2

)
Bm∗, l

)
. (7)

Если Bob, полученное по (7), не попадает в интервал ]Bm∗, l;Bmax] (Bmax — максималь-
ная яркость в сегменте), то предположение о наличии в Wn(i0, j0) объекта отклоняется,
поскольку считается, что он должен быть ярче локального фона. Если же на этом этапе
предположение не было отклонено, то производится преобразование яркости всех пикселей,
принадлежащих Wn(i0, j0):

BT (t) =

{
B(t), B(t) ∈ [(Bob − σ); min ((Bob + σ), Bmax)],

0, B(t) /∈ [(Bob − σ); min ((Bob + σ), Bmax)],
(8)

если (Bob − σ) > Bm∗, l; или

BT (t) =

{
B(t), B(t) ∈ ]Bm∗, l; min ((Bob + σ), Bmax)],

0, B(t) /∈ ]Bm∗, l; min ((Bob + σ), Bmax)],
(9)

если (Bob−σ) 6 Bm∗, l. Здесь переменная t нумерует пиксели области; σ — предполагаемое

или оценённое стандартное отклонение (корень из дисперсии)шума на изображении. После
преобразования (8) или (9) в Wn(i0, j0) проводится подсчёт пикселей, имеющих ненулевую
яркость. Если их число оказывается не меньше заданного значения Kd 6 K, то считается,
что в данной области находится объект интереса.

Проведённые вычислительные эксперименты показали, что, несмотря на то, что долж-
ны быть удовлетворены несколько условий для подтверждения гипотезы о наличии объ-
екта, метод выдаёт значительное количество ошибок второго рода, т. е. находит много
несуществующих объектов. Поэтому было добавлено ещё одно требование, накладываю-
щее ограничение на дисперсию яркости изображения в области, предположительно, содер-
жащей объект. С одной стороны, при выполнении соотношения (1) она равна

Dt(i, j, n) =
1

n2
(K(B̄(i, j, n)− β)2 + (n2 −K)(B̄(i, j, n)− α)2). (10)
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a b

Рис. 1. Обрабатываемые изображения: a — исходное, b — с отмеченными объ-
ектами (обведены квадратами)

С другой стороны, оценка, вычисленная непосредственно по изображению, будет

De(i, j, n) =
1

n2

n2∑
t=1

(B̄(i, j, n)−B(t))2. (11)

Зададим условие близости этих оценок в виде

De(i, j, n)− σ2 6 Dt(i, j, n) 6 De(i, j, n) + σ2, (12)

где σ2 в соответствии с (8), (9) — предполагаемая или оценённая дисперсия шума на

изображении. В разработанном алгоритме перед преобразованием (8) или (9) выполняется
проверка неравенства (12), в котором Dt(i, j, n) вычисляется при α = Bm∗, l, β = Bob.
В случае его невыполнения гипотеза о наличии объекта отклоняется.

Вычислительный эксперимент. Для исследования разработанного алгоритма про-
ведён вычислительный эксперимент. В качестве фона взяты реальные снимки облачного
неба, сделанные как с поверхности Земли, так и с борта летательных аппаратов. Всего
использовано 20 различных фотографий, которые предварительно переводились в полу-
тоновые изображения размером 1200 × 1200 пикселей с однобайтовой кодировкой ярко-
сти. Соответственно, яркость могла принимать целочисленные значения от 0 до 255. На
каждом изображении случайным образом размещено 10 модельных объектов, представля-
ющих собой круги радиусом два пикселя, при этом размер объекта K оценивался в 12
пикселей. Круги имели случайную амплитуду с равномерным распределением на интер-
вале [B̄(i, j, 5); 255]. Здесь B̄(i, j, 5) — среднее значение яркости квадратной области 5× 5
пикселей, в центр которой помещается центр круга. Одно из полученных искусственных
изображений представлено на рис. 1, a. Как видно, расположенные на нём объекты сложно
обнаружить визуально, поэтому на рис. 1, b их локации заключены в чёрные квадратные
рамки.

Эффективность метода оценивалась по следующим критериям. Количество ошибок
первого рода E1 — число ненайденных имеющихся объектов, количество ошибок второго
рода E2 — число указанных алгоритмом несуществующих объектов. При подсчёте кри-
териев E1 и E2 применялось правило: если предположение о существовании объекта под-
тверждается для двух и более перекрывающихся областей Wn(i, j), считается, что речь
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Т а б ли ц а

Полученные показатели эффективности алгоритма

Изображение E1 E2 PR TP

1 0 22 0,3125 0,4545
2 0 26 0,2778 0,3846
3 0 27 0,2703 0,3704
4 0 35 0,2222 0,2857
5 1 16 0,36 0,5294
6 1 19 0,3214 0,45
7 1 21 0,3 0,4091
8 1 21 0,3 0,4091
9 1 27 0,25 0,3214
10 1 30 0,2308 0,2903
11 2 11 0,4211 0,6154
12 2 23 0,2581 0,32
13 2 25 0,2424 0,2963
14 2 27 0,2286 0,2759
15 2 28 0,2222 0,2667
16 2 34 0,1905 0,2222
17 3 18 0,28 0,3333
18 3 22 0,2414 0,28
19 3 24 0,2258 0,2592
20 4 21 0,2222 0,24

Среднее 1,55 24 0,2687 0,3507

Рис. 2. Результат работы алгоритма: области с большой яркостью — найден-
ные объекты, области с меньшей яркостью — ошибки второго рода

идёт об одном и том же объекте, его локализация приписывается той области, где оказыва-
ется больше всего пикселей с ненулевой яркостью после преобразований (8) или (9). Кроме
ошибок E1 и E2, также вычислялись согласно приведённым в [1] формулам точность PR
и полнота RC :

PR =
TP

TP + E2
, RC =

TP

E1 + E2
. (13)

В (13) через TP обозначено число правильно найденных объектов (т. е. разность между
количеством объектов и ошибок первого рода).
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Сегменты, на которые делились изображения, представляли собой квадратные обла-
сти размером 100 × 100 пикселей, пересекающиеся лишь по границам. Таким образом,
каждое изображение было разделено на 144 сегмента. Соответственно, их полное чис-
ло равно 2880. Для каждого из них при размере сканирующего окна 5 × 5 строилась
гистограмма Hbg(νm), по которой проводился поиск приближённого решения уравнения
(4), удовлетворяющего условию (6). При этом величина δ, по которой отбирались оцен-
ки производной (5), полагалась равной 0,0001. Как и ожидалось, при уменьшении числа
карманов гистограммы M количество сегментов, для которых существует приемлемое
решение уравнения (4), сокращается. В частности, при M = 25 их было примерно 75 %.
Однако уже приM > 40 практически для всех сегментов существуют решения Bm∗, l. Так-
же оказалось, что число M влияет на точностные характеристики метода. Выяснилось,
что меньше всего ошибок первого и второго рода происходит, когда гистограмма имеет
60–100 карманов. При выбранных размерах сегмента и сканирующего окна число значений
B̄(i, j, n), по которым строится гистограмма Hbg(νm), составляет 9216. Исходя из этого,
можно заключить, что на практике количество карманов гистограммы Hbg(νm) можно
брать равным квадратному корню из числа положений сканирующего окна на сегменте.
Именно для такого M = 96 получены приведённые ниже результаты.

Исследована также зависимость суммарного количества ошибок первого и второго

рода от Kd — минимального числа пикселей с ненулевой яркостью, для которого счита-
ется, что объект присутствует в рассматриваемой области. Оказалось, что оптимальным
в этом смысле является Kd = 9. Поскольку в проведённом вычислительном эксперименте
полагалось K = 12, рекомендуется при практическом применении алгоритма выбирать
Kd ∼ 0,75K.

В таблице собраны результаты, полученные для всех рассмотренных изображений.
В первом столбце дана их нумерация (изображение, представленное на рис. 1, имеет но-
мер 1). Во втором, третьем, четвёртом и пятом столбцах приведены критерии эффектив-
ности E1, E2, PR и RC соответственно.

На рис. 2 показаны положения объектов, найденных алгоритмом на модельном изобра-
жении (см. рис. 1, a). Здесь области с большой яркостью — те, в которых действительно
находится объект, области с меньшей яркостью — в которых объект в реальности отсут-
ствует.

Заключение. Разработанный алгоритм обнаружения объектов малого размера хоро-
шо проявил себя в процессе вычислительного эксперимента, где использовались реальные
фотографии облаков, на которые были нанесены модельные объекты — круги радиусом

два пикселя. Изображения облаков имеют сложные статистические свойства, которые в
настоящее время недостаточно изучены, а имеющиеся здесь модели являются в значи-
тельной степени неполными. Этим и обусловлен выбор реальных фотоснимков в качестве
фона. В силу его высокой неоднородности поиск практически каждого объекта происхо-
дил в индивидуальных условиях. Поэтому чрезвычайно важно то, что алгоритм показал
низкий процент ошибок первого рода. Из 200 объектов, помещённых на 20 изображениях,
найдено 169, т. е. отношение ненайденных объектов к имеющимся составило ∼15,5 %.

По ошибкам второго рода алгоритм также имеет хорошие показатели: на 169 найден-
ных объектов приходится 280 ложных срабатываний. Таким образом, на одно правильно
принятое решение о наличии объекта приходится приблизительно 1,66 неверных. Этот
результат представляется вполне приемлемым, особенно при наличии большого разно-
образия статистических свойств локальных фонов, на которых были найдены модельные
объекты. Также следует учитывать, что алгоритм требует относительно мало априорной
информации. В этой связи отметим, что система уравнений (3) справедлива для любого
распределения яркости объекта. Предположение о том, что производная dPob(β)/dβ рав-
на нулю тождественно, хотя и упрощает решение, но, с другой стороны, расширяет круг
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допустимых распределений яркости фона, что, в свою очередь, может вызвать рост коли-
чества ошибок второго рода. Есть основания полагать, что этого можно избежать путём
привлечения дополнительных априорных знаний о статистических свойствах фона, а так-
же указанием на конкретный объект поиска.

Финансирование. Работа выполнена при поддержке Министерства науки и высшего
образования РФ (проект № 121022000116-0).
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