ЛИТЕРАТУРА

7. Преснов, Химик. Численный метод расчета полей течения за ограниченной ударной волной в газе с неравновесными химическими реакциями // ГТН.— 1969.— Т. 7, № 12.

11. Проворов В. П., Рябов В. В. Исследование неравновесного гиперзвукового взрывного ушного слоя // Тр. ЦАГИ.— 1981.— Вып. 2111.

13. Ермаков В. В., Калинин Н. И. Оптимальный шаг и регуляризация метода Ньютона // ЖВММФ.— 1983.— Т. 21, № 2.

15. Рябов В. В. Приближенный метод расчета коэффициентов переноса в многокомпонентных смеси // ИФТ.— 1982.— Т. 44, № 2.

16. Денисенко О. Б., Проворов В. П. Исследование течений вязкого газа при умеренных численах M // Тр. ЦАГИ.— 1985.— Вып. 2260.

18. Баженова Т. В., Гвоздева Л. Г., Лобастов Ю. Ф. и др. Ударные волны в реальных газах.— М.: Наука, 1965.

Поступила 18/V 1986 г.

УДК 552.5 + 523.4

КОНВЕКТИВНАЯ НЕУСТОЙЧИВОСТЬ И ВИХРИ НА ВРАЩАЮЩЕЙСЯ СФЕРЕ

Т. Д. Кузнецова, Л. С. Соловьев

(Москва)

Одна из интереснейших проблем гидродинамики — возникновение и длительное существование упорядоченных вихревых структур в течениях, обладающих в начальный момент более высокой симметрией или даже образующихся из состояния покоя. Считая эту проблему термодинамической, авторы [1] констатируют: "Классическая термодинамика, в сущности, — теория "разрушения структуры", и ее необходимо дополнять отсутствующей в ней теорией "создания структур". Появление вихревых структур в первоначально ламинарном потоке, коль скоро исходное стационарное течение таково удовлетворяет условиям баланса сил, связано с развитием некоторой неустойчивости, которая и переводит систему в новое, уже устойчивое стационарное состояние. В вихревой вихревой структуре течения потери кинетической энергии за счет диссипативных сил, очевидно, должны компенсироваться притоком соответствующей имеющейся энергии.

Классический объект исследования эффекта образования вихревой структуры — задача Бенара, в которой переход к новому стационарному состоянию обусловлен развитием конвективной неустойчивости. Применение к этой проблеме теории гидродинамической неустойчивости, основанной на анализе нормальных мод, дано, в частности, в [2]. Эта теория неустойчивости, по [2, 3], позволяет найти минимальный перепад температур, при котором возникает стационарный баланс между вязкой диссипацией кинетической энергии и производством внутренней энергии за счет архимедовых
спл выталкивания. С аналогичных позиций, по-видимому, надо рассматривать обра-
зование стационарных вихревых структур во многих явлениях природы, а также в за-
дачах об обтекании газом движущихся тел.

Настоящая работа посвящена рассмотрению крупномасштабных вихрей в атмосфере обращающихся планет. В качестве причин возникновения стационарных вихрей и широтных течений предполагается развитие конвективной неустойчивости в поле центробежной силы. Для получения возможных стационарных конфигураций, непре-
рывно заполняющих всю сферу, исследуется динамика вихревой структуры течений в целом на поверхности равномерно вращающегося шара. В полученном в прибли-
женении "точкой атмосферы" решении отдельные вихри оказываются ограниченными сепаратрисами. Источником энергии, необходимой для длительного существования стационарной структуры вращающихся вихрей вместе с соответствующими широт-
ными течениями, по-видимому, служит энергия вращения планеты.

Одна из конкретных проблем — возникновение и длительное существование Большого Красного Пятна Юпитера, которое представляет собой вихрь в атмосфере Юпитера. В отличие от предпосылок и результатов предшествующих работ [4—6], посвященных этой проблеме, причиной образования Пятна Юпитера считается раз-
витие конвективной неустойчивости, а его размеры в отличие объясняются тем, что оно ограничено сепаратрисой от окружающих широтных течений.

Для получения аналитических решений используют два основных предполо-
жения о возможности пренебрежения возмущениями гравитационного поля и перен-
диккулярными к поверхности планеты компонентами скоростей.

1. Конвективная и центробежная неустойчивость в цилиндрической геометрии. При рассмотрении линейной теории воли во вращающемся цилиндре выявляются две классические неустойчивости — в общем слу-
чае конвективная [3], а также центробежная (неустойчивость Рэлея —
Тейлора [7]), когда возмущения аксиально-симметричны $\partial / \partial \varphi = 0$ и ле-
жат в меридиональной плоскости r, φ. Физический смысл развития обоих неустойчивостей одинаков и заключается в выплывании вмороженных функций — энтропии S при конвективной неустойчивости и момента вращения $I = rv_\varphi$ при центробежной неустойчивости. Локальные критерии устойчивости выражаются через производные от вмороженных функций S и I.

В силу отсутствия зависимости исходной стационарной конфигурации от φ и z собственные функции линейной задачи имеют вид

\[v_r \sim \sin(m\varphi + \omega t)\sin k z, \quad v_\varphi, \quad \rho \sim \cos(m\varphi + \omega t)\sin k z, \]

\[\tilde{v}_r \sim \sin(m\varphi + \omega t)\cos k z, \]

где коэффициенты — исковые функции от r.

Используемая система уравнений бездиссипативной газодинамики:

\[\frac{\partial \rho}{\partial t} + \text{div} \rho v = 0, \quad \rho \frac{dv}{dt} = -\nabla p + \rho \Phi, \quad dN/dt = 0. \]

Здесь ρ — плотность; p — давление; Φ — гравитационный потенциал; $N = \rho v^2 / 2$; γ — показатель адабаты. Соответствующая линеаризованная система для исходной стационарной конфигурации, в которой $v_z = 0, v_r = 0$ и выполняющего условие равновесия сил $v^2_r / \rho = p / \rho + \Phi$, в пре-
небрежении возмущениями Φ сводится к одному уравнению для $f(r)$

\[(s^2 + \beta^2 v^2 / r^2) f' - \left(\rho v^2_r - \frac{2\rho v^2}{m^2 r^2} \right) f' \rho r^2 \left[\left(\rho' - \frac{\rho}{r} \right) - \left(\frac{\rho}{r^2} \left(\frac{2\rho v^2}{m^2 r^2} \right) \right) \right] = 0, \]

где $s = \gamma m^2 \beta / \rho r^2 = \gamma^2 / 2$, $\beta = 1 + k^2 / m^2$, интеграл означают дифференциацию по r. При $y \to 0$ оно приводится к виду

\[\left(\frac{\rho v^2_r}{\beta m^2 N} \right)' - \left(\frac{\rho v^2}{r} - \frac{\rho v^2}{m^2 v^2} \right)' - \left(\frac{v^2}{\rho} - \frac{v^2}{m^2 v^2} \right)' \right) f = 0 \]

(с $= \sqrt{2 \rho / \rho}$ — скорость звука). Отсюда следует локальное необходимое условие устойчивости

\[k^2 \rho (F') / \beta m^2 r - p' / N' / \gamma N > 0. \]
Для аксиальной симметрии \(m = 0 \) из (1.3) вытекает критерий устойчивости [8] \(\rho'(f')/r^2 - p'/N' > 0 \), описывающий как конвективную, так и центробежную неустойчивость. Для азимутальных возмущений, лежащих в плоскости \(r, \phi \), при \(k \to 0 \) получаем условие устойчивости \(-p'/N' > 0 \). В этом случае осталась только конвективная неустойчивость.

В модели вращающегося диска, когда скорости лежат в плоскости \(r, \phi \), а центробежная сила уравновешивается в стационарном состоянии гравитационным давлением, уравнение (1.2) можно представить в форме

\[
(p_0 v_0^2)'/r^2 - m^2 (p_0 v_0^2/r - \rho' v_0^2 + \rho v_0^2/c^2) = 0 \quad (v_0 = v_0/\rho).
\]

При этом критерий конвективной устойчивости \(v_0^2 (p' - \rho v_0^2/c^2) > 0 \) указывает на неустойчивость также и однородной вращающейся жидкости \(\rho' = 0 \), если не переходить к пределу \(c^2 \to \infty \).

Для оценки величины интеграла развития неустойчивости положим \(\rho = \text{const} \), \(v_0 = \text{const} \), \(c^2 = \text{const} \). Тогда решением (1.4), удовлетворяющим граничному условию \(f(\bar{H}) = 0 \), будет бесселева функция \(J_m(x_m r/R) \) \(x_m \) - корни \(J_m(x) \). Отсюда находим выражение для собственной частоты \(\omega = -m v_0 \pm \sqrt{m v_0^2 \pm 4 m v_0^2 c^2} \). Следовательно, интеграл растет с \(m \), убывает с \(n \) и пропорционален \(v_0^2 \).

2. Устойчивость вращающегося аксиально-симметрического слоя. Пусть в стационарном состоянии имеется вращающийся слой газа, ограниченный двух аксиально-симметричными поверхностями произвольной формы и находящийся под действием гравитационной силы \(V \Phi \). В пренебрежении диссипативными процессами возмущенное движение газа описывается системой (1.1). Примем ось вращения за ось \(z \) цилиндрической системы координат \(r, \phi, z \) и введем ортогональные криволинейные координаты \(s, \eta, \zeta \), где расстояния \(n \) и \(s \) отчитываются по нормали к слою и в сечении меридианальной плоскостью. При этом

\[
dn = ds \cos \alpha - dr \sin \alpha, \quad ds = ds \cos \alpha + dr \sin \alpha, \quad dr = ds^2 + r^2 d\eta^2 + dn^2
\]

(\(\alpha \) — угол между единичными векторами \(e_z \) и \(e_r \), так что \(dr/ds = \cos \alpha \)). Если в исходном стационарном состоянии скорость имеет только одну составляющую \(v_0(x) \) и удовлетворяет уравнению равновесия сил

\[
\frac{\partial p}{\partial s} + \rho \Phi / ds = (\rho/r) v_0^2 \cos \alpha,
\]

то при условии, что возмущенные скорости не имеют нормальной компоненты \(v = (v_r, v_\phi) \), а гравитационное поле не возмущается, линеаризованные уравнения движения для возмущений \(\tilde{v}_r, \tilde{v}_\phi, \tilde{v}_\zeta, \tilde{v}_r, \tilde{v}_\phi, \tilde{v}_\zeta \) сводятся к одному уравнению для \(f = r v_\phi \)

\[
(p f')' - \left\{ \frac{p}{r} - \frac{\tilde{v}_\phi \cos \alpha}{s} \left(\frac{p'}{y} - \rho f' \right) + \frac{r p'}{y^2} \left(\frac{\rho'}{y} - \rho f' \right) + \frac{1}{y} \left(\frac{r^2 y^2 \omega^2 f'}{r^2 y^2} \right) \right\} = 0.
\]

Здесь \(y = \omega/m + \nu_0 \); \(s = m^2 (c^2 - r^2 y^2) \); \(\nu_0 = v_0/r \); \(I = rv_\phi \). При \(y \to 0 \) из (2.2) следует

\[
(p f')' - \left(\frac{m^2 \rho}{r} + \frac{p'}{y} \frac{r^2 c^2 - \rho^2}{y^2} \right) f = 0.
\]

Отсюда видно, что при выполнении локального условия

\[
p'(p'/c^2 - \rho') > 0
\]

развивается конвективная неустойчивость, приводящая к образованию вихревой структуры внутри слоя вращающегося газа. Физический смысл неустойчивости заключается во всплывании энтропии в поле силы \(F = rv_\phi \cos \alpha e_z, - \Phi (s) e_z \) при \(FV(p'/\eta) > 0 \).
Для тонкого сферического слоя, в котором гравитационная сила направлена к центру сферы (\(\alpha = \pi/2 - \theta, s = R\theta, r = R \sin \theta, \theta - \) широтный угол), уравнение (2.1) записывается в виде

\[
p' = \rho \omega^2 \varphi \theta = \rho \omega^2 R^2 \sin \theta \cos \theta.
\]

Это уравнение можно проинтегрировать, принимая зависимость \(p \sim \rho^7\) (см. приложение). Полагая \(\Omega = \text{const}, p = (k/m)T\), находим широтное распределение температуры в атмосфере планеты

\[
T(\theta) = T(\pi/4) - \frac{1 - 1/\gamma_0}{4\epsilon/m} \Omega^2 R^2 \cos 2\theta,
\]

которое оказывается зависящим от скорости вращения атмосферы на экваторе \(\Omega R\), от эффективной молекулярной массы \(m\) и показателя политропы \(\gamma_0\). Параметры \(\gamma_0\) и \(m\) можно исключить, если известен закон понижения температуры с высотой. Действительно, из уравнения равновесия по высоте на экваторе \(\Omega^2 R = g + (1 - 1/\gamma_0)^{-1} kT/m\) при \(\Omega^2 R \ll g\) следует

\[
\Delta T = \Omega^2 R^2 T'/g.
\]

Полученные формулы применимы в тропосфере, где плотность газа еще достаточно велика, для Земли \((m = 22 m_p, g = 9.8 \text{ m/s}^2)\) и для Венеры \((m = 42 m_p, g = 8.9 \text{ m/s}^2)\) первая формула (2.6а) дает правильные экспериментально измеренные градиенты температур \(^8\) при оцифрованном параметре \(\gamma_0 = 1.235\), описывающем «стандартную атмосферу» Земли. Используя это значение \(\gamma_0\) и подставляя в (2.6а) характеристики вращающихся атмосфер различных планет, получим \(T' = 8; 6.5; 3.5; 4.8 \text{ град/км и } -\Delta T = 3; 35; 15; 200^0\) соответственно для Венеры, Земли, Марса, Юпитера. Отсюда видно, что среднее широтное распределение температуры в тропосфере Земли удовлетворительно описывается второй формулой (2.6а). Аналогом большой перепад температуры \(T(\theta)\) на Юпитере обусловлен большой скоростью его вращения.

Необходимый критерий устойчивости вращающейся сферической атмосферы, согласно (2.4), \(v^2 \left[\varphi \cos \theta v^2 / c^2 - p' / \rho\right] < 0\) совпадает с условием отсутствия конвекции в поле центробежной силы. Полагая \(p \sim \rho^7\), \(v_0 = \Omega R \sin \theta\) и произведи замену аргумента \(\theta\) на \(x = \cos \theta\), представим уравнение (2.3) как

\[
\frac{d}{dx} \left[\rho (1 - x^2) \frac{df}{dx} \right] - \left\{ \frac{m\gamma_0}{1 - x^2} + \frac{\rho \Omega^2 R^2}{y^2} \left(1 - \frac{y}{v_0}\right) f\right\} = 0.
\]

Применяя для оценки интеграла вариационный метод и используя в качестве пробных функций полиномы Лежандра \(P_n^m(x)\), в пренебрежении изменением \(\rho\) и \(\Omega\) найдем

\[
\omega = m\Omega \pm i \sqrt{\frac{1 - y/v_0}{n(n + 1)} \frac{m\rho \Omega^2 R^2}{c} \left(1 - v_0^2 / v^2\right) \left(1 - \frac{y}{v_0}\right) f}.
\]

Таким образом, интеграл развития неустойчивости \(\delta \sim \sqrt{1 - y/v_0}\) рассчитывается с номером азимутальной моды \(m\), уменьшаются с номером широтной моды \(n\) и пропорционален квадрату угловой скорости вращения атмосферы планеты \(\Omega\).

Для тонкого параболического слоя в поле силы тяжести \(V\Phi = g e_z\) уравнение (2.1) имеет вид \(p' / \rho = rv_0^2 \cos \alpha - g \sin \alpha\), а (2.2) для несжимаемой жидкости \((c^2 = \infty)\) дает

\[
(\rho r f')' - \left\{ \frac{m v_0^2}{r} \frac{2 x v_0^2}{y} (\rho \cos \alpha) + \frac{\rho v_0^2 \cos \alpha}{y^2} \left(1 - \frac{2 \tan \alpha}{v_0}\right) f\right\} = 0.
\]

Пусть уравнение параболического слоя \(z = x_0 y^2\), тогда \(v_0 = 2x_0 y\). При постоянной угловой скорости \((v_0 = \text{const})\) поверхности постоянного
давления \((p = \text{const})\) лежат на параболоидах \(z = \chi x^2 + \text{const}\), где \(\chi = \sqrt{g/2}g\), отсюда \(g \tan \alpha / z = \chi_0 / \alpha\). Пренебрегая величинами \(\sim \alpha^2\), получим
\[
(\rho f)' = \frac{m_p \rho}{r} + \rho' \left[\frac{2v_e}{y} - \frac{v_x^2}{y^2} \left(1 - \frac{\chi_0}{x} \right) \right], \quad f = 0
\]
(\(\chi_0 / \alpha = \text{const}, \quad y = \text{const}\)).
Если свободная поверхность \(s = s_0\) удерживается в исходном стационарном состоянии атмосферным давлением газа с плотностью \(\rho_e \ll \rho\), то (2.6a) и граничное условие при \(s = s_x\)
\[
r \frac{j}{f} = \frac{2v_e}{y} - \left(1 - \frac{\chi_0}{x} \right) \frac{v_x^2}{y^2}
\]
удовлетворяются функцией \(j \sim s^m\) при произвольной зависимости \(\rho(s)\), что приводит к дисперсионному соотношению
\[
\omega/v_e = 1 - m \pm V \sqrt{1 - m (1 - \chi_0 / \alpha)}.
\]
При \(\chi > \chi_0\), когда угловая скорость вращения \(\omega\) превышает \(V g / \alpha r\), развивается неустойчивость с инкринментом, растущим с номером азимутальной моды \(m\).
Аналогичная неустойчивость азимутальных возмущений вращающегося плазменного цилиндра, удерживаемого в равновесии магнитным полем, рассматривалась в [8–10]. Уравнения для соответствующей МГД задачи получаются из (2.6a)–(2.8), если положить \(\chi_0 = 0\). Рассмотренная здесь в грубой модели параболического слоя постоянной толщины «граничная» неустойчивость может привести к возникновению системы вихрей, наблюдавшихся в описании [4].
Для оценки стабилизирующего действия вязкости рассмотрим неждущее вращение жидкости внутри квадрата \(0 < x < l, \quad 0 < \chi < l\), описываемое функцией \(\Psi = A \cos \pi x / l \cdot \cos \pi \chi / l\). Из уравнения \(\partial \psi / \partial t = \nabla \psi \cdot \nabla \psi (\psi = \text{динамический коэффициент вязкости})\) следует, что декремент затухания \(\delta = \pi^2 / L^2\). Полагая \(\delta = R \Omega^2 / l, \quad R \sim l\), получим, что стабилизация становится существенной, когда \(\delta > \delta\), т. е. \(\Lambda = \Omega^2 / \chi_0 c < \pi^2\). Безразмерное число \(\Lambda\) равно произведению чисел Маха \(M\) и Рейнольдса \(Re\). В частности, для воды из полученной оценки вытекает, что для развития неустойчивости требуется \(2n \Omega > 70 \Omega^2 / l^2\). Следует, однако, иметь в виду, что упомянутые факторы (надkritичность и пр.) могут привести к увеличению необходимой для развития неустойчивости \(\Omega\).
3. Стационарные вихри во вращающемся газе. Проблема существования стационарных вихрей представляет большой интерес для широкого класса задач газодинамики. В последние времена появился ряд работ, в которых эта проблема рассматривается в связи с построением динамических моделей Большого Красного Пятна Юпитера [5, 6] на основе представлений о его соотношении строении (Солнитон России). В настоящей работе рассматривается решение общей задачи о возможных конфигурациях вихрей и соответствующих им широтных течений в атмосфере вращающегося планеты с гладкой аксиально-симметричной поверхностью на основе теории "нормальных мод". Использование симметрии и приближения "тонкой атмосферы" позволяет значительно упростить задачу и свести ее к решению одного уравнения для \(\Psi\), содержащего произвольную функцию \(F' (\Psi)\). При подходящем выборе \(F' (\Psi)\) это уравнение становится линейным, что приводит к некоторому классу аналитических точных решений.
Систему уравнений газодинамики в отсутствие диссипации во вращающийся с постоянной \(\Omega\) системе координат можно представить в виде
\[
\begin{align*}
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\frac{\mathbf{v} \cdot \nabla}{\rho} - \nabla \left(\mathbf{F} + \frac{\mathbf{v}^2}{2} - \frac{1}{2} \left(\Omega r^2 \right) \right), \\
\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho &= 0, \quad \frac{dS}{dt} = 0.
\end{align*}
\]
Если воспользоваться термодинамическим тождеством \(dW = dp/\rho + TdS\), то для стационарного движения \((\partial / \partial t = 0)\) получим

\[(3.2) \text{ [rot } \mathbf{v} + 2\Omega, \mathbf{v}] = -\nabla \mathcal{F} + TVS, \text{ div } \mathbf{v} = 0,\]

\[\mathcal{F} = W + \Phi + v^2/2 - [\Omega r]^2/2.\]

Поскольку, согласно (3.1), \(\mathbf{v} \cdot \nabla S = 0\), то из (3.2) следует \(\mathbf{v} \cdot \nabla \mathcal{F} = 0\), т. е. функция \(\mathcal{F}\) постоянна вдоль линий тока жидкости.

Введем ортогональную систему координат \(x', dr^2 = g_{kk} dx'^k dx'^k\) так, чтобы линии \(x'^1\) и \(x'^2\) лежали на рассматриваемой поверхности \(\Sigma\), а координата \(x'^3\) отсчитывалась по нормали к этой поверхности. Тогда в предположении, что \(\mathbf{v} = 0\) и глубина слоя жидкости (или газа) на поверхности \(\Sigma\) мала, имеем \(v^3 = 0, \rho \sqrt{g_{ii}} = -\partial \Psi / \partial x^i, \rho \sqrt{g_{ii}} = \partial \Psi / \partial x^i, \text{rot} \mathbf{v} = e_3 \text{div} \nabla \Psi / \rho,\) где \(\rho\) — детерминант метрического тензора \(g_{kk}\). Уравнение баланса тангенциальных сил приводит к уравнению

\[(3.3) \quad \frac{1}{\rho} \text{div} \frac{\nabla \Psi}{\rho} + 2 \frac{\Omega^3}{\rho} = \mathcal{F}'(\Psi) - T\mathcal{S}'(\Psi).\]

Рассматривая далее жидкость как несжимаемую при \(\rho = \text{const}\) и перепредявление \(\Psi\) так, чтобы в нее не входило \(\rho\), находим

\[(3.4) \quad \sqrt{g_{ii}} = -\partial \Psi / \partial x^i, \quad \sqrt{g_{ii}} = \partial \Psi / \partial x^i, \quad \Delta \Psi + 2\Omega e^3 = \mathcal{F}'(\Psi), \quad \mathcal{F}'(\Psi) = p/\rho + \Phi + v^2/2 - [\Omega r]^2/2\]

\((\mathcal{F}(\Psi)\ — \text{ произвольная функция}).\) Эти уравнения становятся точными, если \(\partial / \partial x^i = 0\), например, для цилиндрического диска, когда \(e^3 = e_z\) и \(\partial / \partial z = 0.\) При линейной функции \(\mathcal{F}'(\Psi)\) уравнение для \(\Psi\) линейно. Функция \(\Omega\) является угловой скоростью системы координат, в которой рассматриваемое течение стационарно \((\partial / \partial t = 0)\).

Для вращающегося диска \((x^1 = r, x^2 = \varphi, x^3 = z, e^3 = e_z, \Omega = \Omega e_z)\) уравнение (3.4) следующее:

\[rv_\varphi = -\partial \Psi / \partial r, \quad v_\varphi = \partial \Psi / \partial r,
\]

\[1 - \frac{1}{r} \frac{\partial}{\partial r} \frac{\partial \Psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \varphi^2} = \mathcal{F}'(\Psi) - 2\Omega, \quad \mathcal{F}'(\Psi) = p/\rho + \Phi + v^2/2 - \frac{\Omega^2}{2}\]

При линейной функции \(\mathcal{F}'(\Psi) = A + B\Psi\) имеем

\[(3.5) \quad \Delta \Psi - B\Psi = A - 2\Omega.\]

Решения уравнения (3.5) ищем в виде \(\Psi = F(r) + f(r) \cos m\varphi\), что приводит к системе

\[\frac{1}{r} \frac{d}{dr} r \frac{d}{dr} - BF = A - 2\Omega, \quad \frac{1}{r} \frac{d}{dr} r \frac{d}{dr} - \left(\frac{m^2}{r^2} + B\right) = 0.\]

Если определить \(B\) из граничного условия \(f(R) = 0,\) то \(B = -k^2 = -x_{mn}^2/R^2\) \((x_{mn} — \text{корни бесселевой функции } J_m(x).)\) В результате находим ограниченное при \(r < R\) решение, выражаемое через бесселевы функции, \(\Psi = (A - 2\Omega)/k^2 + aJ_0(kr) + \lambda J_m(kr) \cos m\varphi,\) где \(a\) и \(\lambda — \text{произвольные постоянные, характеризующие амплитуды-'шпиротных' течений и вихрей. В рассматриваемом случае решение по вращающейся системе координат отличается от решения в неподвижной системе [8] только добавлением константы к } \Psi.\)

Для вращающейся сферы в сферических координатах \(x^1 = \theta, x^2 = \varphi, x^3 = r, e^3 = e_r\) при \(r \approx R\) имеем \(v_\theta = \partial \Psi / \partial \theta, \sin \varphi v_\varphi = -\partial \Psi / \partial \varphi.\)

\[(3.6) \quad \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial \Psi}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2 \Psi}{\partial \varphi^2} + 2\Omega \cos \theta = \mathcal{F}'(\Psi).\]

Для получения картины распределения стационарных вихрей на поверхности сферы следует решить уравнение (3.6). Некоторый класс аналитических точных решений (3.6) можно получить при линейной функции \(\mathcal{F}'(\Psi) = A + B\Psi.\) При этом

\[(3.7) \quad \Psi = F(\theta) + f(\theta) \cos m\varphi.\]
Здесь F и f — решения системы уравнений

$$(3.8) \quad \frac{d}{dx} (1 - x^2) \frac{dF}{dx} - B F = A - 2\Omega R x, \quad \frac{d}{dx} (1 - x^2) \frac{df}{dx} - \left(\frac{m^2}{1 - x^2} + B \right) f = 0,$$

а $x = \cos \theta$. Функция $F(\theta)$ описывает широтные течения, в то время как $f(\theta)$ пропорциональна угловой скорости вихря в его центре, т. е. в азимутальной осевой точке семейства линий тока $\Psi = \text{const}$. Решения системы (3.8), существенно зависящие от q и являющиеся непрерывными и однозначными, существуют, когда $B = -n(n+1)$, $n = 1, 2, 3, \ldots$

При $n = 1$ решение первого уравнения оказывается сингулярным, и, следовательно, регулярные решения на всех поверхностях $\Omega R = \text{const}$, можно получить только для $n \geq 2$. Тогда

$$(3.9) \quad \Psi = \frac{A}{n(n+1)} + \frac{2\Omega R \cos \theta}{2 - n(n+1)} + a P_n(\cos \theta) + \lambda P_n^m(\cos \theta) \cos m \varphi,$$

где P_n и P_n^m — полиномы и присоединенные функции Лежандра; a и λ — произвольные постоянные, определяющие соответственно амплитуды зональных течений и вихрей. В отличие от плоского диска здесь появился член $\sim \cos \theta$ с коэффициентом, зависящим от ΩR и n.

Пусть центр вихря расположен в точке $q = q_0$, $\theta = \theta_0$, тогда в окрестности q_0, θ_0 $\Psi = \Psi(\theta - \theta_0, \varphi)$ (и $\eta = \eta_0$ — азимутальная скорость вихря). Пусть $\varphi = \varphi_0$, $\theta = \theta_0 - \delta \theta$. Отсюда $\varphi = \varphi_0 + \delta \varphi$. Отсюда

$$(3.9) \quad \Psi = \frac{A}{n(n+1)} + \frac{2\Omega R \cos \theta}{2 - n(n+1)} + a P_n(\cos \theta) + \lambda P_n^m(\cos \theta) \cos m \varphi.$$

Отсюда угловая скорость вихря в окрестности его оси $v_\ast = 2\pi/T = 2\eta_0/R$ или, поскольку $2k \sin^2 \theta = \partial^2 \Psi/\partial \varphi^2$,

$$(3.10) \quad v_\ast = -\frac{1}{R} \frac{m^2}{\sin \theta} \lambda P_n^m(\cos \theta) \cos m \varphi.$$

Здесь u и q определены на $\Omega R = \text{const}$ и $\eta = \text{const}$, где $\eta = \eta_0$ и $\theta = \theta_0$ и его азимутальной под. Используя определение особой точки $\partial \Psi/\partial \varphi = \partial \Psi/\partial \theta = 0$, получим два уравнения для вихрей, расположенных на азимутах $\sin \varphi = 0$:

$$(3.11) \quad a P_n' + \lambda (P_n^m)' \cos m \varphi = \frac{2\Omega R \sin \theta}{2 - n(n+1)}.$$

$$(3.11) \quad a P_n'' + \lambda \left[(P_n^m)'' + m^2 \eta^2 \eta^2 P_n^m \sin \theta \right] \cos m \varphi = \frac{2\Omega R \cos \theta}{2 - n(n+1)}.$$

(штрихи означают производные по θ и опущены индексы n). Решение системы (3.11) имеет вид

$$(3.11) \quad \lambda \cos m \varphi = \frac{2\Omega R D}{2 - n(n+1)} \left(P_n' \cos \theta - P_n'' \sin \theta \right),$$

$$a = \frac{2\Omega R D}{2 - n(n+1)} \left(P_n'' \cos \theta - P_n' \sin \theta \right),$$

где $D = \left[(P_n^m)' + m^2 \eta^2 P_n^m / \sin \theta \right] P_n - (P_n^m)' P_n^m$. При резонансных значениях θ и η, когда $D \to 0$, и α стремится к бесконечности.

Представляется интересным случай $(P_n^m)' = 0$, когда $v_\ast = \partial \Psi/\partial \theta$ обращается в нуль при $\theta = \theta_0$ по отдельности для широтных течений и для...
вихря. При этом

$$(3.12) \quad \lambda \cos m \varphi = \frac{2\Omega R}{2 - n(n + 1)} \left[\cos \vartheta - \sin \vartheta \frac{p_n'/p_n'}{p_n'/\sin^2 \vartheta} \right] = \frac{2\Omega R \sin \vartheta}{2 - n(n + 1)} \frac{1}{p_n'}.$$

Здесь при резонансе $\lambda \to \infty$, а a остается конечным. Следует, однако, иметь в виду, что большие λ, отвечающие слишком большим амплитудам вихрей, выпадают из области применимости рассматриваемого приближения $v_\varphi = 0$.

При наличии «фона» широтных течений с узлами $v_\varphi(0)$ местом образования вихрей будут, по-видимому, узлы фона [6], так как вихри могут существовать там сколь угодно малой амплитудой (при $\vartheta \to \infty$). В то время как в отсутствие такого фона вихри могут зарождаться в любой точке сферы и на нерассмотренных вихрях λ будет расти и соответствующий фон a, который составляет с вихрем единую «собственную функцию».

Если считать, что вихри образуются вместе со соответствующими широтными течениями, то скорость вращения планеты можно получить из условия $a \to 0$, $\lambda \to 0$, т. е. согласно (3.9) $v_\varphi = -2\Omega R \sin \vartheta /[2 - n(n + 1)]$, что отвечает вращательному вращению с угловой частотой $\Omega_0 = 2\Omega R / [2 - n(n + 1)]$ во вращающейся системе координат. Отсюда относительная угловая скорость центра вихрей и планет — $\Omega_0 = 2\Omega R / [2 - n(n + 1)] < 0$ ($n \geq 2$). Итак, азимутально-несимметричные решения $B_0 = -n(n + 1)$ в пределе $a \to 0$, $\lambda \to 0$ содержат стационарную конфигурацию, вращающуюся как целое с угловой частотой $-\Omega_0$. Симметричное решение $B_0 = 0$, $n = 0$ описывает невращающуюся планету с $\Omega_0 = -\Omega$.

Когда $(P_n^m)_0 = 0$, при использовании второго уравнения (3.8) для v_φ и переменной части функции потока Ψ получим

$$(3.13) \quad v_\varphi = \frac{2\Omega R}{2 - n(n + 1)} \frac{\cos \vartheta - \sin \vartheta p_n'/p_n'}{\sin^2 \vartheta} \left(\theta = \theta_0 \right);$$

$$(3.14) \quad \Psi = \frac{2\Omega R}{2 - n(n + 1)} \left\{ \cos \vartheta + \frac{\sin \vartheta}{p_n'} \right\} p_n' - \frac{\cos \vartheta}{n(n + 1) - n^2(1 + \eta^2)\sin^2 \theta_0 \left(P_n^m \right)_0} \cos m \varphi \right\}.)$$

При $m = 1$ $P_n^m = -p_n'$, а следовательно, в рассматриваемом «резонансном» случае $(P_n^m)_0 = 0$ и формулы (3.13), (3.14) записуются в виде

$$(3.15) \quad v_\varphi = \frac{2\Omega R}{2 - n(n + 1)} \frac{\cos \vartheta}{n(n + 1) \sin^2 \vartheta - 1 - \eta^2} \left(\theta = \theta_0 \right);$$

$$(3.16) \quad \Psi = \frac{2\Omega R}{2 - n(n + 1)} \left\{ \cos \vartheta + \frac{\sin \vartheta}{p_n'} \right\} p_n' - \frac{\cos \vartheta}{n(n + 1) - (1 - \eta^2)\sin^2 \theta_0} \left(P_n^m \right)_0 \cos \varphi \right\}.)$$

Если потребовать, чтобы хотя одна из круговых линий тока совпадала с экватором, то $n = 2, 4, 6, \ldots$ Тогда картины течений в северном и южном полушариях различны, особые точки расположены в узлах $P_n^m(0)$ при $q = 0$ и π, а эллиптического в этих точках связаны соотношением $\eta^2_0 + \eta^2_0 = 2n(n + 1) \sin^2 \theta_0 - 2$. Если обе точки эллиптические (вихри), то сепаратрисный угол, разделяющий два семейства вихрей, вращающихся в противоположные стороны, можно оценить из условия $\Psi' = 0$ при $\vartheta = \vartheta_0$, откуда $\delta_{v_\varphi}/\delta \vartheta = 0$ для $\theta = \pi/2$, которое выполняется при $n = 3, 5, 7, \ldots$, приводит к симметричным картинам течений в северном и южном полушариях.
На рис. 1 представлена конфигурация стационарных течений $\Psi = \text{const}$ с вихрями на поверхности вращающейся сферы, построенная по формуле (3.14) для $m = 3, n = 2, \theta_0 = 60^\circ, \eta = 1/\sqrt{3}$ (северное полушарие). Она содержит шесть вихрей, причем малые вихри, ограниченные сепаратрисами с гиперболической точкой, смещённой к полюсу, вращаются в ту же сторону, что и планета, а большие — в противоположную.

На рис. 2 изображены линии тока $\Psi = \text{const}$ для конфигурации (3.16) с $m = 1, n = 2, \theta_0 = 45^\circ, \eta = 1$ (северное полушарие). Здесь имеется один вихрь, вращающийся в сторону, противоположную вращению планеты, с $v_0 = \Omega/\sqrt{3}$ в окрестности своей оси. Вторая эллиптическая особая точка представляет собой смешанный центр зональных течений.

На рис. 3 построены картины течений $\Psi = \text{const}$ (3.16) для $m = 1, n = 4, \theta_0 = 69^\circ, \eta = 1$ в северном (а) и южном (б) полушариях. Расположенный в южном полушарии вихрь по своему местоположению, форме, размерам и направлению вращения (против вращения планеты) похож на Большое Пятно Юпитера. Его угловая скорость вращения в окрестности оси $v_0 = 0,015 \Omega$, а средняя угловая скорость на периферии $v^* \approx 0,07 \Omega$ близка к наблюдаемой в Пятне Юпитера.

На рис. 4 показаны аналогичные рис. 3 картины течений для $m = 1, n = 6, \theta_0 = 76^\circ$. Здесь зональные течения с большим количеством узлов и имеется ограниченный сепаратрисой вихрь в южном полушарии, близкий по форме к Пятну на Юпитере и вращающийся против вращения планеты с $v_0 = 0,0028 \Omega$ в окрестности своей оси и $v^* \approx 0,03 \Omega$ на периферии. Его размеры и средняя скорость вращения приблизительно вдвое меньше, чем в Большом Вихре на Юпитере.
Итак, все показанные на рисунках картины стационарных течений представляют собой весьма узкий класс, ограниченный требованиями линейности функции \(F'(\Psi) \). Существование даже в этом узком классе решений, качественно описывающих такое экзотическое явление, как Большое Юпитерское по-видимому, свидетельствует об адекватности его описания в рамках рассматриваемой теории «нормальных собственных функций».

Приложение. В общем случае система газодинамических уравнений, описывающих стационарное состояние, неполна, и для нахождения однозначного решения необходимо привлечь дополнительные уравнения, для ряда задач недостающие уравнения можно получить, исходя из известных условий устойчивости.

Простейший пример — задача о равновесии плоской атмосферы, когда имеет только одно уравнение

\[(P.1)\]

\[p'(z) = -\rho g\]

для двух неизвестных функций давления \(p \) и плотности \(\rho \). Добавление уравнения состояния идеального газа \(p = (\gamma/m)\rho T \) не изменяет ситуацию, поскольку при этом вводится новая функция — температура \(T \). Для данной задачи представляется естественным использование известного условия конвективной устойчивости, заключающегося в требовании возрастания энтропии с высотой \(\gamma \).

\[(P.2)\]

\[(\rho\rho^{-\gamma})' > 0.\]

Однако условие устойчивости является неравенством, а для нахождения однозначного решения требуется дополнительное уравнение, которое можно получить, воспользовавшись гипотезой Кельвина [11] о реализации равновесия на границе устойчивости. При этом неравенство \((P.2) \) заменяется уравнением \((\rho\rho^{-\gamma}) = 0 \), интегрируя которое приходим к условию постоянства энтропии \(\rho\rho^{-\gamma} = \text{const} \). Более точным описанием структуры атмосферы будет при использовании вместо показателя адабата \(\gamma \) близкого к нему показателя полинтропы \(\gamma_0 \), который, согласно \((P.2) \), меньше \(\gamma \). Тогда в качестве дополнительного уравнения имеем

\[(P.3)\]

\[\rho\rho^{\gamma_0^{\gamma_0}} = \text{const}.\]

Интегрируя систему \((P.1), (P.3)\), находим однозначное решение \(T = \)

\[T_0 = \frac{1 - \frac{1}{\gamma_0^{\gamma_0}}} {k/m} \frac{g^2}{R_0} \frac{\rho}{\rho_0} = \left(\frac{T}{T_0} \right)_{\gamma_0}^{\gamma_0 - 1} \frac{\rho}{\rho_0} = \left(\frac{T}{T_0} \right)_{\gamma_0}^{\gamma_0 - 1} , \]

которое содержит один неизвестный постоянный параметр \(\gamma_0 \).
Полученные теоретические зависимости хорошо описывают измеренные распределения температур и давлений в достаточно плоских нижних слоях атмосфер земли и Венеры при одинаковом параметре $\gamma = 1,235$.

При превышении некоторой высоты z_1 ($z_1 \approx 11$ и 60 км для Земли и Венеры) линейный спад температуры прекращается и сменяется областью постоянной температуры $T = T_1 = \text{const}$, где, как это следует из уравнения равновесия (1.1), P и p уменьшаются экспоненциально ($\gamma = 1$): $T = T_1, \frac{P}{p_1} = \frac{p}{p_1} = \exp \left(-\frac{z - z_1}{p_1/\gamma P_1} \right)$.

Прекращение спада температуры при $z > z_1$ объясняется тем, что атмосфера, находящаяся выше z_1, становится эффективно прозрачной для излучения, так что ее барометрическая толщина $t = p_1/p_1 g = kT_1/mg$ сравнивается с оптической $l = 1/\kappa P_1$, определяющейся средней длиной пробега фотонов на высоте z_1. Отсюда вытекает, что при $z > z_1$ должно выполняться соотношение $p = g/\kappa$ (κ — коэффициент непрозрачности атмосферы [12, 13]).

Приведенное выше рассмотрение имеет достаточно общий характер и применямо также для атмосферы звезд, для которых знание границной температуры T_1 — очень важная характеристика, определяющая их светимость $L = 4\pi R^2 T_1^4$. Запищем формулу для границной температуры в виде $T_1 = A g, A = ml/k$ и предположим, что оптическая длина l обратно пропорциональна эффективной молекулярной массе m, тогда $A = \text{const}$ и $T_1 \sim g$. Она указывает, что $A = 22 \text{ K} \cdot \text{cm}^2/\text{моль}$, соответствующая измеренным значениям $T_1 = -57$ и -75°C для Земли и Венеры, дает также близкий к действительности результат $T_1 = 6000 \text{ K}$ для эффективной поверхностной температуры Солнца.

Литература
5. Некрасов В. И. Красное Пятно Юпитера и дрейфовый солитон в плаэме // Письма в ЖЭТФ. — 1981. — Т. 32, вып. 7.

Поступила 24/IV 1986 г.

УДК 532.536

ОБ АСИМПТОТИКЕ ТЕЧЕНИЙ МАЛОВЯЗКОЙ ЖИДКОСТИ ПРИ ДЕЙСТВИИ КАСАТЕЛЬНЫХ НАПРЯЖЕНИЙ НА СВОБОДНОЙ ГРАНИЦЕ

В. А. Батыцев

(Ростов-на-Дону)

При больших числах Рейнольдса построены формальные асимптотические разложения решения плоской нелинейной стационарной задачи со свободной границей в предположении, что поверхностные касательные напряжения заданы и имеют ко-