РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

ФИЗИКО-ТЕХНИЧЕСКИЕ ПРОБЛЕМЫ РАЗРАБОТКИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

2021 № 3

УДК 622.271

ОБОСНОВАНИЕ И ВЫБОР РАСЧЕТНЫХ ПАРАМЕТРОВ ПРОЧНОСТНЫХ СВОЙСТВ ГОРНЫХ ПОРОД ДЛЯ ОЦЕНКИ УСТОЙЧИВОСТИ БОРТОВ КАРЬЕРОВ

Ф. К. Низаметдинов¹, В. Д. Барышников², Е. Жанатулы³, А. А. Нагибин¹, А. С. Туякбай¹, Н. Ф. Низаметдинов¹, А. Р. Естаева¹

¹Карагандинский технический университет,
E-mail: mdig_kstu@mail.ru, просп. Н. Назарбаева, 56, 100000, г. Караганда, Казахстан

²Институт горного дела им. Н. А. Чинакала СО РАН,
E-mail: v-baryshnikov@yandex.ru, Красный проспект, 54, 630091, г. Новосибирск, Россия

³ТОО "Алтай Полиметаллы", E-mail: erasyl.sadykov.95@mail.ru,

ул. Казыбек би, 13, 100822, с. Теректы, Казахстан

Представлена методика исследования устойчивости уступов и бортов, основанная на детальном изучении физико-механических свойств горных пород и структурно-тектонических особенностей прибортовых массивов с учетом их трещиноватости. Данная методика применена на меднорудном карьере "Коктасжал" (Казахстан). Выполнены расчеты коэффициентов структурного ослабления и приведены показатели качества массива для каждого горизонта.

Прибортовой массив горных пород, скважина, керн, физико-механические свойства горных пород, трещина, коэффициент структурного ослабления, угол внутреннего трения, сцепление

DOI: 10.15372/FTPRPI20210304

Методическая основа подготовки и обоснования исходной информации для оценки устойчивости откосов уступов и бортов карьеров заключается в проведении специальных исследований по пробуренным инженерно-геологическим скважинам в прибортовых массивах для получения кернов. Это дает возможность изучения прочностных и физических свойств горных пород и структуры массива. Предлагаемая методика апробирована на меднорудном карьере "Коктасжал" (Казахстан) при обосновании параметров его бортов, где пробурено пять инженерно-геологических скважин (рис. 1). Пробы отбирались из каждой литологической разности в количестве, достаточном для изготовления образцов к проведению опытов на одноосное сжатие и растяжение, косой срез и других испытаний. Параллельно определялись физические и деформационные свойства горных пород, показатели буримости.

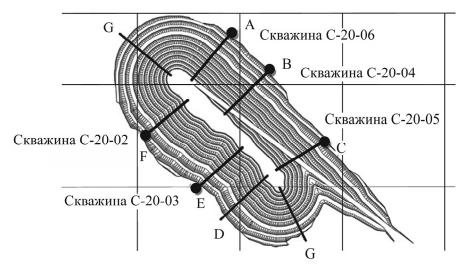


Рис. 1. План горных работ на карьере "Коктасжал"

Из отобранных проб разных пород подготавливались образцы на камнерезных станках для проведения в соответствии с ГОСТами испытаний на одноосное сжатие и растяжение и косой срез под углами наклона 25, 35, 45° в специализированной лаборатории [1-10]. Образцы помещались в специальные деревянные лотки, изолируемые от окружающей среды полиэтиленом (рис. 2).

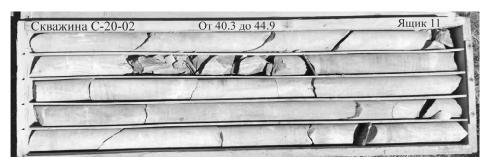


Рис. 2. Керны по геологической скважине С-20-02, подготовленные к транспортировке и отправке в лабораторию

По результатам испытаний строились паспорта прочности горных пород [11]. На рис. 3 приведен пример паспорта прочности порфиритов.



Рис. 3. Паспорт прочности порфиритов по скважине С-20-02

Испытания осуществлялись по пробуренным скважинам C-20-02, C-20-03, C-20-04, C-20-05 и C-20-06. Результаты заносились в ведомости определения прочностных свойств горных пород. Средние значения прочностных свойств горных пород на сжатие и растяжение по каждой пробе сведены в табл. 1.

ТАБЛИЦА 1. Физико-механические характеристики горных пород прибортовых массивов

Борт карьера, скважина	Порода	H , м $\begin{array}{c c} C \text{ опротивление} \\ \hline \sigma_{c} & \sigma_{r} \end{array}$, МПа	γ , $_{\mathrm{T/M}^3}$	<i>k</i> , МПа	$ ho$, $^{\circ}$
					• • • •	0.70	
Северо- западный, С-20-02	Порфириты	50	69.05	5.40	2.88	8.50	40.0
	Порфириты, андезиты	100	59.47	5.74	2.76	9.34	39.5
	Андезиты	150	70.37	7.15	2.80	12.09	39.1
	Андезиты	200	84.51	8.97	2.88	14.60	39.0
	Андезиты	250	87.16	8.67	2.85	16.00	39.4
	Порфириты	300	92.98	9.38	2.78	18.05	39.0
	Порфириты	50	75.20	7.84	2.84	10.09	40.0
Юго-	Порфириты кварцевые	100	80.82	8.16	3.10	14.90	39.0
западный,	Андезит с включением порфирита	150	92.28	9.48	2.80	17.46	39.0
C-20-03	Порфириты	200	97.40	9.98	2.95	18.92	39.0
	Кварцевый андезит	250	113.64	10.32	2.74	19.13	39.5
	Порфирит с включением андезита	300	119.52	13.00	2.95	22.47	39.2
	Порфириты	50	95.22	10.62	2.61	16.45	39.2
Северо-	Порфириты зеленые	100	115.10	11.86	2.72	18.02	39.6
восточный,	Порфириты, кварциты	150	109.44	12.30	2.77	19.60	38.9
C-20-04	Кварциты, андезиты	200	131.66	13.66	2.89	20.17	39.6
	Порфириты	250	107.70	10.74	2.78	16.18	39.9
	Порфириты	50	28.70	2.20	2.56	3.69	41.0
Северо-	Порфириты	100	29.20	2.90	2.63	5.19	39.3
восточный, С-20-05	Андезиты	150	62.40	6.60	2.82	13.07	38.3
	Порфириты с прослойками	200	75.00	7.20	2.78	16.96	38.1
	Кварциты	250	70.90	7.20	2.77	15.66	38.2
	Кварциты с прослойками	300	61.30	6.40	2.78	12.39	38.7
	Порфириты	50	89.60	8.70	2.78	17.60	38.3
Северо- восточный, С-20-06	Порфириты	100	46.60	5.00	2.74	8.84	38.6
	Порфириты с прослойкой кварцита	150	81.30	8.10	2.83	15.34	39.0
	Кварциты	200	82.80	8.90	2.79	17.83	38.2
	Кварциты с андезитовыми прослойками	250	58.70	6.00	2.85	9.40	39.2
	Порфириты	300	91.50	9.40	2.89	16.82	39.1

П р и м е ч а н и е. H — глубина отбора; σ_c , σ_r — сопротивление пород на сжатие и растяжение соответственно; γ — средняя объемная плотность; k — сцепление в образце; ρ — угол внутреннего трения в образце

Разброс значений параметров даже одного литологического типа зависит от вещественного состава, структуры, текстуры, содержания и типа цемента горных пород. Обобщенные физикомеханические характеристики пород по глубине отбора в прибортовых массивах карьера "Коктасжал", далее используемые при обосновании расчетных значений физико-механических свойств пород [7, 12, 13], приведены в табл. 1. Прочностные свойства горных пород изменялись следующим образом: предел прочности порфиритов при сжатии $60-130 \, \mathrm{M}\Pi a$; предел прочности порфиритов при растяжении $5.4-13.06 \, \mathrm{M}\Pi a$; сцепление в образцах $8.5-22.47 \, \mathrm{M}\Pi a$; угол внутреннего трения $38-41^\circ$.

Линейные размеры предполагаемых структурных блоков определялись непосредственным исследованием кернов геологических скважин. Находящиеся в деревянных ящиках керны фотографировались, изучалось состояние и характер трещин и разломов, включая их заполнители. Учитывались искусственные разрушения кернов при бурении и укладке в упаковочные ящики. Выявлено, что кора выветривания колебалась в пределах 30–50 м. В геологической скважине C-20-05 обнаружена аномальная зона ослабления с поверхности до глубины 80 м, поэтому более подробно изучено геологическое строение в северной части юго-восточного борта, что позволило определить зону дробления пород в период образования месторождения.

Размеры возможных породных блоков определялись по кернам с указанием типов пород, использовались масштабированные фотографии на глубину скважин 300 м. Результаты сьемки представлены в табл. 2 (l_i — размер структурного блока).

ТАБЛИЦА 2. Сводная таблица определения структурных размеров и прочностных свойств по кернам скважин

скважин	,	1		T					
Н, м	Порода	<i>k</i> , МПа	l_i , M	а	λ_{0}	RQD			
Скважина С-20-02									
0 - 50	Порфириты	8.55	0.60	3	0.070	78.6			
50 - 100	Порфириты, андезиты	9.34	0.71	3	0.063	86.9			
100 - 150	Андезиты	12.09	0.84	3	0.060	86.6			
150 - 200	Андезиты	14.60	1.03	3	0.060	91.0			
200 - 250	Андезиты	15.59	1.20	4	0.045	83.4			
250 - 300	Порфириты	17.28	1.29	5	0.035	87.8			
Скважина С-20-03									
0 - 50	Порфириты	10.09	0.68	3	0.072	77.7			
50 - 100	Порфириты кварцевые	14.90	0.80	3	0.065	92.7			
100 - 150	Андезит с включением порфирита	17.46	0.86	5	0.037	91.0			
150 - 200	Порфириты	18.92	1.07	5	0.037	91.6			
200 - 250	Кварцевый андезит	19.13	1.11	5	0.036	92.9			
250 - 300	Порфирит с включением андезита	22.47	1.30	6	0.030	91.5			
Скважина С-20-04									
0 - 50	Порфириты	16.45	0.27	4	0.046	78.5			
50 - 100	Порфириты зеленые	18.02	0.31	5	0.033	85.0			
100 - 150	Порфириты, кварциты	19.60	0.44	5	0.033	89.4			
150 - 200	Кварциты, андезиты	20.17	0.22	6	0.024	75.9			
200 - 250	Порфириты	16.18	0.16	4	0.033	71.3			
	Скважина С	-20-05							
0 - 50	Порфириты	3.69	0.16	3	0.080	44.7			
50 - 100	Порфириты	5.19	0.17	3	0.050	70.4			
100 - 150	Андезиты	13.07	0.23	3	0.049	88.6			
150 - 200	Порфириты с прослойками	16.96	0.23	4	0.036	90.2			
200 - 250	Кварциты	15.66	0.26	4	0.035	89.7			
250 - 300	Кварциты с прослойками	12.39	0.23	3	0.044	84.9			
	Скважина С	-20-06							
0 - 50	Порфириты	17.60	0.52	5	0.052	55.11			
50-100	Порфириты	8.84	0.32	3	0.052	83.12			
100 - 150	Порфириты с прослойкой кварцита	15.34	0.22	4	0.032	84.48			
150 - 130 $150 - 200$	Кварциты	15.34	0.33	4	0.040	85.33			
200-250	Кварциты с андезитовыми прослойками	15.34	0.78	4	0.033	77.33			
250 - 250	Порфириты	15.34	0.17	4	0.032	74.07			
250 500	1 110 b Auburn	15.54	0.15	Т	0.052	, 1.0 /			

Выявление трещин при исследовании кернов осуществлялось по интервалам глубин скважин 0-50, 50-100, 100-150, 150-200 и 250-300 м. Затем размеры блоков в каждом интервале усреднялись, находился средний размер структурного блока. Паралельно по существующей классификации оценивался индекс качества массива (RQD): 0-25 — очень слабый, 25-50 — слабый, 50-75 — средний, 75-90 — крепкий, 90-100 — очень крепкий.

По геологической скважине C-20-02 северо-восточный прибортовой массив относится к крепким и очень крепким породам. До глубины 22 м керны сильно разрушены, особенно в интервалах 0-1, 4-5, 6.0-8.6 м, что подтверждает наличие интенсивной нарушенности пород в коре выветривания. Подобные исследования выполнены по всем пробуренным скважинам (табл. 2). Используя полученные результаты определения сцеплений пород, в этих интервалах определялся коэффициент a, необходимый для вычисления коэффициента структурного ослабления λ_0 , согласно методическим указаниям ВНИМИ [4, 14].

Сцепление пород, полученное в лабораторных испытаниях, может быть в десятки раз больше, чем для той же породы в массиве [4-7]. Согласно исследованиям ВНИМИ, эти значения связаны между собой коэффициентом структурного ослабления $\lambda_0 = 1/1 + a \ln(H/l)$, где a — коэффициент, зависящий от прочности породы в монолитном образце и характера трещиноватости; H — глубина залегания пород; l — средний размер элементарных блоков.

Анализ полученных результатов по пробуренным скважинам позволил построить график изменения коэффициента структурного ослабления в зависимости от глубины залегания горных пород (рис. 4). Наблюдается его уменьшение с глубиной залегания в виде логарифмической зависимости: $\lambda_0 = -0.016 \ln(H) + 0.127$ с аппроксимацией $R^2 = 0.978$, что показывает наличие надежной связи между рассматриваемыми показателями.

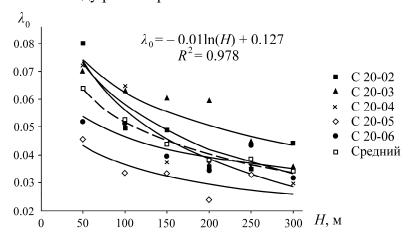


Рис. 4. Зависимость $\lambda_0 = f(H)$ по порфиритам прибортовых массивов

Получив коэффициент структурного ослабления массива, можно вычислить сцепление: $k_m = k_{\rm oбp} \lambda_0$. Согласно методическим указаниям ВНИМИ [4, 5, 14, 15], при расчете оценки устойчивости бортов карьера введен коэффициент запаса n_z ввиду погрешностей в определении прочностных свойств. В найденные значения для нахождения расчетных прочностных характеристик горных пород $k_{\rm pacq} = k_m / n_z$, $\rho_{\rm pacq} = \arctan({\rm tg} \rho_m / n_z)$ вводился коэффициент $n_z = 1.2$ (табл. 3). Полученные сцепления и углы внутреннего трения пород достаточно надежно обоснованы и могут использоваться при оценке устойчивости бортов карьера.

ТАБЛИЦА 3. Расчетные показатели структуры и прочностных свойств горных пород прибортовых массивов карьера "Коктасжал"

Борт карьера,	Порода	а	Н	l	$\lambda_{ m o}$	k_o	$k_{_m}$	$k_{ m pac 4}$	$ ho_{\scriptscriptstyle o}$	$ ho_{\scriptscriptstyle{ ext{pac} ext{ iny q}}}$	γ
скважина	Порода	u	M		100	Ml	МПа		град		$\kappa H/m^3$
Юго- западный, С-20-02	Порфириты	3	50	0.60	0.070	8.55	0.599	499.4	40.0	34.96	28.25
	Порфириты, андезиты	3	100	0.71	0.063	9.34	0.590	491.3	39.5	34.49	27.08
	Андезиты	3	150	0.84	0.060	12.09	0.730	608.6	39.1	34.11	27.47
	Андезиты	3	200	1.03	0.060	14.60	0.869	723.9	39.0	34.01	28.25
	Андезиты	4	250	1.20	0.045	15.59	0.697	581.1	39.4	34.39	27.96
	Порфириты	5	300	1.29	0.035	17.28	0.612	509.8	39.0	34.01	27.27
Юго-	Порфириты	3	50	0.68	0.072	10.90	0.785	653.8	40.0	34.96	23.54
	Порфириты кварцевые	3	100	0.80	0.065	14.90	0.962	801.9	39.0	34.01	30.41
	Андезит с порфиритом	5	150	0.86	0.037	17.46	0.651	542.8	39.0	34.01	27.47
западный, С-20-03	Порфириты	5	200	1.07	0.037	18.92	0.697	580.7	39.0	34.01	28.94
C 20 03	Кварцевый андезит	5	250	1.11	0.036	19.13	0.681	567.6	39.5	34.49	26.88
	Порфирит с андезитом	6	300	1.30	0.030	22.47	0.668	556.5	39.2	34.20	28.94
Северо- восточный, С-20-04	Порфириты	4	50	0.27	0.046	16.45	0.752	626.4	39.2	34.20	25.60
	Порфириты зеленые	5	100	0.31	0.033	18.02	0.603	502.5	39.6	34.58	26.68
	Порфириты, кварциты	5	150	0.44	0.033	19.60	0.650	541.6	38.9	33.92	27.17
	Кварциты, андезиты	6	200	0.22	0.024	20.17	0.482	401.4	39.6	34.58	28.35
	Порфириты	4	250	0.16	0.033	16.18	0.532	443.3	39.9	34.87	27.27
	Порфириты	2	50	0.16	0.080	3.69	0.295	246.2	41.0	35.92	25.11
	Порфириты Андезиты	3	100 150	0.17 0.23	0.050 0.049	5.19 13.07	0.258 0.639	214.8 532.8	39.3 38.3	34.30 33.35	25.80 27.66
Северовосточный, С-20-05	Порфириты с прослойками	4	200	0.23	0.049	16.96	0.604	503.5	38.1	33.16	27.00
	Кварциты	4	250	0.26	0.035	15.66	0.550	458.3	38.2	33.26	27.17
	Кварциты с прослойками	3	300	0.23	0.044	12.39	0.550	458.5	38.7	33.73	27.27
Северо- восточный, С-20-06	Порфириты	4	50	0.52	0.052	17.60	0.914	761.4	38.3	33.35	27.27
	Порфириты	3	100	0.22	0.052	8.84	0.457	380.6	38.6	33.63	26.88
	Порфириты с кварцитом	4	150	0.35	0.040	15.34	0.608	506.4	39.0	34.01	27.76
	Кварциты	5	200	0.78	0.035	17.83	0.621	517.1	38.2	33.26	27.37
	Кварциты с андезитовыми	3	250	0.17	0.044	9.40	0.411	342.4	39.2	34.20	27.96
	прослойками Порфириты	4	300	0.15	0.032	16.82	0.536	446.3	39.1	34.11	28.35

П р и м е ч а н и е. a — коэффициент, зависящий от прочности породы в монолитном образце и характера трещиноватости; H — глубина залегания породы; l — средний размер блока; λ_0 — коэффициент структурного ослабления; k_o , k_m — сцепление в образце и в массиве соответственно; $k_{\rm pacq}$ — расчетное сцепление; ρ_o — угол внутреннего трения в образце; $\rho_{\rm pacq}$ — расчетный угол внутреннего трения; γ — плотность породы

выводы

Разработана методика исследования состояния горных пород прибортовых массивов карьера. Она включает бурение скважин с целью уточнения геологического строения бортов и отбора породных кернов через каждые 50 м для определения прочностных и физических свойств пород, а также размеров структурных блоков в массиве по всей глубине залегания с вычислением коэффициентов структурного ослабления массива, позволяющих оценить его прочностные свойства и расчетные значения. Методика опробована на карьере "Коктасжал". Уточнено геологическое строение прибортовых массивов карьера и исследованы физические и прочностные свойства массива горных пород до глубины 300 м с интервалом 50 м. По результатам анализа кернов скважин дана оценка структурных блоков и индексов качества пород, позволяющих вычислить коэффициент структурного ослабления массива по всей глубине. Исследования позволили определить расчетные значения сцеплений и углов внутреннего трения массива горных пород, обеспечивающие надежную оценку устойчивости бортов карьера.

СПИСОК ЛИТЕРАТУРЫ

- 1. ГОСТ 21153.2-84. Породы горные. Методы определения предела прочности при одноосном сжатии.
- **2. ГОСТ 21153.3-85.** Породы горные. Методы определения предела прочности при одноосном растяжении.
- 3. ГОСТ 21153.5-88. Породы горные. Метод определения предела прочности при срезе со сжатием.
- **4. Фисенко Г. Л.** Устойчивость бортов карьеров и отвалов. М.: Недра, 1965. 378 с.
- **5. Попов И. И., Низаметдинов Ф. К., Окатов Р. П., Долгоносов В. Н.** Природные и техногенные основы управления устойчивостью уступов и бортов карьеров. Алматы: Гылым, 1997. 216 с.
- **6. Управление** устойчивостью техногенных горных сооружений / под общей ред. Ф. К. Низаметдинова. Караганда: КРУ, 2014. 657 с.
- **7. Попов В. Н., Шпаков П. С., Юнаков Ю. Л.** Управление устойчивостью карьерных откосов. М.: МГГУ, Горная книга, 2008. 683 с.
- **8. Ильницкая Е. Н., Тедер Р. Н., Ватолин Е. С., Кунтыш М. Ф.** Свойства горных пород и методы их определения. М.: Недра, 1969. 392 с.
- **9. Ломтадзе В. Д.** Методы лабораторных исследований физико-механических свойств горных пород. М.: Недра, 1972. 312 с.
- **10.** Ожигин С. Г. Лабораторные исследования физико-механических свойств горных пород // Труды КарГТУ. 2009. С. 30-33.
- **11. Машуков В. И., Пирля К. В., Барышников В. Д.** Структура горной породы и ее паспорт прочности // ФТПРПИ. 1990. № 3. С. 21 27.
- **12.** Долгоносов В. Н. Исследование деформации ползучести глинистых грунтов // Труды КарГТУ. 2009. С. 37–40.
- **13.** Низаметдинов Н. Ф., Низаметдинов Р. Ф., Нагибин А. А., Естаева А. Р. Устойчивость откосов уступов и бортов карьера в глинистых породах // ФТПРПИ. 2020. № 2. С. 43-50.
- **14. Правила** обеспечения устойчивости откосов на угольных разрезах (Межотраслевой научный центр ВНИМИ). СПб.: ВНИМИ, 1998. 208 с.
- **15. Методические указания** по наблюдениям за деформациями бортов, откосов уступов и отвалов на карьерах и разработке мероприятий по обеспечению их устойчивости. Утверждено МЧС РК № 39 от 22.09.2008 г.

Поступила в редакцию 15/XII 2020 После доработки 29/I 2021 Принята к публикации 24/V 2021