УДК 536.715 DOI: 10.15372/PMTF202215177

ИССЛЕДОВАНИЕ ПРОЦЕССА РАСПЫЛЕНИЯ ПЕРЕГРЕТОЙ ВОДЫ ЧЕРЕЗ РАСШИРЯЮЩЕЕСЯ СОПЛО

В. И. Залкинд, Ю. А. Зейгарник, В. Л. Низовский, Л. В. Низовский. С. С. Шигель

Объединенный институт высоких температур РАН, Москва, Россия E-mails: lu_zalkind@mail.ru, zeigar@oivtran.ru, nizovsky@ihed.ras.ru, levmobile@mail.ru, zaokeram@yandex.ru

Экспериментально исследован процесс распыления метастабильной перегретой воды в случае ее истечения в атмосферу из конфузорно-диффузорного сопла при температуре 240 ÷ 260 °C. Дисперсионный состав факела распыления имеет бимодальный характер с преобладанием капель субмикронного размера, доля которых увеличивается с увеличением температуры и достигает 80 % на выходе из сопла при температуре воды 260 °C. Выполнены оценки влияния коагуляции капель на распределение доли капель большого размера по длине факела распыления.

Ключевые слова: перегретая вода, метастабильное состояние, высокотонкое распыление, дисперсионные характеристики, бимодальное распределение, факел распыления, взрывное вскипание, двухфазный поток, рассеяние монохроматического излучения

Мелкодисперсное распыление перегретых жидкостей составляет основу ряда технологических процессов [1–3]. Диаметр капель распыляемой холодной воды при использовании центробежных и других механических форсунок обычно равен 15 ÷ 20 мкм. Для получения капель меньшего диаметра оптимальным способом является фрагментация метастабильной перегретой жидкости, вскипающей при снижении давления в распылительном устройстве и дробящей исходную структуру. Процессы фрагментации перегретой воды исследовались в работах [4–9], при этом в [6, 7] в основном изучались условия получения мелкой фрагментации, дисперсный состав и структура факела распыления.

Эксперименты проводились на установке, схема которой представлена на рис. 1. Данная установка позволяла исследовать распыление воды при температуре $T_0 \leq 260$ °C и избыточном давлении $P_0 \leq 10,0$ МПа и использовать устройства для распыления различного типа (форсунки, сопла) в условиях сносящего воздушного потока, движущегося со скоростью до 35 м/с. Регистрация, контроль и управление параметрами (давлением и температурой) осуществлялись с помощью многоканального технологического регистратора РМТ-59 производства компании "Элемер". Схема рабочего участка и системы регистрации рассеянного излучения представлена на рис. 2.

Исследовался процесс распыления перегретой воды через конфузорно-диффузорное сопло при температуре $T_0 = 240$; 260 °C в условиях сносящего воздушного потока, движущегося со скоростью 35 м/с. Параметры сопла были следующими: угол раскрытия конфузора — 60°, диаметр критического сечения сопла — 0,7 мм, угол раскрытия диффузо-

Рис. 1. Схема экспериментальной установки: 1 — автоклав, 2 — запорные вентили, 3 — нагреватели, 4 — термопары из сплава хромелькопель, 5 — датчики давления, 6 — баллон со сжатым воздухом, 7 — форсунка (сопло)

Рис. 2. Схема рабочего участка и системы регистрации излучения:

1 — рабочий участок — труба диаметром 130 и длиной 1500 мм, 2 — входное устройство, 3 — хонейкомб для спрямления воздушного потока, 4 — патрубки для подвода воздуха, 5 форсунка (сопло), 6 — видеокамера, 7 — поворотный стол, 8 — источник монохроматического излучения с длиной волны 532 нм, 9 — ограничительная диафрагма, 10 — ослабляющий нейтральный светофильтр, 11 — устройство регистрации интенсивности рассеянного излучения, 12 — апертурная диафрагма, 13 — объектив, 14 — устройство, регистрирующее ослабленное прямое излучение, 15 — датчики влажности и температуры

Рис. 3. Факел распыления при избыточном давлении перед соплом 6,0 МПа, температуре 260 °C, расходе 21 мл/с: a — экспозиция 20 мс, б — экспозиция 100 мкс

ра — 12°, диаметр выходного сечения сопла — 8,0 мм. Избыточное давление перед соплом равно $P_0 = 4,0; 6,0$ МПа. Для определения дисперсионного состава капель воды в образующемся факеле использовался метод рассеяния факелом монохроматического излучения с длиной волны 532 нм (твердотельный одномодовый лазер с диодной накачкой с регулируемой мощностью излучения до 20 мВт и выходным диаметром пучка излучения 1,5 мм). Индикатрисы рассеяния и ослабление излучения регистрировались в диапазоне углов ±45° при угловой скорости перемещения источника излучения, равной 4,5 град/с, с интервалом опроса датчиков 10 мс.

Методика обработки индикатрис рассеяния основана на решении обратной задачи о рассеянии света, базирующемся на положениях теории Ми. При обработке результатов измерений интенсивность рассеянного излучения нормировалась на величину, соответствующую углу поворота лазера, равному 1,35°. Изменение длины хода луча и коэффициента ослабления излучения при повороте лазера учитывалось в расчетах. Экспериментально установлено, что в рассматриваемых условиях доля излучения от вторичного рассеяния составляет не более 2–3 % и им можно пренебречь. Подробно методика описана в [6, 7]. Критериями отбора наилучшего варианта расчета дисперсионного состава факела являются одновременное совпадение расчетной и экспериментальной кривых относительной интенсивности рассеянного излучения с точностью до ±3 % в диапазоне величин углов 2 ÷ 40° и гладкий характер кривой для дисперсионного состава факела.

Фотографии факела распыления при различном времени экспозиции представлены на рис. 3.

Величина угла раскрытия факела распыления близка к величине угла раскрытия диффузорного участка сопла (12°). В этом заключается существенное отличие от случая распыления через центробежные и струйные форсунки, когда угол раскрытия факела при определенных условиях может достигать 180°. На рис. 3, δ (экспозиция 100 мкс) хорошо видны следы турбулентных пульсаций на границе факела распыления (скорость паро-

Рис. 4. Индикатриса рассеяния в факеле распыления при расстоянии от среза сопла L = 85 мм, избыточном давлении перед соплом $P_0 = 6,0$ МПа, температуре $T_0 = 260$ °C, расходе Q = 21 мл/с:

1 — эксперимент, 2 — расчет

Рис. 5. Дисперсионное распределение капель по размерам при L = 85 мм, $P_0 = 6,0$ МПа, $T_0 = 260$ °C, Q = 21 мл/с: 1 — суммарная доля, 2 — объемная доля

капельного потока превышает 100 м/с) и спутного воздушного потока, движущегося со скоростью 35 м/с.

Характерные результаты обработки индикатрис рассеяния I представлены на рис. 4, 5 $(\theta - y$ гол рассеяния, n - cymmaphas доля капель, <math>v - oбъемная доля капель, r - pадиус капель), на которых отчетливо видно бимодальное дисперсионное распределение капель по размерам. Практически полное совпадение экспериментальной и расчетной индикатрис свидетельствует о достоверности полученных результатов.

Эволюция рассматриваемых факелов распыления по их длине показана на рис. 6. Значительное уменьшение доли n_s частиц субмикронного размера, распределенных по длине факелов, наблюдается уже в конце начального участка их смешения со спутным потоком воздуха. На рис. 6 также видно, что доля капель субмикронного размера (r < 1 мкм)

Рис. 6. Зависимость доли капель субмикронного размера от расстояния L от среза сопла для $T_0 = 240$ °C, $P_0 = 4,0$ МПа (1) и $T_0 = 260$ °C, $P_0 = 6,0$ МПа (2)

при $T_0 = 240$; 260 °C уменьшается с $n_s = 0.83$; 0,90 при расстоянии от центра сопла L = 50 мм до $n_s = 0.40$; 0,52 при L = 120 мм. Наиболее существенное уменьшение имеет место в начале основного участка смешения факела распыления со спутным потоком воздуха, движущимся со скоростью 35 м/с. Далее эта доля продолжает уменьшаться, однако с меньшей скоростью: до $n_s = 0.27$; 0,29 при L = 220 мм. Такое поведение дисперсионного распределения по длине факела распыления может быть обусловлено испарением мелкодисперсной составляющей и турбулентной (инерционной) коагуляцией капель [10].

В работе проведен предварительный расчетно-теоретический анализ эволюции факела при распылении перегретой воды. Рассмотрена инерционная коагуляция капель различного размера, связанная с различной скоростью скольжения капель разного размера при торможении струи факела в спутном воздушном потоке.

Относительное снижение доли капель субмикронного размера под действием "инерционного" механизма коагуляции на начальном участке факелов распыления меньше измеренных в экспериментах. Очевидно, помимо инерционной коагуляции причинами уменьшения доли капель субмикронного размера могут быть турбулентная коагуляция и различная скорость разлета капель с разными размерами. Такой разлет дисперсной фазы обусловлен как турбулентным смешением факела распыления с внешним воздушным потоком, так и углом раскрытия диффузорной части сопла (12°). При этом капли субмикронного размера, удовлетворяющие критерию Стокса Stk $\approx 0,01$, разлетаются вместе с газовым потоком в значительно большей степени, чем капли микронного размера, у которых Stk ≈ 1 .

Представленная картина эволюции дисперсного состава факелов распыления требует более подробного изучения с учетом ее важности для прикладных целей.

ЛИТЕРАТУРА

- 1. Фаворский О. Н., Алексеев В. Б., Залкинд В. И. и др. Экспериментальное исследование характеристик газотурбинной установки ТВ3-117 при впрыске перегретой воды в компрессор // Теплоэнергетика. 2014. № 5. С. 60–68.
- 2. Пряничников А. В., Роенко В. В., Бондарев Е. Б. Тушение проливов нефти и нефтепродуктов метастабильными парокапельными струями воды // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. 2015. № 4. С. 7–12.

- 3. Кузнецова И. В., Гильмутдинов И. И., Гильмутдинов И. М., Сабирзянов А. Н. Получение наноформ лидокаина методом быстрого расширения сверхкритического раствора в водную среду // Теплофизика высоких температур. 2019. Т. 57, № 5. С. 764–768.
- 4. Решетников А. В., Роенко В. В., Мажейко Н. А. и др. Взрывное вскипание и полный развал струи перегретой воды // Тепловые процессы в технике. 2013. Т. 5, № 7. С. 295–302.
- 5. Lamanna G., Kamoun H., Weigand B., Steelant J. Towardsa unified treatment of fully flashing sprays // Intern. J. Multiphase Flow. 2014. V. 58. P. 168–184.
- 6. Домбровский Л. А., Залкинд В. И., Зейгарник Ю. А. и др. Распыление перегретой воды: результаты экспериментальных исследований // Теплоэнергетика. 2009. № 3. С. 12–20.
- 7. Алексеев В. Б., Залкинд В. И., Зейгарник Ю. А. и др. Распыление перегретой воды: практика исследования сложных дисперсионных структур // Теплофизика высоких температур. 2014. Т. 52, № 3. С. 456–462.
- Бусов К. А., Решетников А. В., Мажейко Н. А., Капитунов О. А. Исследование влияния пассивного завихрителя на истечение перегретой жидкости // ПМТФ. 2019. Т. 60, № 1. С. 62–68.
- 9. Бусов К. А., Мажейко Н. А. Формообразование свободной струи перегретой воды на различных расстояниях от цилиндрического канала // ПМТФ. 2022. Т. 63, № 2. С. 3–21.
- Zalkind V. I., Zeigarnik Yu. A., Nizovskiy V. L., et al. Specific features of evolution of dense atomized superheated water plumes and peculiarities of its diagnostics // J. Phys.: Conf. Ser. 2021. V. 2057. 012045.

Поступила в редакцию 22/VII 2022 г., после доработки — 24/X 2022 г. Принята к публикации 27/X 2022 г.