2009. Том 50, № 2

Март – апрель

C. 227 – 234

УДК 539.193+546.173.31

КВАНТОВО-ХИМИЧЕСКОЕ СВИДЕТЕЛЬСТВО СУЩЕСТВОВАНИЯ НОВОГО ИЗОМЕРА N₂O₃ — НИТРИТА НИТРОЗОНИЯ

© 2009 И.И. Захаров^{1,2}*, О.И. Захарова²

¹Институт катализа им. Г.К. Борескова СО РАН, Новосибирск

²Восточно-Украинский национальный университет им. В. Даля, Северодонецкий технологический институт

Статья поступила 5 июня 2008 г.

Квантово-химическим методом функционала плотности DFT/B3LYP с использованием базиса 6-311++G(3df) рассчитаны геометрические, электронные и термодинамические параметры трех известных изомеров молекулярной структуры триоксида диазота N₂O₃. Рассчитана структура нового изомера NONO₂. Из расчета колебательных частот следует, что структура NONO₂ характеризуется локальным минимумом потенциальной энергии и соответствует стационарному состоянию изомера N₂O₃. Для молекулярной структуры NONO₂ характерен значительный отрицательный заряд на фрагменте NO₂ и положительный заряд на фрагменте NO. Электронную структуру изомера NO⁺NO⁻₂ можно характеризовать как *нитрит нитрозония*, который может окисляться в нитрит и участвовать в реакции нитрозилирования в соответствии с биогенными характеристиками интермедиата NO_x, предположенного в биологических системах при окислении NO.

Ключевые слова: метод функционала плотности, квантово-химические расчеты, триоксид диазота, изомеры, нитрит нитрозония.

Триоксид диазота N₂O₃ (азотистый ангидрид) — в обычных условиях неустойчивое соединение N₂O₃ $\leftrightarrow \cdot$ NO + \cdot NO₂. Наиболее устойчивой формой N₂O₃ является плоская несимметричная структура O₂N—NO (*C_s*-симметрия), в которой радикал диоксида азота \cdot NO₂ слабо связан с радикалом \cdot NO через атомы азота ($r_{N-N} = 1,86$ Å) (рис. 1, *a*). И хотя это соединение практического применения пока не находит, тем не менее оно является промежуточным продуктом в многочисленных превращениях окислов азота. С учетом этого, любые схемы и механизмы реакций окисления в присутствии окислов азота требуют знаний об особенностях электронного

Рис. 1. Данные квантово-химического B3LYP/6-311++G(3*df*) расчета геометрической структуры стабильных изомеров молекулы N₂O₃: *a* — структура характеризуется симметрией *C_s* (атомы лежат в одной плоскости), $\delta - C_{2\nu}$ (имеется две плоскости симметрии), *e* — концевые атомы кислорода O2 и O3 не лежат в плоскости N₁O₁N₂ (симметрия *C*₁); рассчитанные торсионные углы: $\tau_{O2N1O1N2} = 186,6^{\circ}, \tau_{O3N2O1N1} =$ = 17.0°

^{*} E-mail: zvonu@rambler.ru

и молекулярного строения N2O3. Например, вопреки хорошо известной стадии

$$2NO + O_2 \rightarrow 2NO_2 \tag{1}$$

в производстве азотной кислоты, физиологическое окисление NO кислородом в воде образует *нитриты* (производные азотистой кислоты), а не *нитраты* (производные азотной кислоты) [1]. Предполагается, что в физиологической системе образуется особая форма N₂O₃ [2] как вторичный продукт реакции (1): NO + NO₂ \rightarrow N₂O₃. Согласно исследованиям [2, 3], это должен быть до сих пор неизвестный реакционно-способный интермедиат NO_x, который "может окисляться в нитрит и должен участвовать в нитрозилировании" [1].

На основании этих экспериментальных результатов в данной работе предпринята попытка теоретического поиска молекулярной структуры нового изомера триоксида диазота N_2O_3 в виде нитрита нитрозония NONO₂. Аналогичная структура изомера тетраоксида диазота N_2O_4 в виде нитрата нитрозония NONO₃ недавно представлена нами в работе [4].

Как и в сообщении [4], нами использован метод молекулярных орбиталей (МО) в теории функционала плотности (DFT) с обменно-корреляционным функционалом B3LYP. В базисе 6-311++G(3df) с оптимизацией геометрии проведен квантово-химический расчет всех трех известных изомеров молекулярной структуры N₂O₃. Рассчитанные значения структурных, электронных и термодинамических параметров приведены в табл. 1 и на рис. 1.

Экспериментальные геометрические и термодинамические параметры известны только для наиболее устойчивой несимметричной структуры O_2N —NO (см. рис. 1, *a* и табл. 1). Она наблюдается как в газовой фазе [5], так и в низкотемпературных матрицах [6], тогда как менее устойчивая симметричная форма ONONO (см. рис. 1, δ) и недавно обнаруженная *цис*—*транс*-форма (см. рис. 1, *в*) охарактеризованы только в низкотемпературных матрицах [6, 7].

Здесь важно отметить, что *основное* состояние N₂O₃ (см. рис. 1, *a*) формируется при взаимодействии радикалов •NO₂ (²A₁) и •NO (²П) в их *основных* состояниях через спаривание спинов на связи N—N. Формирование симметричной формы ONONO и *цис—транс*-формы N₂O₃ происходит при взаимодействии радикала •NO (²П) в *основном* состоянии и радикала NO₂ (²B₂) в *первом возбужденном* состоянии ²B₂, для которого характерна локализация неспаренного электрона на атомах кислорода [8]. Именно поэтому в этих структурах ON—ONO формируется связь N—O, а не N—N.

Как следует из наших расчетов (см. табл. 1, рис. 2), образование новой формы NONO₂ также происходит через взаимодействие •NO (${}^{2}\Pi$) в *основном* состоянии и NO₂ (${}^{2}B_{2}$) в *возбужденном* состоянии ${}^{2}B_{2}$ с образованием двух связей N—O. Согласно расчетам B3LYP/6-311++G(3*df*) (см. табл. 1), энергетическая стабильность изомера NONO₂ на 12 кДж/моль превосходит стабильность *цис—транс*-формы N₂O₃. Проведенный расчет колебательных частот для оптимизированной структуры изомера NONO₂, так же как и для трех ранее известных изомеров, показывает отсутствие мнимых частот в ИК спектре (табл. 2). Это означает, что молекулярная структура NONO₂ характеризуется локальным минимумом на гиперповерхности потенциальной энергии и соответствует стационарному состоянию молекулы N₂O₃.

Как видно из результатов расчета в табл. 2, для молекулярной структуры NONO₂ характерен значительный отрицательный заряд на фрагменте NO₂^q (q = -0,31e) и положительный заряд на фрагменте NO^q (q = 0,31e). Рассчитанный дипольный момент в газовой фазе составляет 2,9 Д и является наибольшим из всех изомеров N₂O₃. Наибольший рассчитанный дипольный момент и наибольшее рассчитанное значение энтропии $S_{298}^0 = 305,3 \text{ Дж/(моль·K)}$ из всех изомеров N₂O₃, по нашему мнению, должно способствовать его преимущественному формированию в жидкой фазе биологических систем за счет эффекта сольватации.

Таким образом, рассчитанную электронную структуру нового изомера NONO₂ можно характеризовать как *нитрит нитрозония*, который может окисляться в нитрит (NO₂⁻) и участвовать в реакции нитрозилирования (электрофильная реакция под действием NO⁺) в соответствии с биогенными характеристиками интермедиата NO_x, предложенного в биологических системах при окислении NO [1—3].

Таблица 1

	B3LYP/6-311++G(3 <i>df</i>) расчет*				
Молекулярная система (симметрия, электронное состояние)		Энергетические и термодинамические характеристики			
	Геометрический параметр, Å	Полная энергия E_t , ат. ед., и энергия нулевых колебаний, E_0 , кДж/моль	$\Delta_{\!f} H^0_{298},$ кДж/моль	S ⁰ ₂₉₈ , Дж/(моль∙К)	
N_2O_3	r(N1—N2) 1.868 (1.864)	$E_t = -335.109821$	86.5**	299.45	
$(C_{s} - {}^{1}A')$	r(N1—O3) 1,130 (1,142)	E_0 45.55	(86,6)	(314,7)	
Рис. 1. а	r(N2—O1) 1,198 (1,217)	(42,54)			
	r(N2—O2) 1,198 (1,202)				
N_2O_3	r(N1—O1) r(N2—O1) 1,484	$E_{\rm t}$ -335,103604	97,9	295,5	
$(C_{2v} - {}^{1}A_{1})$	r(N1—O2) r(N2—O3) 1,153	<i>E</i> ₀ 40,65			
Рис. 1, б					
N_2O_3	<i>r</i> (N1—O1) 1,611	$E_{\rm t}$ -335,097588	125,8	291,5	
$(C_1 - A)$	<i>r</i> (N1—O2) 1,135	E_0 52,78			
Рис. 1, в	<i>r</i> (N2—O1) 1,397				
	<i>r</i> (N2—O3) 1,173				
N_2O_3	<i>r</i> (N1—O1) 1,11	<i>E</i> t -335,098113	113,8	305,3	
$(C_s - A')$	<i>r</i> (N1—O2) 2,12	E_0 42,1			
Рис. 2	<i>r</i> (N2—O2) 1,23				
	<i>r</i> (N1—N2) 2,50				
$N_2(^1\Sigma_g)$	<i>r</i> (N—O) 1,090 (1,097)	$E_{\rm t}$ -109,567372	0,0	191,35	
		<i>E</i> ₀ 14,63	(0,0)	(191,50)	
$O_2(^{3}\Sigma_{g})$	r(O—O) 1,203 (1,207)	$E_{\rm t}$ -150,379488	0,0	204,90	
Ū		<i>E</i> ₀ 9,84	(0,0)	(205,04)	

Данные квантово-химического DFT-расчета электронной структуры и термодинамических параметров изомеров молекулы N₂O₃

* В скобках приведены значения экспериментальных данных: http://webbook.nist.gov/chemistry.

** Теплота образования изомеров N₂O₃ рассчитана относительно энергетического уровня N₂($^{1}\Sigma_{g}$) + $3/2O_{2}(^{3}\Sigma_{g})$ с учетом нулевых колебаний E_{0} : $\Delta H = \Delta E_{t} + \Delta E_{0}$. Используемые соотношения энергетических единиц: 1 ат. ед. = 627,544 ккал; 1 ккал = 4,184 кДж.

Возможность стабилизации *нитрита нитрозония* NONO₂ в реакции окисления NO в биологических системах открывает новые представления о возможном механизме реакции (1).

Хорошо известно, что тримолекулярная реакция (1) является реакцией второго порядка по NO и первого порядка по кислороду как в жидкой [3], так и в газовой фазе [9]. Эта реакция является одним из немногих известных случаев, когда с повышением температуры химический процесс не только не ускоряется, но даже замедляется. Это определяет отрицательную *наблю- даемую* энергию активации для реакции (1), молекулярный механизм которой в литературе пока не находит общего признания [9, 10].

Основная схема механизма, предложенная для объяснения аномалии температурной зависимости скорости реакции (1), исходит из того, что в реакцию с кислородом вступают лишь диме-

Рис. 2. Данные квантово-химического B3LYP/6-311++G(3*df*) расчета геометрической структуры нового изомера молекулы N₂O₃ (*C*_s-сим-метрия) типа нитрита нитрозония NONO₂

Таблица 2

Молекулярная система N ₂ O ₃	Симметрия <i>C_s</i>	Симметрия $C_{2\nu}$	Симметрия C_1	Симметрия <i>C_s</i>
	Рис. 1, <i>a</i> , терм ¹ <i>A</i> ′	Рис. 1, δ , терм ${}^{1}A_{1}$	Рис. 1, <i>в</i> , терм 1A_1	Рис. 2, терм ¹ <i>A</i> '
$q_{e}(N_{1})$ $q_{e}(N_{2})$ $q_{e}(O_{1})$ $q_{e}(O_{2})$	+0,195	+0,37	+0,381	+0,38
	+0,604	+0,37	+0,302	+0,29
	-0,367	-0,38	-0,314	-0,07
	-0,408	-0,18	-0,096	-0,30
$q_{e}(O_{3})$	-0,024	$ \begin{array}{r} -0,18 \\ 0,49 \\ 130 \ (B_1) \ 0,0^* \end{array} $	-0,273	-0,30
μ	2,39		1,61	2,88
ω_{1}	135 (<i>A''</i>) 0,5*		71 (<i>A</i>) 3,1*	89 (<i>A''</i>) 5,1*
ω_2 ω_3 ω_4	199 (<i>A'</i>) 0,6 272 (<i>A'</i>) 28,2 442 (<i>A''</i>) 7,8	$225 (A_2) 0,0$ $235 (A_1) 0,1$ $343 (B_2) 1066$ $204 (A_1) 4 A$	127 (<i>A</i>) 188,6 209 (<i>A</i>) 27,7 248 (<i>A</i>) 321	192 (<i>A'</i>) 1,0 274 (<i>A'</i>) 21,4 312 (<i>A''</i>) 4,2
ω ₅ ω ₆ ω ₇	590 (<i>A'</i>) 22,6 778 (<i>A'</i>) 41,0 1306 (<i>A'</i>) 265 1622 (<i>A'</i>) 410	$\begin{array}{c} 394 \ (A_1) \ 4,4 \\ 699 \ (B_2) \ 0,1 \\ 961 \ (A_1) \ 37,7 \\ 1697 \ (B_2) \ 572 \end{array}$	433 (A) 37,9 764 (A) 137 876 (A) 56,1 1603 (A) 262	538 (<i>A'</i>) 16,7 826 (<i>A'</i>) 0,1 1239 (<i>A'</i>) 96,3 1289 (<i>A'</i>) 269
ω ₈ ω ₉	1840 (A') 448	1747 (<i>A</i> ₁) 0,2	1806 (A) 372	1919 (<i>A'</i>) 790

Заряды атомов q_e, дипольный момент μ (Д) и гармонические колебательные частоты ω (см⁻¹) изомеров молекулы N₂O₃ на основе квантово-химических расчетов B3LYP/6-311++G(3df)

ры (NO)₂, вероятность образования которых с повышением температуры уменьшается:

$$2NO \leftrightarrow (NO)_2,$$
 (2a)

$$(NO)_2 + O_2 \rightarrow 2NO_2. \tag{26}$$

В химико-технологической литературе по производству азотной кислоты [11, 12] отдается предпочтение механизму с образованием промежуточного соединения NO_3 (или комплекса $ON \cdot O_2$):

$$NO + O_2 \rightarrow NO_3, \tag{3a}$$

$$NO_3 + NO \rightarrow 2NO_2. \tag{36}$$

На основе ИК-спектроскопического исследования реакции окисления NO в аргоновой матрице при низкой температуре 10 К и идентификации в продуктах реакции (1) пероксирадикала OONO, авторы работ [13, 14] предложили новый молекулярный механизм окисления NO с участием интермедиата OONO:

$$NO + O_2 \rightarrow OONO,$$
 (4a)

$$OONO + NO \rightarrow 2NO_2. \tag{46}$$

Экспериментальное наблюдение ИК поглощения в области 1840 см⁻¹ [13—15] в продуктах реакции NO с O₂ позволило говорить об обнаружении интермедиата реакции 2NO + O₂ \rightarrow 2NO₂, так как интенсивность поглощения в области 1840 см⁻¹ увеличивалась перед появлением NO₂ и впоследствии уменьшалась пропорционально увеличению концентрации NO₂ [13, 14]. В качестве наблюдаемого интермедиата авторами [13, 14] было предположено фор-

^{*} Рассчитанные значения ИК-интенсивности указаны для *каждой частоты колебания* (и типа симметрии), значения колебательных частот приведены с учетом масштабного множителя 0,9484, который хорошо корректирует рассчитанные характеристические частоты N_2O_3 к наблюдаемым: $\omega_9 = 1832 \div 1839 \text{ см}^{-1}$ для основного состояния, $\omega_8 = 1687 \div 1697 \text{ см}^{-1}$ для симметричного состояния и $\omega_4 = 243 \text{ см}^{-1}$ для *цис—транс*-состояния [http://webbook.nist.gov/chemistry].

мирование несимметричного радикала NO₃ со структурой пероксинитрита OONO (²*A*") в реакции окисления NO по схеме 4а—46. Рассчитанная структура такого интермедиата OONO (²*A*") методом MP2/6-31G* [10] оказалась энергетически менее стабильной относительно реагентов NO (² Π) + O₂ (³ Σ_g) всего на ≈50 кДж, а оценка возможных колебательных частот двойной связи N=O в *цис*-структуре пероксинитрита O—O—N=O (²A") совпадала с областью 1840 см⁻¹ [15]. Все это сформировало точку зрения, что пероксирадикал •OONO (²A") может являться хорошим претендентом для интермедиата в реакции окисления NO. Тем не менее родоначальники обнаруженного ИК поглощения в области 1840 см⁻¹ [13, 14] впоследствии опубликовали опровержение своей интерпретации промежуточного продукта OONO: "Систематическая ошибка в обработке данных привела к неправильной интерпретации ИК спектра, поэтому наблюдаемая полоса 1840 см⁻¹ должна быть отнесена к N₂O₃, а не к OONO" [16].

Если принять во внимание, что N_2O_3 формируется только в продуктах реакции $2NO + O_2 \rightarrow 2NO_2$ через спаривание радикалов •NO и •NO₂, т.е. не может характеризоваться как интермедиат реакции, то вопрос о структуре промежуточной формы реакции окисления NO остается открытым. Для того чтобы прояснить эту запутанную ситуацию потребовались более детальные исследования продуктов реакции $2NO + O_2$ с учетом изотопного обмена. В работе [15] были проанализированы ИК спектры поглощения различных форм N_yO_x в аргоновой матрице при температуре 10 К для продуктов двух реакций: ${}^{14}N^{16}O + {}^{16}O_2$ и ${}^{14}N^{16}O + {}^{18}O_2$.

В экспериментах ¹⁴N¹⁶O + ¹⁸O₂ полоса поглощения 1838 см⁻¹ оказалась меньше по интенсивности, чем в экспериментах ¹⁴N¹⁶O + ¹⁶O₂, и появилась новая полоса поглощения при 1788 см⁻¹. Учитывая, что интегральная интенсивность полосы 1838 см⁻¹ в экспериментах ¹⁴N¹⁶O + ¹⁶O₂ соответствует сумме интенсивностей двух полос (1838 см⁻¹ и 1788 см⁻¹) в экспериментах ¹⁴N¹⁶O + ¹⁸O₂, авторы приходят к важному выводу о том, что поглощение в области 1840 см⁻¹, обнаруженное в работах [13, 14] для реакции с ¹⁶O₂, соответствует *двум молекулярным формам*. Причем одна из них проявляет изотопный сдвиг высокочастотного колебания N=O ($\Delta v \approx 50$ см⁻¹), а другая не проявляет.

Таким образом, удалось устранить противоречие работ [13, 14], что полоса поглощения в области 1840 см⁻¹ может менять свою интенсивность в соответствии со свойствами *проме*жуточной формы реакции окисления NO и в то же время характеризовать высокочастотное колебание связи N=O в молекулярной форме *вторичного продукта реакции* N₂O₃. Ведь это было наложение полос поглощения для N₂O₃ и интермедиата реакции окисления NO.

Далее Батиа и Холл [15] установили, что когда матрицу с продуктами реакции ¹⁴N¹⁶O + +¹⁸O₂ подогревали до 15 K, полоса поглощения 1838 см⁻¹ исчезала полностью и не появлялась при охлаждении, что указывало на очень слабую связь в этой молекулярной структуре. В то же время полоса поглощения 1788 см⁻¹ не изменяла свою интенсивность, указывая на более прочную молекулярную форму. В случае же, когда матрично-изолированные продукты реакции 14 N¹⁶O + 16 O - 16 O - подогревались до 15 K, то полоса поглощения 1838 см⁻¹ не исчезала полностью, а лишь уменьшалась по интенсивности.

Все эти данные неопровержимо доказывают, что в ходе реакции окисления NO формируются две молекулярные структуры с высокочастотной полосой поглощения в области 1840 см⁻¹. Одна из этих структур является интермедиатом в реакции окисления NO, характеризуется очень высокой реакционной способностью к молекулярному распаду и в ИК спектре не проявляет изотопного сдвига колебания N=O. Другая молекулярная структура является более стабильной и проявляет изотопный сдвиг высокочастотного колебания N=O ($\Delta v \approx 50$ см⁻¹).

Этот вывод, очень важный для интерпретации механизма окисления NO, сделан в работе [15]. Однако при соотнесении этих двух полос с возможными молекулярными структурами авторы [15] делают непростительную ошибку — полосу поглощения с характеристиками интермедиата реакции соотносят с триоксидом диазота N_2O_3 , являющимся вторичным продуктом реакции окисления NO, а полосу более устойчивой формы, претерпевающей изотопный сдвиг, относят к пероксирадикалу •ООNO как интермедиат реакции окисления NO. В подтверждение такой интерпретации авторы ссылаются на свои расчеты частот колебаний радикала ${}^{16}O{}^{14}N{}^{16}O$ как интермедиата реакции ${}^{16}O_2 + {}^{14}N{}^{16}O$ и радикала ${}^{18}O{}^{18}O{}^{14}N{}^{16}O$ как интермедиата

реакции ${}^{18}O_2 + {}^{14}N^{16}O$: "рассчитанная частота N=O колебаний соответствует 1840 см⁻¹, а изотопный сдвиг составляет 50 см⁻¹" [15].

Наиболее детальное квантово-химическое исследование пероксирадикала •ООNO недавно проведено в работе [17]. Показано, что экспериментально наблюдаемый изотопный сдвиг 50 см^{-1} не может быть приписан структуре OONO, так как в ней не происходит изотопного замещения в связи N=O. Более того, неэмпирическим расчетом с наиболее полным учетом электронной корреляции показано, что молекулярная структура радикала ООNO не имеет минимума на потенциальной поверхности и не может быть обнаружена экспериментально. На основании этих исследований авторы [17] делают вывод, что *все предыдущие расчеты стабильной структуры* ООNO являются артефактом из-за недостаточно полного учета электронной корреляции, а все экспериментально наблюдаемые ее характеристики (ИК полоса поглощения в области 1840 см⁻¹ и изотопный сдвиг ~50 см⁻¹) в продуктах реакции окисления NO должны быть отнесены к другой молекулярной структуре.

Такой другой молекулярной структурой, по нашему мнению, может быть вторичный продукт реакции окисления NO — триоксид диазота N₂O₃. Ведь проявление высокочастотной полосы поглощения для основного состояния N₂O₃ в области 1840 см⁻¹ признается всеми авторами экспериментальных исследований [13—16]. Однако для N₂O₃ считается невозможным фактом проявление изотопного сдвига $\Delta v \approx 50$ см⁻¹ во вторичном продукте реакции ${}^{18}\text{O}_2 + {}^{14}\text{N}{}^{16}\text{O}$. Ведь первичный продукт этой реакции NO₂ будет соответствовать изотомеру ¹⁸O¹⁴N¹⁶O, а его последующее взаимодействие с реагентом ¹⁴N¹⁶O по схеме взаимодействия основных состояний •NO₂ + •NO \rightarrow N₂O₃ может дать только один изотомер: ¹⁸O¹⁶ON—N=¹⁶O. В нем не происходит изотопного замещения в связи N=O и, соответственно, не должно наблюдаться изотопного сдвига ∆v ≈ 50 см⁻¹ высокочастотного колебания связи N=O. Это полностью подтверждается экспериментальными данными, полученными в работе [18]: ИК спектр поглощения N₂O₃, полученный через реакцию $NO_2 + NO \rightarrow N_2O_3$ при использовании различных изотопов NO_2 ($N^{18}O_2$) или N¹⁸O¹⁶O) не дает изотопного сдвига высокочастотной полосы поглощения 1839 см⁻¹. Именно это обстоятельство заставило авторов [15] соотнести N₂O₃ с неустойчивой молекулярной структурой, которая в ИК спектре характеризуется полосой поглощения 1838 см⁻¹ и не проявляет изотопного сдвига колебания N=O. Но описание "когда матрица с продуктами реакции 14 N 16 O + 18 O₂ подогревалась до 15 K и полоса поглощения 1838 см⁻¹ полностью исчезала" [15] не может соответствовать структуре N₂O₃, которая стабильна не только в низкотемпературных матрицах [6], а даже в газовой фазе [5]!

Таким образом, мы приходим к выводу, что образующаяся в ходе реакции окисления NO стабильная молекулярная структура с высокочастотной полосой поглощения в области 1840 см⁻¹ и изотопным сдвигом ($\Delta v \approx 50 \text{ см}^{-1}$) должна соответствовать N₂O₃. Осталось только понять, каким образом в продуктах реакции ¹⁴N¹⁶O + ¹⁸O₂ может получиться изотомер ¹⁸O=N—N¹⁶O¹⁶O, который способен проявить изотопное смещение колебания N=O.

Основываясь на результатах данной работы, что в реакции окисления NO получается первичный продукт NO₂ (${}^{2}B_{2}$) в *первом возбужденном* состоянии ${}^{2}B_{2}$, можно предложить следующую схему формирования вторичного продукта N₂O₃, наблюдаемого в низкотемпературных матрицах после реакции окисления NO:

а) первоначальное взаимодействие NO₂ (${}^{2}B_{2}$) с NO приводит к формированию структуры N₂O₃ с двумя эквивалентными связями N—O (*структура нитрита нитрозония*, изотомер N¹⁸O¹⁶O—N=¹⁶O);

б) далее эта структура трансформируется в более стабильную *структуру симметричного* изомера N₂O₃ (изотомер ¹⁸O—N—¹⁶O—N—¹⁶O);

в) далее структура симметричного N_2O_3 трансформируется в *структуру основного состояния* ON—NO₂ (при этом может возникнуть три изотомера: с вероятностью 50 % изотомер ¹⁸O=N—N¹⁶O¹⁶O, с вероятностью 25 % изотомеры ¹⁸O¹⁶ON—N=¹⁶O и ¹⁶O¹⁸ON—N=¹⁶O).

Возможность процессов взаимопревращений всех ранее наблюдаемых изомеров N_2O_3 между собой в низкотемпературных матрицах хорошо известна [7, 18]. Результаты B3LYP/6-311++G(3*df*) расчета колебательных частот трех изотомеров основного состояния ON—NO₂ показали, что высокочастотное колебание ω_9 для изотомеров ¹⁸O¹⁶ON—N=¹⁶O и ¹⁶O¹⁸ON— N=¹⁶O не проявляет изотопного сдвига колебания N=O, а изотопный сдвиг $\Delta \omega_9 = 50$ см⁻¹ характерен для изотомера ¹⁸O=N—N¹⁶O¹⁶O. Другими словами, предложенная в данной работе возможность стабилизации изомера N₂O₃ с молекулярной структурой нитрита нитрозония с последующей поэтапной трансформацией в основное состояние через симметричный изомер

$$NONO_2 \rightarrow ONONO \rightarrow ON-NO_2$$

может согласованно объяснить все экспериментальные результаты реакции окисления NO, полученные в работе [15].

Как сказано выше, на реальную возможность существования нитрита нитрозония NONO2 указывают результаты исследований окисления NO в биологических системах [1-3]. Конкретных сообщений об экспериментальном наблюдении такого изомера N₂O₃ в литературе нет. Однако, анализируя экспериментальные данные ИК спектров продуктов реакции окисления NO в низкотемпературной матрице (O₂) [19, 20], мы находим удивительные результаты. Во-первых, именно в кислородной матрице наблюдается наибольшее количество продуктов окисления NO. Во-вторых, в кислородной матрице наблюдается большая устойчивость различных молекулярных структур по сравнению с матрицами (N_2) и (Ar). Например, при температуре ~13 К удается наблюдать состояние изолированного NO вместо обычных ассоциатов (NO)2. Все это приводит к некоторому сдвигу характеристических частот молекулярных структур относительно их значений в матрицах (N₂) и (Ar) [20]. Этот сдвиг частот авторы [20] приписывают некоторому стабилизирующему взаимодействию молекулярных структур с матрицей (О2). Так, характеристическая частота NO, замороженного в кислородной матрице (O₂), проявляется при 1866 см⁻¹, а в (N₂) и (Ar) при 1878 см⁻¹ и 1875 см⁻¹ соответственно [20]. Важно отметить, что в кислородной матрице также проявляется молекулярная структура с более высокочастотным поглощением N=O, чем для NO, а именно, в области 1889÷1899 см⁻¹ [19, 20]. Эта полоса поглошения всегла наблюдается только в первый момент реакции окисления NO. а затем происходит ее распад. Таким образом, молекулярная структура, соответствующая этому ИК поглощению, определенно соответствует продукту реакции $2NO + O_2 \rightarrow 2NO_2$, который является неустойчивым и трансформируется в другие продукты реакции. Более высокочастотное ИК поглощение по сравнению с NO позволяет характеризовать такую структуру как молекулярный комплекс нитрозония (NO⁺). С электронной точки зрения удаление электрона с разрыхляющей π*-орбитали NO должно приводить к упрочнению связи N—O и, соответственно, к высокочастотному сдвигу валентного колебания N=O. Как следует из табл. 2, рассчитанная характеристическая частота в газовой фазе для нитрита нитрозония соответствует более высокочастотному колебанию $\omega_9 = 1919 \text{ см}^{-1}$, чем для NO в газовой фазе (1904 см⁻¹ [10]). Заметим, что характеристическая частота NO в кислородной матрице проявляется при 1866 см⁻¹ [20]. Все это позволяет нам интерпретировать экспериментальные результаты [19, 20] с ИК поглощением в области 1889÷1899 см⁻¹ как проявление молекулярной структуры нового изомера N₂O₃ — нитрита нитрозония NONO₂, соответствующей вторичному продукту окисления NO в кислородной матрице через реакцию $NO_2 + NO \rightarrow NONO_2$.

Авторы искренне благодарят А.В. Арбузникова (Вюрцбурский университет, Германия) за помощь в анализе литературных данных.

СПИСОК ЛИТЕРАТУРЫ

- 1. Недоспасов А.А., Беда Н.В. // Природа. 2005. № 7. С. 35 42.
- 2. Wink D.A., Darbeshire J.F., Nims R.W. et al. // Chem. Res. Toxicol. 1993. 6. P. 23 27.
- 3. Wink D.A., Nims R.W., Darbeshire J.F. et al. // Ibid. 1994. 7. P. 519 525.
- 4. Захаров И.И., Колбасин А.И., Захарова О.И. и др. // Теорет. и эксперим. химия. 2008. 44, № 1. С. 24 29.
- 5. Bibart C.H., Ewing G.E. // J. Chem. Phys. 1974. 61. P. 1293 1299.
- 6. Nour E.M., Chen L.-H., Laane J. // J. Phys. Chem. 1983. 87. P. 1113 1120.
- 7. Lee C., Lee Y.-P., Wang X., Qin Q.-Z. // J. Chem. Phys. 1998. 109. P. 10446 10455.

- 8. Захаров И.И., Колбасин А.И., Захарова О.И. и др. // Укр. хим. журн. 2007. 73, № 5-6. С. 91 100.
- 9. Tsukahara H., Ishida T., Mayumi M. // Nitric Oxide. 1999. 3, N 3. P. 191 198.
- 10. McKee M.L. // J. Amer. Chem. Soc. 1995. 117. P. 1629 1637.
- 11. Атрощенко В.И., Алексеев А.М., Засорин А.П. и др. Технология связанного азота. Киев: Вища школа, 1985.
- 12. Химическая технология неорганических веществ (Книга 1). / Под ред. Т.Г. Ахметова. М.: Высшая школа, 2002.
- 13. Guillory W.A., Johnston H.S. // J. Chem. Phys. 1965. 42. P. 2457 2561.
- 14. Guillory W.A., Johnston H.S. // J. Amer. Chem. Soc. 1963. 85. P. 1695 1696.
- 15. Bhatia S.C., Hall J.H. // J. Phys. Chem. 1980. 84, N 24. P. 3255 3259.
- 16. Morris E.D., Johnston H.S. // J. Chem. Phys. 1967. 47. P. 4282.
- 17. Eisfeld W., Morokuma K. // Ibid. 2003. 119. P. 4682 4688.
- 18. Varetti E.L. Pimentel G.C. // Ibid. 1971. 55. P. 3813 3821.
- 19. Louis R.V. St., Crawford B. // Ibid. 1965. 42. P. 857 864.
- 20. Smith G.R., Guillory W.A. // J. Mol. Spectroscop. 1977. 68. P. 223 235.