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3AKOHbBI CMEIIEHUSA U TIPUYUHHOCTD B BLICOKOYACTOTHBIX
NHAYKIONOHHBIX KAPOTAXHBIX IUAT PAMMAX
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Baker Hughes, a GE Company, Houston Technology Center, 2001 Rankin Road, Houston, TX 77073, USA

BrIcOKOUACTOTHBIC ANIEKTPOMAarHUTHEIE TEXHOJIOTHH ISl OLICHKH NPUIIOBEPXHOCTHOTO TIIacTa obecre-
YUBAIOT BBICOKOE NMPOCTPAHCTBEHHOE PA3pEelICHHE U HOBbIE BO3MOXKHOCTH JUISl NETPOGHU3NUECKOH HHTEepIpe-
TaIMy JaHHBIX. J[McTiepcHst CBOMCTB TOPHBIX MOPOJ M TIEPEX0Jl OT MacITaba Mmopsl 0 Macmrada KoJuIeKTopa
(romoreHu3anys) MpeACTaBIAIOT ABe HauOoIee CI0KHBIE TPOOIEMBI.

B snexkTpoanHaMuKe MOPHUCTHIX CPEJ HCIOIB3YIOTCSl PA3IMYHBIC 3aKOHBI CMEIICHUS U JTUCIEPCHH IS
TOMOTEHM3aIMU CBOMCTB FOPHBIX MOPOJ] U OTIMCAHUS UX YACTOTHBIX XapAKTEPUCTHUK. 3aKOHBI CMEMICHHS U UC-
Hepcusi TECHO CBSI3aHBI C OCHOBOIIOIAraomuM (HH3MIECKUM IIPUHIUIIOM IIPUINHHOCTH ¥ IIO3TOMY HE MOTYT
ObITH BBEJICHBI TPON3BOJIBHO. JIJIst BBEICHHS 3aKOHA CMEILICHMS/IMCIIEPCUI HEOOXOAUMO JJ0KA3aTh, YTO UMEET
MECTO MPUYUHHOCTB. JIJIsl 3TOr0 MBI HCIIOJIBb3yeM TeopeMy THTYMapiia U, B 4aCTHOCTH, OJHY U3 e¢ MOAU(H-
Kauuit — coornomenust Kpamepca—Kponura. [Tpuunnnocts oocyxaaercs aist moneneii J{edas, Koymna-Koyaa,
Xaspuinbska—Heramu 1 KMIIB. [lucniepcust TecHO cBs3aHa ¢ pacnpocTpaHeHneM BoiH. OmeHka (a3oBbIX U
IPYIIIOBBIX CKOPOCTEH MPOJIMBAET CBET HAa (DM3MKY M3MepeHuit (a3bl 1 aMIUTMTYIbI B OMIONIAtOIEi cpese. Ml
CJIeJIalTi OIIEHKY 00EUX CKOPOCTEH M HX 3aBUCHMOCTH OT IIPOCTPAHCTBEHHBIX CIIEKTPOB MIIH, IPYTHMH CIIOBAMH,
OT PACIONIOKEHUS] MEPEAIOIUX U TIPUEMHBIX 3JIEMEHTOB.

UToObI MPOMILTIOCTPUPOBATH TEOPETUUCCKHE BBIBOABI, MBI MIPHUBOMM B KaueCTBE IPHMeEpa JAUIIEKTPH-
YECKUH KapoTax. OG])I‘[HO B COBPEMEHHBIX AUIICKTPUYCCKUX MHCTPYMEHTAX HUCIOJIB3YIOTCA aMIUIUTY/AHBIC U
(ha3oBBIC TaHHBIC TS PA3TMIHBIX YaCTOT U MOJIOKEHUH TaT4nKoB. V3mMepeHHas (a3za IUCKpeTHA Ha BBICOKUX
4acToTax, 1 Tpedyercs oOHapyKeHHE ee JIMCKPETHOCTH, TaK jKe KaK M pa3BeprTbiBaHue. I[IpuMmedarenbHo, 4To
MO)KHO ONPEETNTh 3aTyXaHUe IUIAcTa M YToJl HOTeph UCXOAS U3 MHOTOYACTOTHBIX/MYIBTHCEHCOPHBIX aMILTH-
TYIHBIX IaHHBIX U PE0Opa3oBaTh UX B JUAICKTPUYECKYIO IIPOHULIAEMOCTbD, YACIbHOE CONPOTHBICHHE U HC-
THHHYIO HETIPEPLIBHYIO (hazy.

IIpeo6pa3oBaHust THCTPYMEHTAIBHBIX TAHHBIX, HCTIONB3YEMbIX B 9TOW CTaThe, IPUMEHHUMBI JJIsl KOHIIETI-
TYaJIbHOTO HCCIIEIOBAHUS M XapaKTePHbI JUTS OJHOPOTHOTO Iu1acta. MBI HAMEPEHHO HE YIHUTHIBAeéM TOYHOCTD
U3MEPEHUI M paclpoCTpaHeHHe OMMOOK B IPOLECCe MHBEPCUH, TOCKOIbKY OHH 3aBHCST OT alaparypsl U
cniocoba 00paboTKN MaHHBIX. [Ipu MCIIOIB30BaHUM PA3IMYHON ammapaTypsl TPEOYIOTCS COBMECTHBIN aHATU3
BCEX JIOCTYIHBIX JIAHHBIX M IPUMEHEHHUE CIICINATBHBIX METOJIOB LIIyMOIIO/IaBJICHUSI, CBSI3AHHBIX CO CTPYKTYpOH
CHCTEMBI cOOpa JaHHBIX.

Onexmpopa3zeeoka, OusieKmpuyeckuti Kapomaxic, OUCNepCuUs, 3aKOHbl CMeuleHUs, NPUYUHHOCb.

MIXING LAWS AND CAUSALITY IN HIGH FREQUENCY INDUCTION LOG APPLICATIONS
L. Tabarovsky and S. Forgang

High frequency electromagnetic technologies for subsurface formation evaluation provide high spatial
resolution and new opportunities for petrophysical interpretation of data. Dispersion of rock properties and up-
scaling from pore to reservoir scale (homogenization) represent the two most challenging problems.

In electrodynamics of porous media, various mixing and dispersion laws are used to homogenize rock
properties and describe their frequency behavior. Mixing laws and dispersion have a close link to the fundamen-
tal physical principle of causality and therefore cannot be introduced arbitrarily. For any mixing/dispersion law,
we need to prove that causality holds. For testing causality, we use Titchmarsh s theorem and, particularly, one of
its modifications — Kramers—Kronig relations. Causality is discussed for Debye, Cole—Cole, Havriliak—Negami,
and CRIM models.

Dispersion is closely related to wave propagation. Evaluation of phase and group velocities shed new
light on the physics of phase and amplitude measurements in lossy media. We evaluated various definitions of
both velocities and their dependence on spatial spectra or, in other words, on the arrangement of transmitting
and receiving elements.

To illustrate theoretical findings, we use dielectric logging as an exemplary technology. Usually, in mod-
ern dielectric tools, amplitude and phase data are acquired, for various frequencies and sensor positions. The
measured phase is discontinuous at high frequencies and requires detection of discontinuity as well as unwrap-
ping. Remarkably, one can determine formation attenuation and loss angle based on multifrequency/multisensor
amplitude data and transform them into dielectric permittivity, resistivity, and true continuous phase.

Transformations of exemplary tool data used in this paper are suitable for a conceptual study and are spe-
cific for a uniform formation. We intentionally do not address the accuracy of measurements and the propagation
of errors in the inversion process, since they are tool- and processing-specific. Different tools require joint analysis
of all available data and special noise reduction techniques associated with the structure of the acquisition system.

Electromagnetics, dielectric logging, dispersion, mixing laws, causality
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INTRODUCTION

High frequency electromagnetic technologies for subsurface formation evaluation provide high spatial
resolution and new opportunities for petrophysical interpretation of data. Dispersion of rock properties and up-
scaling from pore to reservoir scale (homogenization) represent the two most challenging problems.

In electrodynamics of porous media, various mixing and dispersion laws are used to homogenize rock
properties and describe their frequency behavior. Mixing laws and dispersion have a close link to the funda-
mental physical principle of causality and therefore cannot be introduced arbitrarily. For any mixing/dispersion
law, we need to prove that causality holds. [Alu et al. 2011] discuss an example of causality violation in Max-
well-Garnett mixing law. For testing causality, we use Titchmarsh’s theorem [Toll 1956, Titchmarsh 1926,
Nordebo 2013] and, particularly, one of its modifications — Kramers-Kronig relations. Causality is discussed
for Debye, Cole-Cole, Havriliak-Negami, and CRIM models.

Dispersion is closely related to wave propagation. Evaluation of phase and group velocities shed new
light on the physics of phase and amplitude measurements in lossy media. We evaluated various definitions of
both velocities and their dependence on spatial spectra or, in other words, on the arrangement of transmitting
and receiving elements.

To illustrate theoretical findings, we use dielectric logging as an exemplary technology. Usually, in modern
dielectric tools, amplitude and phase data are acquired, for various frequencies and sensor positions. The mea-
sured phase is discontinuous at high frequencies and requires detection of discontinuity as well as unwrapping
[Abbas 2005]. Remarkably, one can determine formation attenuation and loss angle based on multi-frequency/
multi-sensor amplitude data and transform them into dielectric permittivity, resistivity and true continuous phase.

Transformations of exemplary tool data used in this paper are suitable for a conceptual study and are
specific for a uniform formation. We intentionally do not address accuracy of measurements and propagation of
errors in the inversion process since they are tool and processing specific. Real tools require joint analysis of all
available data and special noise reduction techniques associated with the structure of the acquisition system.

We start the paper with description of generic dielectric tool (Section 2) that is used in following discus-
sion of phase & group velocities, spectra, mixing laws, and causality (Sections 3-5).

GENERIC TOOL

We consider a generic tool schematically shown in Fig. 1. On the left, three transmitters (magnetic dipoles),
T,, T,, and T;, generate EM field measured by the sensor, R. A reciprocal configuration is shown on the right.

Measurements and useful field transformations
Let us consider a signal generated by a single transmitter in a single receiver. The normalized magnetic
field, h,=H_/ (M / 27‘cL3), may be expressed in the following way (Kaufman and Keller, 1989):
h,=e** (1+kL)e™ (1)

K =—iop(c—iog)=—o’pc—iopc )

Here, M, L — transmitter moment (A-m?) and spacing (m), respectively; o = 2xf, where f'is frequency (Hz);
¢ — time; ¢ — formation conductivity (S/m); € = &*- g, — formation dielectric permittivity (F/m); u = p*- p, — for-
mation magnetic permeability (H/m); &, = 10-/(36m) F/m — dielectric permittivity of free space; p,=4mx10~" H/m
— magnetic permeability of free space; €*, u* — permittivity and permeability relative to free space.

It follows from Eq. (2) that the complex number k* may belong only to the third quarter of a complex
plane. Let us consider the following representation of k:

ke =k|e™® =|k|(cos((pk)+isin((pk)) (3)
k=yony(os) +o° )
Ts Ty T R Rj R, R, T
O O Ly=5in o o L4=5in O
I_2=7 in L2=7 in
L,=9in L3=9in

Fig. 1. Generic tool schematics.
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1
(pk:EatanZ(—u)u,—c) (5)

—n/2<¢, <-n/4 (6)

Here, atan2(x, y) means an argument of a complex number with real and imaginary parts equal x and y,
respectively. Angle ¢, closely relates to the loss angle & in formation: tand=tan(2¢,)=0c/we.

We will need the following representation of the function (1 + £L) in Eq. (1):

(1+kL) =1+ L*cos(dy ) +i (k| L *sin (¢, ) =[1 + kL|e" ™

[14+KL|= A(L)= \/(1+|k|L*cos(¢k )+ (KL *sin(e,))’

(®)
— 1+ 2kl L *cos (b, ) + (K[L)’
k| L *sin(¢,)
=arctan| ———— <y<0, [kLle(0
Y =arc an(l+|k|L*cos(¢k) . O <w<0, [kL|e(0,) Q)
Equations (1)-(9) result in the following expression for the normalized magnetic field, 4,
h,=A(L)e "™, a=[kLcos(¢;), ®=|kLsin(¢,)-y+or (10)

Assuming L,—L,=L,— L, we introduce the following transformations of three magnetic fields produced
by three transmitters in the receiver R:

() AL) (”)

)I

(L) LL _A(L)AL) L,
(L) (LY (L) (L)
Exemplary transformations (11) and (12) are useful for determining formation parameters, ¢ and €. Oth-

er transformations may be considered as well. Please notice that D; — 0 when ® — oo. It provides increased
sensitivity to formation parameters at high frequencies though requires improved accuracy of measurements.

(12)
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Fig. 2. Ratio of amplitudes, D, , as a function of  Fig. 3. Values of transformation, D, as a function of
parameter |KL,|. parameter |kL,|.
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Exemplary model and inversion

Given field transformations, D, and D, at a certain frequency, f, we can determine formation parameters,
o and &. To illustrate the method, we selected the following model:

6 =1.08 S/m; £¢=55.62; f=293311000 Hz
For the selected model, parameters |kL2| and ¢, have the following values (Eq. (4) and Eq. (5), Fig. 1):

kLy,|=10 (13)
¢, =—65° (14)
For transformations D, and D, , Eq. (11) and Eq. (12) yield:
D, =0.380 (15)
D;=0.008 (16)

In Fig. 2 and Fig. 3, we describe functions D,(kL,|, ¢,) and D,([kL,|, ¢,).

Fig. 2 shows ratio of amplitudes, D, as a functions of parameter |kL,| (horizontal axis). Different curves
correspond to different angles o, measured in degrees. The horizontal dashed line represents the exemplary
value of D,= 0.380 in the exemplary model (Eq. 15). The crossed circle shows the exemplary model. Selecting
crossings of curves with the dashed line we can determine a function kL,(¢,). The function describes all feasible
pairs of kL, and ¢,, for the given value of D, = 0.380. The function kL,(¢,) is shown on Fig. 4 (square markers).

Similarly, fig. 3 shows values of transformation D,, as a function of parameter |[KL,| (horizontal axis).
Different curves represent different angles ¢, measured in degrees. The horizontal dashed line, in this case,
represents the exemplary value of D, = 0.008 for the exemplary model (Eq. 16). The crossed circle shows the
exemplary model. Selecting crossings of curves with the dashed line we can determine a function kL,(¢,). The
function describes all feasible pairs of kL, and ¢,, for the given value of D, = 0.008. The function kL,(9,) is
shown on Fig. 4 (triangular markers).

Fig. 4 provides summary of two step inversion.

Step 1. Obtaining parameters |kL,| and ¢, from transformations D,and D . Functions kL, ((pk ,D,=0.3 80)
(squares) and kL, ((pk,D3 = 0.008) (triangles) are monotonic, independent, and demonstrate quite good sensi-
tivity to parameters. The point |kL2| =10, ¢, =—65 (exemplary model) is located in the crossing of both curves
(please notice that the angle sign is reversed on the x-axis of the graph). The solution is unique.

Step 2. Obtaining parameters ¢ and ¢ from |kL,| and ¢,. Equations for reconstructing dielectric permit-
tivity and conductivity are shown below the graphical solution for |kL,| and ¢,. The obtained values of ¢ = 1.08
S/m and &* = 55.6 correspond to exemplary model. Due to condition Eq. (6) the values of ¢ and € are always
positive.

20

/
/D2
/ 1.401
15 / 1.201
o /
< /,( 1.001
( QC\‘ |-
10 X <
//\ § 0801
M
T D3 =
i 2 0.601
5 s
40 45 50 55 60 65 70 75 80 85 ~ (401 T kLo cos(20x)
Pk, degree &= —————
O°puL;
0.201F > > - 2 o
—_ k2 - ! LN KLy|* sin(2
kLol =10 Ik =V o (op)+ 62) M o S I o= JKLal L2( k)
e AL AT S opL;
- 65° =1 atan2 G=—\k\2 sin(20y) 0.001 0.01 0.1
Pr= oy =atan2 (-we, ~o) o Measurement D3
Fig. 4. Summary of inversion for exemplary Fig. S. Inversion chart for exemplary tool.

model.
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Inversion charts

In this section, an exemplary inversion chart is introduced (Fig 5). We intentionally illustrate inversion in
a graphical form in order to provide an intuitive understanding of the physics. Of course, the algorithm can be
implemented in a computer.

Inversion is performed in two steps:

Step 1. Two sets of curves in the plane D,, D, represent constant values of parameters |kL,| (solid) and angle
¢, (dashed). Knowing from measurements the values of D, =0.008 (horizontal axis) and D, = 0.380 (vertical axis)
we determine two curves crossing at the point (D,, D,): |kL2| =10and ¢, =-65°.

Step 2. Equations for reconstructing dielectric permittivity and conductivity are shown in the right bottom
corner of the graph. Since the values of o, p, and L, are known we obtain parameters of exemplary model: ¢ = 1.08
S/m and &* = 55.6. The proposed approach may utilize phase measurements as well. Parameter |kL2| and loss
angle resulting from amplitude inversion can be used for calculating the unwrapped phase (Eq. 9 & 10).

PHYSICS OF LOSS ANGLE: LINK TO PHASE VELOCITY

In this section, we will evaluate the dependence of formation phase velocity on the loss angle. The dis-
cussion is useful for understanding of phase measurement principles.

Key equations

Let us collect here, in one place, earlier derived equations relevant to the intended discussion. We will
continue the previous sequential numbering of equations but will indicate the original equation numbers next to
the new ones. Double numbering will be used only for the first appearance of already used equations. It will be
helpful in finding derivations/discussions of the original equations.

Let us split Eq. (10):

h,=A(L)e*® (17/10)
o =[k|Lcos(q,) (18/10)
® =|k|Lsin(¢p, ) -y + o1 (19/10)

The phase y of pre-exponential factor (1 + kL) (see Eq. (1) for the field component /) has the following
from:

KL -si
ML-sin(o.) ] 0p <Y <0, JkL|(0,%0) (20/9)

= t _—
v=are an[1+|k|L'cos.((pk) ’

Let us consider expression for the wave number, [k|, Eq. (4):

Ik = \Jouy(0e) +o? (21/4)

Let us multiply Eq. (21) by sin(g,) and transform it to a physically more transparent form:

2
|k|sin((pk) =, |0 ue, /1 +(i) sin(@; )=
(22)

P . ¥ % Sin
:mwluogo\/u € ‘\‘/l+tan2(2(pk)sm((pk):§\/u € &

—cos(2¢;)

Here, ¢ — speed of light in free space.
Eq. (22) links the absolute value of wave number to the loss angle and the speed of light in formation,

c/\p'e" .
Phase attributes

From Eq. (19), we observe that the phase ¢ is a function of distance, L, and time, z. The total differential
of phase may be presented as follows:
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dd :%’dm%?d: :(|k|sin((pk)—g—\zjdL+wdt (23)

Analysis of Eq. (23) indicates that we can introduce three distinctly different phase characteristics:
Difference of phase values measured at two points at the same time. In this case, dt = 0 and

do = (|k|sin((pk )— z—‘i’j dL (24)

Eq. (24) provides a definition of the phase gradient:

d . 0
£=(|k|sm((pk)—a—\£) (25)

Difference of phase values measured at two times at the same point. In this case, dL = 0 and
do = wdt (26)

Eq. (26) expresses the obvious fact: time derivative of phase equals to angular frequency.
Phase velocity. In this case, we choose certain value of phase and ride with this value in space and time.
The following equation describes the movement:

dd=0 (27)
Equations (27) and (23) yield:
[|k|sin((pk)—g—\LVJdL+wdt=0 (28)
From Eq. (28) we obtain the expression for phase velocity, V:
oL

Equations (25) and (29) lead to a remarkable connection of phase velocity and phase gradient:

oD )

- 30

oL v, (30)
In fact, the phase velocity and phase gradient are interchangeable.

Discussion of phase velocity
Detail derivation of phase velocity (Section 8) leads to the following equations:
VO
V,= £ ] 31

1—
1+ 2|k|L-cos((pk)+(|k|L)2

0 ¢ +J—co0s(20,)
Vp == P : (32)
Ju'e sin(g;)
At large distances, L — oo (far zone), the following holds (see Eq. (31)):
vV, >V, (33)

Here,

In this asymptotic limit, the phase velocity does not depend on the tool spacing and is determined exclu-
sively by formation parameters and the frequency, see Fig. 6. Velocity in Fig. 6 is normalized by the speed of
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light in formation. At the left end of horizontal axis (large conductivity and/or low frequencies), phase velocity
tends to zero. It means that only standing wave exists under such conditions in the formation. At the right end
of horizontal axis (small conductivity and/or high frequency), phase velocity tends to the speed of light in for-

mation but never exceeds it.
At the opposite limit, L — 0 (near zone), phase velocity tends to unlimitedly grow as follows from Eq. (31):

VO

Vv >—F 5o (34)
P20kl L-cos(g,)

Equation (34) is specific for the selected field component, /.. It can be seen from Eq. (1) that in the near
zone the linear dependence on the distance, L, disappears:

h.= (] + kL)eiot = eMletkLgiot = giot

It means that the very definition of phase velocity (requiring the presence of a linear term with respect to
distance) does not make sense in the near zone. Infinite phase velocity in the near zone, Eq. (34), is a conse-
quence of this fact.

Over-luminal phase velocity does not contradict physics since it is not associated with propagation of
energy. Indeed, the Pointing vector on the axis connecting transmitters and receivers equals to zero because
electric field does not exist on this axis. It would be appropriate to study propagation of energy with all field
components included. That would lead to a different behavior of phase. However, such study is beyond the
scope of this paper.

Let us introduce the Tool Factor (or a-factor) as a ratio of phase velocity to its asymptotic value in far
zone:

v, 1

:—p:
0
Vp 1- !
1+ 2/ L-cos(g, )+ (kI L)?

o (35)

o — factor corrects asymptotic value of phase velocity to its actual value for the finite length of the tool:

—q 10
V=aV, (36)
For L — o, Eq. (35) yields:
a—1 (for L — o) 37)
Fig.7 illustrates the behavior of a-factor in the 1000 ;
near zone. In a large variety of spacings and loss an- ;
gles, the phase velocity exceeds the speed of light in a /
L=0.001 ¢
N s
Qa 1 _9 7
i T ! \ e P /
= | - £ 100 R
g — ! 2 < L.~ 1=0.003/
S = Normalized Phase Velocity — g .-
> 7 : e - »
§ // S ~T e -
< o v — p:
o - - o 7 - -,
o / Basic configuration: i . —_ L=0.01_ ¢
5 f=1GHz 8 101L = —
e L=0.1m £ I -7
> *=3 / L -
2 & / -
3 - L0038 | .o
N L U R R N e =
E y/ -------------- [=0.3 [L=0.1
| e e S St L o R NN FRS AT peeees
S 0.1 Jlez O )
z 90 110 130 150 170 90 110 130 150 170
Large o, low ® Small o, high ® Large o, low ® Small o, high ®
Loss Angle, degree. Reversed sign. Loss Angle, degree. Reversed sign.

Fig. 6. Asymptotic phase velocity (in far zone) Fig. 7. a-factor in the near zone as a function of loss
shown as a function of loss angle. angle. The factor grows rapidly with the reduction
of spacing L. Similar effect may be achieved by
reducing frequency o for a fixed value of spacing L.
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4
3 Ens=1 Fig. 8. a-factor for different tool parameters vary-
&L 0 R ing, one at a time, in basic tool configuration.
g3 -
O Y R
= ~
S| | ] e given formation. The factor grows rapidly with the re-
Lo duction of spacing L. Similar effect may be achieved
- R N S S L=0.02 by reduc;mg frequeqcy o for a fixed value of spacing L
2 B e S T Tr T Sl Finally, in Fig. 8 we illustrate the behavior of
O e T L [fE10OMHZ) g-factor while different tool parameters change (one
1 st === Basic| at a time) in the selected basic tool configuration:
90 110 130 150 170

f=1GHz, L=0.1m,¢*=3.Perturbed values of the

Loss Angle, d . .
ossAngle, degree perturbed parameters are indicated on the Fig. 8.

PHYSICS OF LOSS ANGLE: LINK TO GROUP VELOCITY

Group velocity is completely different from the phase velocity. It is related to evolution/propagation of a
wave packet consisting of a group of spatial harmonics. As we will see, spatial harmonics in the wave packet
have different velocity thus creating a condition for the packet dispersion (change of form) in the process of
propagation.

In Attachment B, we consider spatially and temporally monochromatic waves. The spatial waves are
monochromatic only in the plane perpendicular to the direction of propagation. They attenuate along the propa-
gation path. Though spatial spectra are different for different field components F* they have a common ana-
lytic element affecting the wave propagation:

F*o0 exp(-pz —iot) (38)

Here,
p? =m? —iou(c—ine) =m? - w’pe —iopc (39)
m — spatial wave number of Fourier transform.
For the wave velocity normalized by the speed of light in formation, V", we obtained the following ex-
pression (see Attachment B, Eq. (B13)):

Ve = I [—2(y2—1)+x2 . 2} (40)
227 -0 =7 ) (WoR -2+
-2
we
L2
g

Here x is the tangent of the loss angle, A is the light wavelength in the formation, & is the spatial wave-
length.

Fig. 9 illustrates behavior of normalized group velocity as a function of formation loss angle. Different
curves correspond to different ratios, y, of spatial and temporal wavelengths. Several observations need to be
noted:

— It follows from Eq. BS5, Attachment B, that propagation can occur only when y < 1, i.e. when the spa-
tial wavelength is greater than the electromagnetic wavelength in the formation. It is easy to understand by
considering the limit of zero losses (¢ = 0, x = 0) in Eq. B5. It should be m? —@?ne <0 to maintain the square
root as imaginary number. This condition is equivalent to the requirement of y < 1.

— Losses do not affect propagation until tan(8) approaches value of approximately 0.1.

— For small losses, reduction of spatial wavelength (or increase of y) results in reduction of the propaga-
tion velocity (see Fig. 9, compare different curves at tan(d) <0.1 ).

— For large losses (tan(d)>5), the wave propagation transforms into diffusion of current distribution, i.e.
conduction effects take over propagation. The diffusion is the same for all spatial harmonics capable of propa-
gating (see the right half of Fig. 9).
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Fig. 9. Group velocity of spatial harmonics in a 1.0F
uniform formation. The velocity is normalized by 2
the speed of light in formation. Different curves 2 08
correspond to different values of y that is ratio of 2
temporal and spatial wavelengths. 306
3
S04
— In a transition zone, between propagation and g -
diffusion, the group velocity may exceed the speed of Z 0.2
light. It should not create a concern for two reasons: -
1) for the diffusion limit (x — o), the group velocity o i
determined by Eq. (B12) or Eq. (B17), Attachment B, 0.001  0.01 0.1 1 10 100 1000
is twice phase velocity (2w/(Im(p)) and may be arbi- Tangent of Loss Angle, tan (8)

trarily large. For a correct estimation of group veloc-
ity in this case, it is necessary to consider movement of diffusion packets directly in time domain. Definition of
group velocity as do/dlm(p) used in Eq. (B12) is questionable in this case and requires further discussion.

— It is evident that a packet consisting of different spatial waves (having different values of y) will have
evolving shape due to different velocity of constituent monochromatic waves.

SPECTRA, MIXING LAWS & CAUSALITY

We would like to address some issues related to dispersion and mixing laws used for data processing and
inversion of dielectric measurements.

In electrodynamics of porous media, many mixing and dispersion laws are used. They have close link to
the fundamental physical principle of causality and therefore cannot be introduced arbitrarily. Alu et al. [1]
discuss an example of causality violation in Maxwell-Garnett mixing law. In other words, for any mixing/dis-
persion law (being used or being introduced) we need to check or prove that causality holds.

General discussion of causality

The causality principle claims (Toll [2]):

No output can occur before the input.

This simple statement translates to mathematical concepts of Convolution and Fourier transform result-
ing in strict criteria for causality.

Let us consider the direct and inverse Fourier transforms of a function / (¢) in the following form:

= [ 7 rdo (41)

1 ¢ * +iot
= jw £ (0)etordo (42)

The sign convention in exponents, Eq. (41) and (42), is important for consistent consideration of causal-
ity. It is not the only one acceptable but it should be carefully followed, once chosen (Zvezdin et al., 1998).

If spectra of two functions, f(f) and g(#), are given the Convolution theorem imposes the following equiv-
alent relations between f(¢), g(¢), and their spectra, f(®) and g"(®):

j I (0)g" (0)e do= j f(t=n)g(x)dr (43)

.[f )e' do= If —1)dt (44)

Let us assume that
A. Input f{7) starts at time ¢ = 0 (requirement of action)

fiH)=0fort<0 (45)
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B. Future values of f{¢'), t' > ¢ do not contribute to convolution (requirement of causality). This is equiv-
alent to imposing condition

g(r)=0forz<0 (46)

Requirements A and B result in the following:

1. For Equation (43):

a. Setting up to ¢ the upper limit of integration variable 1 (requirement A).

b. Setting up to 0 the low limit of integration. Otherwise, for negative values of 1, the output will depend
on future values of f{¢) (requirement B).

2. For Equation (44):

c. Setting up to ¢ the upper limit of integration variable 1. Otherwise, the output will depend on future
values of f{(¢) (requirement B).

d. Setting up to 0 the low limit of integration (requirement A).

Finally, the following is proven:

The Convolution theorem:

+0o0 t t
[ 1 (@)g (@) do=[f(i-7)g(t)dr=[ f(x)g(t-7)dx (47)
o 0 0
The causality condition (in time and frequency domain):
g(r)=0forz <0 (48)
g*(w) is analytical for Im(w) <0 (49)

If we want to ensure causality we need to ensure conditions (48) and (49).

Titchmarsh’s theorem

Titchmarsh, in his famous theorem [Titchmarsh, 1926; Nordebo, 2013], suggested four equivalent formu-
lations of causality (the first of which we already considered):

If a square integrable function g*(m) fulfills one of the four conditions below, then it fulfills all four of
them:

1. The inverse Fourier transform g(t) of g*(w) vanishes for <0, i.e.,

g(t)y=0"fort<0 (50)
2. The function g(i) is, for almost all &, the limit of an analytic function
f(&)=lim, ;. G(E+iv) (51)

that is holomorphic in the upper half-plane and square integrable over any line parallel to the real axis:

+00

[lo(e+ivf dz<e (52)
1. The functions Re g*(w) and Im g*(w) satisfy the first Plemelj formula
+o0 R *(EJ)
1 cg
Re g¥(0)==P | ———=
¢ g*(0)=— J' oy U (53)
2. The functions Re g*(w) and Im g*(w) satisfy the second Plemelj formula
+o0 I *(E))
1 mg
Im g*¥(w)=——P | ———=
mg*(0)=— P [ =2 T de (54)

Eq. (53) and (54) are known as Kramers-Kronig relations. P denotes the Cauchy principal value.
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Application examples

One of the most practical ways of proving causality is checking condition (49) for the frequency disper-
sion of coefficients in constitutive equations. Let us consider dispersion of dielectric permittivity:

D(0)=¢(0)E (o) (55)

Here, D — displacement field, € — dielectric permittivity, E — electric field.

Assuming, in Eq. (47)-(49), g*(®) = ¢(®) and f*(®) = E(w) we conclude that causality will follow from
analyticity of &(®) in the low half-plane of complex .

In the following analysis, we consider causality of Debye, Cole-Cole, and Havriliak - Negami dispersion
laws as well as CRIM mixing model for porous media.

Debye Relaxation
See for detail [Feldman et al., 2005], p.7.
g(w)-e, 1

56
g —&, l+(iot) (36)
Here, ¢, — high-frequency permittivity limit, &, — low frequency permittivity limit, T — relaxsation parameter.

It is obvious that the right hand side of Eq. (56) has a single pole at w==thus being analytical in the
lower half-plane of the complex . t

Cole-Cole Relaxation
See for detail [Feldman et al., 2005], p. 8.
e(w)-¢, 1

€. |4+ (z'o)r)ot

, O<ax<l (57)

Following [Van Gemert 1972] let us determine singularities in the right hand side of Eq. (57). We need
to consider denominator and find it’s zeros:

1+ (iot)” =1+|o1] ei(zwm)a (58)
Here o, is the argument of a complex frequency .
It is evident that zeros are defined by the following equations:
og=1 (59)
(§+(pwja:(2k+l)rc, k=0, 1, 2... (60)
Eq. (60) results in the following relation determining angular positions of singularities on the unit circle
(59):
1 (1 2k
=n|=+|——1|+=—|, £=0, £1, £2...
Let us determine branch cut as follows:
3 i
~Sn<o, <2 (62)

It is easy to see that no singularities, Eq. (61), falls on this branch thus proving that Cole-Cole relaxation
function is analytical in the low complex half-plane.

Havriliak-Negami Relaxation
See for detail [Feldman et al., 2005]

e(0) =2, _ L 7. 0<a, <l (63)
T8 (14 (je0r)”
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Selecting branch cut as in the case of Cole-Cole polarization we can notice that exponent B does not af-
fect positions of singularities . Therefore, Havriliak-Negami relation maintains causality.

[Kalmykov et al. 2004] studied Havriliak-Negami relaxation in time domain. It is shown that the Debye
rotational diffusion model of dielectric relaxation of polar molecules may be extended to yield the empirical
Havriliak-Negami (HN) equation of anomalous dielectric relaxation from a microscopic model based on a ki-
netic equation just as in the Debye model. This kinetic equation is obtained by means of a generalization of the
noninertial Fokker-Planck equation of conventional Brownian motion (generally known as the Smoluchowski
equation) to fractional kinetics governed by the HN relaxation mechanism. For the simple case of noninteract-
ing dipoles it may be solved by Fourier transform techniques to yield the Green function and the complex di-
electric susceptibility corresponding to the HN anomalous relaxation mechanism. The HN relaxation in-time
domain is described by Fox-Wright functions.

Complex Refractive Index Model (CRIM)

See for detail [Sabouroux and Ba, 2011], p. 5.
Complex Refractive Index Model (CRIM) is a mixing law used for approximation of dielectric permit-
tivity of multi-component material mixtures, particularly, porous formations:
g2, =(1-0)e% + 8, de% +(1-5,)Pe? —1<a<l (64)

cri

Here, ¢, — dielectric permittivity of rock mixture, g, — dielectric permittivity of rock matrix, &, — dielec-
tric permittivity of water, g, — dielectric permittivity of oil, ® — porosity, S — water saturation.
In petrophysical applications, the most commonly used value of a is 0.5:

el =(1-D)el” +5,0e%° +(1-8,, ) Del? (65)

cri

We will use in our analysis more general expression for dielectric permittivity that includes Maxwell-
Wagner polarization [Gibson et al. 2008]:

e(0)=¢ +&+%, O<a<l; 0<B<l (66)

@ B
(1+(i07)*)
To obtain expression for ¢_; we square both sides of Eq. (65):

g, =(1-0)’¢, +S20%, +(1-S,) D%, + )
+2(1-0)S,@4e,c, +2(1-0)(1-5, )D/¢,¢, +25,D(1-5, )P /¢, ¢,

The branching parts of the first three terms have the form of Havriliak-Negami dispersion and, conse-
quently, are causal. For cross terms, it is not obvious. Let us consider, for example, the matrix-water term as-
suming, for simplicity, no dielectric dispersion:

[ (¢ (¢
—_ m w
Smgw—ﬂgmﬂgw—\/gm‘#'i \/8W+_i

Each square root has its own zero on the imaginary axis of frequency:

.G,

W, = la (68)
.G,

0, =i (69)

Since both branch points Eq. (68) and (69) are situated in the upper half-space they do not affect analyti-
city of the first three terms, eq. (67). It is also true for the remaining two cross-terms of Eq. (67).

Therefore, in the presence of only Maxwell-Wagner dispersion CRIM satisfies the causality conditions.
More needs to be done to study CRIM when Debye, Cole-Cole, or Havriliak-Negami dispersion is present.

Maxwell-Garnett Mixing Formula with CRIM mixture in the background

In porous media, CRIM mixing law does not allow us to fit the data acquired by dielectric tool in a broad
range of frequencies. Seleznev et al. [2006, 2011, 2014, 2015] suggested using Garnett-Maxwell mixing for-
mula with CRIM model of porous formation (matrix, oil, and water) in the background.
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1 ‘ s Eeri
e —s 4 §§J(J (Sj _80” )lg crl + Nl ( crl) (70)
eff cri n 3 Nl-

1_%213(8/"‘%)2

i
J=1 i=1€ crl+N( crt)
0 1

i ds (71)

Y )(sm)( [T

Here, n — number of inclusions (grains of ellipsoidal shape), €. — j-th mclusmn complex perm1tt1v1ty, Ji-
j-th inclusion volume fraction, N —i-th depolarization factor of j-th eihpsmd a 2 a — j-th ellipsoid semiaxes.

In further analysis, we w111 evaluate whether or not the effective dlelectrlc perm1tt1v1ty, &, satisfies
Kramers-Kronig relations. Evaluation of ¢ analyticity in lower frequency half-space (Eq.(70)) will answer the
question. For simplicity of analysis, we assume no dispersion. Therefore, Eq. (66) yields:

o.

g (@)=, +== (72)

The following equation should be solved in order to find zeros of denominator:

fie M N N;
_N _J2 3 = 73
35 e+ N ,2;‘62+N’ ;e3+N’ (73)
8cri
ej_aj_gcri (74)

Once poles e; were found we can calculate from Eq. (74) the dielectric permittivity &; creating these poles:

1
Sj :[:+1]86ri (75)

J

We can satisty Eq. (73) by varying either of three parameters e,, e,, e; while keeping the remaining two
intact. For example, resulting cubic equation for e, reads:

¢ [0]+e [(Q -1ty +2)]+e [(Q=2)(xy+yz+2x) [+[(Q,~3)xyz]=0
3L N SN
@ f { ,leez + N} lz;'% +N;
x=N}, y=N{, z=N;
Similarly, we obtain for e, and e;:

eg [Q +ez[ 0,-1 (x+y+z):|+ez[ 0,2 xy+yz+zx)]+[(Q2—3)xyz:| =0

o -2i-ig M _f3 ]

e z1a]+Nl ,1a3+N’

x=N;, y=N;, z=N;

+ez[ (x+y+z)]+ez[ 052 xy+yz+zx)]+[(Q3—3)xyz]:0
_3 A Mo b N,
Q_fz{ ;al'i‘Nl §a2+N’}

x=Ny, y=N;, z=N;
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Fig. 10. Dielectric permittivities generated by poles
for three component Maxwell-Garnett model.

Fig. 11. Dielectric permittivities generated by the
first pole of the first inclusion.

In Fig. 10, we show, as an example, the dielectric permittivities Eq. (75) corresponding to all the poles
found for 37 frequencies within the range of 1 KHz to 1 GHz (total 333 cases). Each curve represents complex
permittivities for 37 frequencies ranging from 1 KHz to 1 GHz. The lowest frequency always corresponds to
the right upper end of each curve. Please notice that signs of real parts are reversed, for the convenience of
graphical presentation. Therefore, all formation models generating poles have negative dielectric constants and
are not feasible. It leads us to a conclusion that no poles exist on the real axis of frequency.

The below table describes the parameters used in modeling

INCLUSION PARAMETERS HOST MEDIUM PARAMETERS

Comp.3 0.6659171E+00 0.3326445E+00

0.10E-05 Depolarization abs. error 0.30E+00 Porosity

0.10E-02 Depolarization rel. error 0.50E+00 Water saturation

0.10E+01 Comp.l 1st semiaxis 0.50E+01 Permitt. 1lst phase (Matrix)

0.10E+02 Comp.l 2nd semiaxis 0.10E+01 Conduct. 1lst phase (S/m)

0.10E+03 Comp.l 3rd semiaxis 0.60E+02 Permitt. 2nd phase (Water)

0.10E-04 Comp.l conductivity, S/m 0.50E+01 Conduct. 2nd phase (S/m)

0.60E+01 Comp.l rel. permittivity 0.10E+02 Permitt. 3d phase (0il)

0.10E+01 Comp.2 1lst semiaxis 0.10E-02 Conduct. 3d phase (S/m)

0.50E+01 Comp.2 2nd semiaxis GRAIN VOLUME PARAMETERS

0.10E+02 Comp.2 3rd semiaxes 0.20E+00 Grain Volume (GrnVol)

0.10E+00 Comp.2 conductivity, S/m 0.70E+00 Comp.l portion of GrnVol

0.80E+02 Comp.2 rel. permittivity 0.15E+00 Comp.2 portion of GrnVol

0.10E+01 Comp.3 1lst semiaxes 0.15E+00 Comp.3 portion of GrnvVol

0.20E+01 Comp.3 2nd semiaxes DEPOLARIZATION FACTORS

0.70E+02 Comp.3 3rd semiaxes N1 N2 N3
0.00E+00 Comp.3 conductivity, S/m Comp.1l 0.9075710E+00 0.8980450E-01 0.2611601E-02
0.50E+01 Comp.3 rel. permittivity Comp.2 0.7994770E+00 0.1461682E+00 0.5435487E-01

0.1444462E-02

Evaluation of poles along the frequency axis shifted to the lower complex half-plane brings similar re-
sults. We studied migration of poles when the frequency axis was shifted by 1, 10, 100, ..., 108, 10° Hertz. The
overall conclusion is that no poles exist in the low half-plane of frequency and, consequently, the Kramers-
Kronig relation holds.
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[Kolesnikova et al., 2004] studied causality of Maxwell-Garnett model in a wide band of frequencies by
approximating Maxwell-Garnett mixing law by a series of Debye-like relaxation terms.

Fig. 11. Shows dielectric permittivities generated by the first pole of the first inclusion. Each curve rep-
resents complex permittivities for 37 frequencies ranging from 1 KHz to 1 GHz. The lowest frequency always
corresponds to the right upper end of each curve. Curves differ by the frequency shift (measured in Hz) in the
direction of the lower half-plane. Please notice that signs of real parts are reversed, for the convenience of
graphical presentation. All shifts generate poles having negative dielectric constants. Therefore, they are not
feasible. It leads us to a conclusion that no poles exist in the low half-plane of frequency and, consequently, the
Kramers-Kronig relation holds.

SUMMARY

Application of various dispersion and mixing laws, that are mostly approximate or empirical, requires
thorough evaluation of causality. We considered theoretical foundation of causality and suitable tests for high
frequency logging applications. The main results are as follows:

— Causality confirmed analytically for Debye, Cole-Cole, Havriliak-Negami, and CRIM dispersion models;

— For Maxwell-Garnett mixing law with CRIM formation in the background, causality confirmed based
on numerical evaluation of Kramers-Kronig relations;

— Closely related to causality and dispersion properties of phase and group velocities were studied for
dielectric logging. Both velocities depend not only on the formation parameters but also on the transmitter-
receiver configuration and position of sensors (far, near, or intermediate zone);

— Multi-coil/multi-frequency measurements of attenuation and loss angle allow for overcoming ambigu-
ity of phase in high frequency well logging technologies.
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ATTACHMENT A. DERIVATION OF PHASE VELOCITY

Let us consider Eq. (29), (20), and (22) (numbered here as (A1), (A2), and (A3), respectively):

dL )
T ey (A1)
|k|sm(g0k)—ﬁ
k| L -sin () <
= <y<0, [kLl€(0
Y arCtan(1+|k|L-cos((pk) » O sy =0, |€( ,00) (A2)
¢ —cos(2¢;)
Let us calculate the second term in denominator of Eq. (A1):
oy _ Oy OkL _ 1 sin((pk)(1+|k|L-cos((pk))—|k|L-sin((pk)cos((pk)k
OL 0kL oL 1+[ |k|L-sin((pk) ]2 (1+|k|L-cos(q)k))2
1+ k|L-cos(g;) (A4)
~ ksin(g;) B ksin (o)
(1 +|k|L-cos((pk))2 +(Jk L - sin((pk))2 1+ 2| L- cos((pk)+(|k|L)2
We obtain from Eq. (A1), Eq. (A4), and Eq. (A3):
dL ® _ ) 1
i 1 Foin(o0) 1
ksin(g,)|1- 5 1- 5
1+ 2[k| L - cos (o, )+ (k| L) 1+ 2[k| L - cos (o) + (k] L)
_ c* * —cos(2¢;) (A5)
e | 1
sin(@, )| 1-
( k)( 1+2|k|L-cos((pk)+(|k|L)2J
e —cos(2¢,) 1
fw'e sin(e) 1
1+ 2K L -cos(g, )+ (K L)’
Finally:
)0
Vv, = : 5 (A6)
14 20K L -cos(¢,) + (K L)’
po___¢© —cos(2¢;) (A7)
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ATTACHMENT B. DERIVATION OF GROUP VELOCITY

Let us consider the expression describing propagation of spatial harmonics /" in lossy medium:

H o« exp(-pz - iot) (B1)
Here,

2 —iop(o—ing)=m? —o’ue —iopc (B2)

p*=m
m — spatial wave number in integral representation of H, field component.
Equation (B1) includes the only part of H_* Fourier transform that is responsible for propagation of spatial
harmonics.
Let us introduce real and imaginary part of p in Eq. B1:

H} o exp(—Re(p)z)exp(—i(lm(p)z+mt)) (B3)

According to definition of group velocity, V,, we obtain:

z
do
Let us calculate Im(p):

p=m? — e —iopc =a+ib (BS)
a=m?—o’ue (B6)
b=-ouc (B7)

According to well known formula:

2 2 2 2 _
p=atib= /—W+isgn(b) /—Wzba (BS)

Using Eq. (B6), (B7), and B(8) yields:

[2+ b2 —a \/\/(mz - cozug)z + w’p’e? - (m2 - cozua)

Im(p)=- 3 =- > (B9)
Series of exhausting but obvious calculations leads us to the expression for the group velocity:
dim(k) 1 Z(m2 - wzus) (—20pe) +20p*c?
V2 Jo = —— +2ope
2\/\/(7712 _Q)ZHS) + o’ulc? _(mz _(Dzug) 2\/(m - ua) + oo
2 2 _1\(<2 2.2
\/Edlsl(p):_ 1 1 mus(y )( wu28)+o)ucs + 2ope
@ (D\/EZ (yz —1)2 + x? —(y2 —1) 0)2}18\/()/2 —1) +x?
\/zdI;n(p):_ 1 (mzus)(mus) —2(y2—1)J;x2 . 22
R e L e R
dim(p) Jue —2(y2—1)+x2Jr2

dm

__Zﬁ\/\/(yz () \/(yz Y e
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y= m\/ﬁ (B10)
c
X=— (B11)
do c 1
V,=- = (B12)
g dlm(p) NI 1 —2(y2—1)+x2 ,
+
N R N s
Introducing normalized group velocity, V', we obtain:
V.
Ve = c—g = ! (B13)
) 2 -1 2
! (y ) ot +2

e LU

Here, x is the tangent of loss angle. The physical meaning of y becomes clear after following simple
transformations of Eq. (B10):

m meE mc A

“ofis 27 a7 e (B9

Here A is the light wavelength in the formation, and & is the spatial wavelength corresponding to the spa-
tial harmonic, m.
Let us present square root in Eq. (B5) as a function of parameters x and y:

p=+m* - o’ue —iopc = (n\/EJ(yz —1) —ix = 0)—““28*,/()22 —1)—ix (B15)

y) [ x
2y == |—i|——
dp _ e ( w] ( @) Jures 2P ix
—— =0 == ,/ (B16)
do ¢ 2 (yz—l)—ix Jy —1 —lx
From Eq. (B16) and definition of group velocity Eq. (B12) we obtain:
do c 1

VvV = = B(17)
¢ dim(p) Jurer 232 —ix
Im ,I y —1 —1x -
. l y - 1 —ix
Eq. B(17) is equivalent to Eq. (B12).
Pexomenoosana k nevamu 2 aszycma 2017 e. THocmynuna 6 pedaxyuio
M.U. Snosvim 1 oexabpsa 2016 a.
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