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Abstract—One of the main objectives of geoelectric prospecting is mapping of the consolidated low-conductivity basement geometry. 
To resolve the issue, it will be equally important to delineate local structures at the bottom of the sedimentary complex and to estimate 
the misinterpretation of results due to the presence of areas with nonuniform conductivity in the stratified geologic cross section. Another 
relevant objective of EM sounding is to resolve the problem of delineation of anticlinal oil and gas traps. The horizontally layered model 
with a local inclusion of 3D abnormal areas is certain to fit for the above-mentioned objectives. The study is concerned with the technique 
of nonstationary EM sounding. When applied for the solution of structural problems, this technique considers the uniform distribution of 
fields within relatively large volume units of the space explored. Consequently, it results in the more efficient application of the perturbation 
technique (Born approximation) for the solution of the forward electrodynamics problem. The study presents the findings of 3D tomographic 
inversion with the use of synthetic and physical modeling data. They definitely allow us to acknowledge that the proposed mathematical 
apparatus for 3D inversion based on Born linearization of the forward problem has proved to be quite applicable.
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Introduction

Mapping of the consolidated low-conductivity basement 
geometry is considered to be one of the main geoelectric 
survey objectives. In this instance, the objective of local 
structures delineation at the bottom of the sedimentary com-
plex and the task to estimate misinterpretation results will be 
both advantageous due to the presence of areas with nonuni-
form conductivity in the layered geological profile. The 
horizontally layered model with local inclusion of three-di-
mensional abnormal areas tends to fit for the above-men-
tioned objectives. Another important objective set by EM 
sounding will be the solution of the problem connected with 
delineation of anticlinal oil and gas traps. This problem also 
suggests the setting in the form of the combined one-dimen-
sional model of a host medium and spatial inclusion with 
conductivity distribution which differs from the reference 
one.

Mathematical modeling of nonstationary fields in media 
with a composite geological structure appears to be a re-
source-consuming task although efficient finite difference 
algorithms and hybrid schemes are being applied. Approxi-
mated mathematical modeling plays an important role under 
such conditions. In most cases, physically adequate substitu-
tion of one model for another will considerably simplify 
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modeling algorithms. In any case, the task of fast computa-
tion provision is still recognized to be the most-searched, 
because forward problems solution has proved to be a basis 
of the inverse geoelectrical problem-solving technique so 
far. Once based on the procedure of 3D forward problem 
solution for appropriately defined fitting of the parameter-
ized three-dimensional heterogeneity, a common approach 
can hardly meet electrical surveyors’ requirements because 
of the process slowness.

The technique of nonstationary EM sounding is discussed 
in this paper. This technique considers uniform distribution 
of fields within relatively large volume elements of the space 
explored. For this reason, the use of the perturbation tech-
nique and the Born approximation, in particular (Born, 
1933) will be more efficient for the solution of the forward 
electrodynamics problem.

Perturbation techniques have found a use for computa-
tional modeling of electromagnetic fields in two- and three-
dimensional media (Obukhov, 1967; Davydov, 1968; Kauf
man and Tabarovsky, 1970а,b; Obukhov and Butkovskaya, 
1974; Berdichevsky and Zhdanov, 1984; Tabarovsky et al., 
1988; Epov and Antonov, 1999). Moreover, the Born ap-
proximation is widely applied for experimental data inter-
pretation, that provides a linearization approach to the solu-
tion of inverse problems (Bleistein and Gray, 1985; Habashy 
et al., 1986; Oristaglio, 1989; Zhdanov, 2007). Further, the 
linearization approach to the solution of the 3D inverse 
problem could be implemented as part of a tomographic 
technology that is taken into consideration under study. The 
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authors have proposed the approach of transient electromag-
netic (TEM) sounding long ago (Mogilatov, 1999; Mogila-
tov et al., 1999; Mogilatov and Epov, 2000), but currently, 
we are able to demonstrate concrete research results.

Born approximation

One of the most functional approaches to computational 
modeling of electromagnetic fields is based on linearization 
of integral equations, which appear to be a formal record of 
the exact solution. Forward problem linearization is accom-
plished by means of the perturbation theory apparatus. In this 
case, we limit ourselves to null and the first decomposition 
of original Fredholm integral equation of the second kind 
into Neumann series in the solution neighborhood for the 
one-dimensional reference medium. This approach is usually 
known as the Born approximation. Initially, the Born ap-
proximation was developed to describe mechanical photon 
dissipation (Born, 1933). Since that time, the concept of the 
technique has found a use for the development of approxi-
mated solutions in different fields of science. In particular, 
this technique is also applied to solve the problems of induc-
tion and electric logging, and TEM sounding, and others. 
Let’s consider in brief this procedure.

Suppose that there exists a perturbation factor in relation 
to the base (reference) model in a certain medium volume V 
( , , )x y z  . We also admit that this perturbation factor depends 
linearly on the electric field, e.g., perturbation or disturbance 
of conductivity. The source having been cut off, Maxwell 
first equation will be as follows in this domain:

rot ( ) ( , , )H E E� � � � �� �0 z x y z .	 (1)

On the condition that we represent the electromagnetic 
field in terms of superposition of normal (E0 and H0) and 
abnormal (e and h) fields, and also admit that summand—
� �� e  is smaller in comparison with other summands of the 
left-hand member of the first equation (1), we will get the 
equation system, where the first equation is:

roth e E� � �� �
0

0,	 (2)

i.e., a one-dimensional problem with distributed extrinsic 
current is being considered. The solution of this problem is 
known and characterized by fast numeric implementation.

Let’s develop such an algorithm for near-field TEM 
sounding. Thus, the source is a current loop with current—I, 
and radius—a, and with a central point—S x y z� � �0 0 0

, ,  . 
In such a case, the electric field has the only component—Eφ 
in the one-dimensional stratified medium, so the solution 
(until now in the frequency domain) will be as follows:

E x y z S I e x y z S� � �0 ( , , , , ) ( , , , , ).        � � 	 (3)

The perturbed area, which is taken in the form of a paral-
lelepiped, could be represented by the sum total of electric 
dipoles with the moments: dI E dxdydz� � � �� �

0 ,
 
where 

Eϕ
0  is the normal (not disturbed) field, which is used as a 

substitute for the complete field. In such a case, we could 
also use the condition that the problem is symmetric in rela-
tion to current loop sources and a receiver. If we consider 
that perturbation ∆σ in the domain V to have little effect on 
the TEM process, we’ll obtain the solution of the one-di-
mensional problem (2) and, consequently, we will get 3D 
full-waveform data on the receiving loop with a central 
point—R x y z� � �, , ,

 
which will be represented as follows: 
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V

( , , ) ( , , ) ( , , , , ) ( , , , , )� � � � � �� � � � � ��0 ��
E R S E R S I e x y z S e x y z R dxdydz

V

( , , ) ( , , ) ( , , , , ) ( , , , , )� � � � � �� � � � � ��0 �� .	 (4)

Thus, equations (3) и (4) will be given adequate consid-
eration. It is known that (for example (Mogilatov, 2014)):

E r z i I a J r J a X z d� � �� � � � � � �0

1 1

0

, , ( , , )� � � � � � � � � �
�

� ,  (5)

where J1 denotes the Bessel function,  r x x y y� � � �( ) ( ) ,0

2

0

2  
a, the supply loop radius; X, the solution of one-dimension-
al problem in the spatial harmonics domain; i � �1 , the 
imaginary unit. Now the abnormal field, instead of (4), will 
be represented as follows:
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where
 
b is the receiving loop radius; x y z jj j j, , , ,� � �� �1 2  

is the domain boundaries of the abnormal body (parallelepi-
ped); ϕ, the geometric factor taking into account mutual po-
sition of the source, the receiver and the body (angular coef-
ficient). In this case, we used the properties of function X as 
the solution of the boundary value problem (Mogilatov, 
2014). Z should be also considered when λ = λ′.

The solution is viable in the time domain, in case IFT is 
applied the equations (4)–(6).
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where ω, the cyclic frequency; t, the time.
It should be noted that perturbation ∆σ of the equations 

(4) or (6) could be left in the frequency domain or enclosed 
in the time domain. In the first case, it will be possible to use 
frequency-dependent disturbance (by the Cole–Cole formu-
la), and therefore we will expand this solution on polarized 
3D inclusion.

The MAG3D procedure, which allows implementation of 
the above-described algorithm, was tested by comparison 
with the exact calculation results obtained by the finite ele-
ment vector method (FEVM) (Persova et al., 2010, 2011). 
Figure 1 presents the drawing and the log with regard to one 
of the applied models. The host medium is double-layered 
(r1 = 100 Ohm ⋅ m, h1 = 1000 m, r2 = 1000 Ohm ⋅ m). The 
body along Х axis: from –1000 to 1000 m, along Y axis: 

from –1000 to 500 m, along Z axis: from –600 to –300m; 
r  = 50 Ohm  ⋅ m (conducting). The loop has the radius of 
564 m, the central point (0, 1000 m), and current of 1 А.

Thus, we represent for comparison TEM curves (dBz/dt) 
at the point of (1000, –1000) (indicated with an arrow in 
Fig. 1). The resultant fields calculated by FEVM and with 
the use of the Born approximation algorithm practically 
coincide with each other (Fig. 1). The result is obviously 
convincing. However, the TEM curve for the host medium 
(normal signal) is also shown in Fig. 1. It is seen that non-
uniformity has a minor effect. For this reason, the Born ap-
proximation works quite well. Comparison of abnormal 
fields proves to be more illustrative. The comparison is pre-
sented in Fig. 2, and it serves as a confirmation of a satisfac-
tory solution accuracy obtained by means of the Born ap-
proximation. With regard to the model given in Fig. 1, 
calculations carried out for other measuring points and for a 
different source position prove a good fit of the Born ap-
proximation with calculations done by FEVM. Anyway, it’s 
not a simple answer to the question of how to estimate test-
ing results of the program which uses intentionally approxi-
mated algorithm. We consider the obtained result to be 
highly satisfactory once the years of work experience ac-
quired when dealing with synthetic and geoelectric survey 
field data are considered. The use of the linearized forward 
problem for the inverse problem solution will result in more 
objective estimation.

Tomographic approach to TEM

The linear solution of the forward problem, which is of-
fered in the equation (4), immediately implies the inverse 
problem solution with the use of linear inversion. Our ap-
proximation means the neglect of certain disturbances inter-
action between each other, but we are able to construct a 
linear system binding both field data and unknown particu-

Fig. 1. The test model and comparison of FEVM and MAG3D calculation results. Normal and resultant fields.

Fig. 2. Comparison of MAG3D and FEVM calculation results. Abnor-
mal field.
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lar perturbation within the range of the spatial elements of 
the explored medium domain. If we consider a distinctive 
approach to the medium description and the ways of inver-
sion results representation, in principle, we will be able to 
make a claim for the tomography approach developed to 
solve the inverse problem. Although the tomographic ap-
proach is appreciated differently with regard to concrete EM 
techniques, it has been generally recognized in the field of 
stationary and quasi-stationary geoelectrical engineering, 
where a physical basement is characterized by Laplace and 
heat transfer equations. Certainly, we are far away from the 
fundamentals of classical X-ray tomography and even from 
seismic tomography equipped with ray-tracing and geomet-
ric optics.

Tomographic inversion is understood to be one of the 
ways of the inverse problem solution. There exists conven-
tional wisdom, according to which tomographic inversion 
should provide fairly immediate results in the form of me-
dium images (3D or cross-sections). It is achieved by apply-
ing common reductions or simplification. It is common 
practice for tomographic inversion to apply approximated 
and linearized solutions of the forward problem. This prob-
lem statement presupposes the use of an efficient linear in-
version apparatus. Approximation (linearization) could be 
followed by simplification of the physical process model. 
Besides the forward problem quality, the following prob-
lems can arise: convenient parameterization of 3D medium 
structure as a set of standard internally uniform elements, 
linear inversion technique, and the problem of representa-
tion and inversion results estimation. All these problems 
could be reasonably resolved in the context of the tomo-
graphic approach, which main principles will be briefly for-
mulated as follows:

(1) the perturbation area is created by a number of primi-
tive elements;

(2) the linearized solution of a multidimensional direct 
problem is constructed in the neighborhood of a simple 
(one-dimensional or even nonuniform) reference model;

(3) inversion is based on reversal of the linear system, 
which correlates experimental data and perturbed geophysi-
cal parameters with regard to the reference medium;

(4) the medium structure is restored by the obtained spa-
tial distribution of parameters (for example, electroconduc-
tivity).

The focal (but not equally significant for the whole ap-
proach) point of the proposed scheme appears to be an effi-
cient solution of the forward problem via approximated 
linearized representation. The data set of experimental obser-
vations obtained under different conditions (registration 
time, position of sources and observation sites) must be cor-
related with corresponding approximated representations. In 
the result, we obtain the system of linear equations to deter-
mine the sum total of piecewise constant conductivity distur-
bances. It will be as follows:
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where E0, denotes a transient signal of the host one-dimen-
sional media; K, the number of standard solid elements (to-
mographic grid cells), into which the investigated medium 
portion was divided; Δσj , conductivity disturbance in the jth 
element relative to the host medium; Gj(ti), the linearized 
representation coefficients (defined above) of the forward 
problem; N, the number of measurements.

Having taken into consideration experimental data er-
rors, we should use a considerable body of evidence, but not 
the greater number of unknowns. It is certainly supposed 

Fig. 3. The model. The layout and the profile.
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that data (measurements) should be independent. Note that 
in case of transient signals use, each signal value deter-
mined at every time moment from each TEM curve will 
introduce its own equation into the system (8). Neverthe-
less, adjacent measurements on the TEM curve can hardly 
differ by informational value. In practice, it’s easy to over-
determine the system (8) formally, but in reality, on physi-
cal grounds, it could be underdetermined. We are quite cer-
tain that the system (8) inversion reflects incorrectness of 
the inverse problem solution. It’s highly unstable, ambigu-
ous, and needs additional regularization.

Under such conditions we have to look for minimizing 
solution. A standard algorithm was used for the system in-
version, it allows finding a common solution for the overde-
termined system of equations, and it is based on the least-
squares method and singular value decomposition 
(Wilkinson and Reinsch, 1971). In this case, the number of 
solutions is limited to the minimum norm that is in accor-
dance with the real distribution of conductivity disturbance, 
which is more or less smooth. A user can choose a solution 
option depending on the number of used singular values.

Numeric experiments description

Synthetic data. We used the available three-dimensional 
calculations in accordance with the FE method carried out 
by M.G. Persova. The medium model is shown in Fig. 3, 
and the image is obtained with the use of GeoPrep software 
elements of graphic interface (M.G. Persova, Yu.G. So-
loveichik).

Nonhomogeneity with the dimensions of 2000 × 1500 × 
300  m and resistivity of 50  Ohm ⋅ m was placed into the 
double-layered geoelectric section. The top of nonhomoge-
neity is situated at a depth of 300 m. One can see that two 
positions of generator loops are used—Т1 и Т2 with a 
564 m radius (in compliance with the 1000 × 1000 m square 
outline), and (0, 0) and (0, 1000) coordinates. The transient 

process is registered from each of them at 35 points. In the 
result, we have the sum total of 70 TEM curves.

Figure 4 presents the example of TEM curves (normal 
and integral) at the point of X = 2000  m, Y = –1000  m. 
These are mathematical curves, which are “long” (166 time 
moments) with redundant inception and late stages, at which 
the nonuniformity effect is missing. The experimental set-
ting drawbacks are thought to be rather a small difference 
between the two source positions and the presence of large 
spans (>4 km), where the signal and the body influence in 
particular are weak. We have left it still unchanged. Based on 
correlation results for the host medium and integral curves, 
we came to the conclusion that the anomalous effect is little 
and tends to be localized in the time domain where the curves 
alternate in signs, that is in the neighborhood of signal zero 
values. This fact implies difficulties of conventional ap-
proaches application with the use of apparent values.

The first stage. The experiment yielded 70 TEM curves 
from two generator loops. The nonhomogeneity position 
(even its presence) is considered to be unknown at the first 

Fig. 4. The example of TEM curves.

Fig. 5. The coarse tomographic grid.



102	 V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107

Fig. 6. The inversion result on the coarse tomographic grid.

Fig. 7. The expanded tomographic grid.
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stage of the experiment. In this case, we suppose that the 
area of sounding tends to be too large—3000 × 3000  m. 
Firstly, we will take a closer look at the 4 × 4 × 2 km 3D 
tomographic grid, which is shown in Fig. 5. Two deep lay-
ers (–1000 < z < –600 and –600 < z < –300 (measured in 
meters)) are investigated. Then, we will determine conduc-
tivity disturbances for the known host medium in 32 cells of 
the tomographic grid.

According to the above-given description, tomographic 
inversion implies the fulfillment of the definite procedures, 
where the first one (grid generation) has been implemented. 
Now with regard to the chosen grid, we should do coeffi-
cients calculations for each element, i.e., to construct a lin-
earized solution for the 3D forward problem. Further, the 

parameters of the host cross-section ought to be determined 
(e.g., through preliminary one-dimensional interpretation). 
Coefficients calculations (in accordance with equations (4)–
(8)) turn out to be the most resource-intensive part of the 
proposed mathematical apparatus. We have to compute and 
store the definable functions—coefficients in the amount 
of— Nx × Ny × Nz × Nt, where Nx, the number of the grid parti-
tions along Х axis; Ny, the number of the grid partitions along 
Y axis; Nz, the number of the grid partitions along Z axis; Nt, 
the number of TEM curves invoked from all the generators 
and receivers being multiplied by the number of timing cy-
cles or tick marks. In this case, we will obtain 4 × 4 × 2 × 70 = 
2240 functions—coefficients, each of them is determined for 
166 timing cycles.

Fig. 8. Another example of tomographic inversion. The model, the grid and the result.
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Therefore, the linear system from 70 × 166 (in our case) 
equations is developed, where the right part is the difference 
between pseudo-experimental and estimated data for the 
normal medium. The system coefficients are once calculated 
and saved; and Nx × Ny × Nz unknowns appear to be conduc-
tivity disturbances (∆σ) in each primitive medium partition 
element.

Linear system solution is carried out by the least-squares 
method and regularization (the least norm). This is a fast 
procedure (using preliminary calculated coefficients calcu-
lations) because it can be repeated through altering inver-
sion parameters (if it is necessary) and/or predetermining 
certain elements as known variables (e.g., relief attributes 
and upper part of the profile).

Figure 6 presents layer-by-layer results of tomographic 
inversion. X and Y coordinates are placed in the cell centers 
of the tomographic grid in the table of Fig. 6.

The figure shows that four elements (cells) of the upper 
layer (–600 < z < –300) are apparently distinguished by resis-
tivity, and in the table they are color-coded. Here the result is 
presented in a 3D graphical format. It should be noted that 
ways and means of visual representation of inversion results 
prove to be the essential part of the tomographic approach.

The second stage, the expanded grid. The first inver-
sion stage enabled us to carry out rough localization of the 
abnormal body, that’s why at the second stage we can gen-
erate more expanded grid in the domain of smaller dimen-
sions (Fig. 7). One layer has been studied in vertical direc-

Fig. 9. The model. The layout and the profile.

Fig. 10. Multiple nonhomogeneity. The inversion of transient signals from the generator loop central position.
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tion; the result of tomographic inversion is represented in a 
graphical format in Fig. 7.

The figure illustrates that the position, the shape of the 
nonhomogeneity and its resistivity have been defined with 
rather high accuracy. The process of abnormal body specifi-
cation could be continued. However, the findings are limit-
ed both to linear approximation accuracy and the accuracy 
of a priori information about the host medium, and to the 
quantity and quality of field data.

More inversion examples. Let’s consider one more ex-
ample of tomographic inversion for the same model and the 
same “field” data. Here we will conduct extensive investiga-
tion of the target horizon in three layers (100, 100, and 
100 m) (Fig. 8).

Up to now we have applied synthetic data supplied by 
M.G. Persova. It was of great interest to deal with calcula-
tions of another 3D modulation program. We used Mo
dem3D program (application designers M.I. Ivanov, 

I.A. Kremer, and V.A. Kateshov), where the finite elements 
vector method (FEVM) was also implemented (Ivanov et 
al., 2007, 2009; Shein et al., 2012; Shein, 2013; Shein et al., 
2014, 2015). To establish control, the same model and the 
set of receivers were used, but the observation system was 
fitted with the third source (Fig. 9).

Complex arrangement/inclusion. Another efficient re-
sult should be given consideration, when the loop with 
complex nonuniformity (Fig. 10) is being recovered accord-
ing to area registration of a transient signal from fixed 
sources. The host medium is the same as in the previous 
examples (1000 m layer, 100 Ohm  ⋅ m resistivity on the 
basement with resistivity of 1000 Ohm ⋅ m). Nonhomogene-
ity covers vertically the range from 300 m to 600 m, resis-
tivity amounts to 30 Ohm ⋅ m. Five generator loops were 
used; the response was registered in 36 points of the survey 
grid with the interval of 400 m (Fig. 10).

Fig. 11. Physical modeling. The photo of the experimental set-up (on the left) and the observation system.

Fig. 12. Inversion results for different parameters of regularization.
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Particular emphasis should be placed on the special fea-
ture of this numerical experiment. We managed to obtain 
synthetic data by means of linearized representation of the 
forward problem (the forward problem involves Born ap-
proximation). Thus, it could be only “internal” validation of 
the inversion algorithm by status. However, we introduced 
disturbances in the form of misalignment of the tomographic 
grid (12 × 12) lines with the nonhomogeneity borders. In 
such a way, quite a new result for methodological guidelines 
was received. It was found out that the inversion with five 
generator loops (in this case, only 9 observation points were 
exploited, so there were 45 curves in all) doesn’t improve 
the inversion with the use of signals from one central source. 
The fact is that the adverse impact will rise with the distance 
increase, but data received in the vicinity of generator loops 
tend to suppress this abnormal effect.

Physical modeling. Finally, attention should be drawn to 
the result, which is certain to be a step forward to tomo-
graphic inversion of real field data. A.K. Zakharkin, a fa-
mous expert in physical modeling, has modeled TEM pro-
cesses on sheets of metal at our request. Then the data and 
the model were recalculated with provision for electrody-
namic similarity on full scale. The model is shown in Fig. 11, 
which also gives an overview of the observation system 
which is made up of responses at 22 points from one of the 
two generator loops: there are 44 TEM curves in all. Tzikl-7 
standard equipment is used for registration. The section con-
sists of two conductive beds, and there is an insert (5.5  × 
5.5  km) of low conductivity in the bottom layer (evenly 
drilled holes in the sheet of metal).

The results shown in Fig. 12 indicate the capability to 
restore position, dimensions and even shape. It should be 
recognized that modeling was not superior in quality. The 
host medium was not consistent (owing to the bending of 
metal strata). Generally speaking, measurement errors defi-
nitely simulated acquisition conditions.

Conclusions

The study of the 3D tomographic inversion procedure 
with the use of physical and mathematical modeling data 
allows us to conclude that the proposed mathematical appa-
ratus for 3D inversion based on the Born linearization of the 
forward problem has proved to be quite applicable. It may 
be said that we are ready to initiate the next step, i.e., field 
data application. The tomographic approach should incorpo-
rate utility software for real-time visual interaction with da-
tabase and graphic tools for results representation. It is be-
yond argument that a correct solution procedure of 3D 
forward problem will ensure fast tomographic inversion. 
The study results were obtained with the involvement of ac-
curate 3D modeling, so we express particular gratitude to the 
application designers M.G. Persova, M.I. Ivanov, and 
I.A.  Kremer. The data of physical modeling obtained by 
A.K. Zakharkin were of great practical value.
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