
АВТОМЕТРИЯ. 2024. Т. 60, № 5 3

АНАЛИЗ И СИНТЕЗ СИГНАЛОВ И ИЗОБРАЖЕНИЙ

УДК 004.93

ТЕОРЕТИКО-ИНФОРМАЦИОННЫЕ ГРАНИЦЫ ТОЧНОСТИ

КЛАССИФИКАЦИИ ОБЪЕКТОВ В ПРОСТРАНСТВАХ

ПРЕДСТАВЛЕНИЙ С ЗАДАННЫМИ РАССТОЯНИЯМИ

c© M. M. Ланге, С. В. Парамонов

Федеральный исследовательский центр «Информатика и управление» РАН,
119333, Москва, ул. Вавилова, 42

E-mail: lange mm@mail.ru, psvpobox@gmail.com

Исследуются нижние границы вероятности ошибки классификации объектов при фиксиро-
ванных значениях количества обрабатываемой информации в пространствах представле-
ний объектов с заданными расстояниями. Границы определяются монотонно убывающими
функциями наименьшей средней взаимной информации между предъявляемыми объектами

и оценками их классов от вероятности ошибки. Обращения таких функций дают нижние
границы вероятности ошибки классификации при фиксированных значениях количества

обрабатываемой информации. Для древовидных и векторных представлений объектов по-
лучены численные реализации указанных границ. Демонстрируется более низкая граница
вероятности ошибки в пространстве векторных представлений объектов по сравнению с

аналогичной границей в пространстве древовидных представлений. Отмечается возмож-
ность понижения границы вероятности ошибки путём комплексирования представлений с

различными метриками.
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Введение. В задаче классификации объектов в заданном пространстве их описаний
(представлений) критерием качества решающих алгоритмов является вероятность ошиб-
ки, которая должна уменьшаться с ростом количества информации, используемой для при-
нятия решения. Для вероятностной модели классификации известна нижняя граница веро-
ятности ошибки как функция средней взаимной информации между множеством объектов

и возможных решений об их классах [1, 2]. Указанная граница построена на основе модели
кодирования сообщений, переданных по каналу с шумом [3], и является модификацией со-
отношения, известного в теории информации как функция «скорость—погрешность» (rate
distortion function) для кодирования дискретных сообщений с допустимой погрешностью
по мере Хэмминга [4]. Существенно, что в соответствии с полученной границей наимень-
шая вероятность ошибки уменьшается с ростом средней взаимной информации между

множеством объектов и классов. Поэтому построенная граница вероятности ошибки явля-
ется теоретическим обоснованием максимизации указанной средней взаимной информации

при отборе признаков [5, 6].
Возможность применения методов теории кодирования источников с заданной по-

грешностью (rate distortion theory) к задачам классификации и анализа данных иссле-
довалась в работах [7–9]. В [7] для модели классификации предлагалось использовать
теоретико-информационное соотношение вероятности ошибки и средней взаимной инфор-
мации. В качестве такого соотношения применялась нижняя граница Шеннона для функ-
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ции «скорость—погрешность» в схеме кодирования дискретных сообщений с погрешно-
стью по мере Хэмминга [4]. Позднее указанная границаШеннона применялась для оценива-
ния наименьшей вероятности ошибки при заданном количестве обрабатываемой информа-
ции в модели сегментации изображений [8]. В [9] исследовался теоретико-информационный
метод оптимизации алгоритмов сегментации изображений на основе критерия минимиза-
ции функционалов информационной избыточности и вариации информации.

Необходимо отметить, что использованная в работах [7, 8] граница Шеннона следует
из границы, полученной в [1, 2], когда средняя взаимная информация между множеством
данных и множеством классов достигает наибольшего значения, определяемого энтропией
множества классов. Поэтому в схемах классификации данных и сегментации изображений
граница Шеннона даёт заниженное значение наименьшей вероятности ошибки, к которому
можно приблизиться с увеличением средней взаимной информации между множествами

данных и классов.

В предлагаемой работе исследуются нижние границы вероятности ошибки классифи-
кации на множествах представлений объектов с заданными расстояниями. Исследование
базируется на модели, в которой условные по классам вероятности объектов в рассматри-
ваемых пространствах представлений определяются экспоненциально убывающими функ-
циями от квадратов расстояний между предъявляемыми объектами и «центральными»

представителями классов. Такая модель обеспечивает свойство компактности объектов
по классам на множествах исследуемых представлений. Для объектов, заданных полуто-
новыми изображениями, рассматриваются древовидные представления наборами эллип-
тических примитивов [1] и представления векторами расстояний [10] от предъявляемых
объектов до представителей классов. При этом расстояния, которые образуют компоненты
векторов, задаются в пространстве древовидных представлений.

Цель данной работы состоит в том, чтобы продемонстрировать различие граничных
значений вероятности ошибки классификации объектов при фиксированном количестве

используемой информации в выбранных пространствах представлений и указать на воз-
можность снижения вероятности ошибки путём объединения представлений с разными

метриками. Эффект повышения точности классификации за счёт объединения различных
представлений для одних и тех же объектов эквивалентен аналогичному эффекту, кото-
рый достигается путём комплексирования данных различной модальности, получаемых
от разных источников [11].

Модель классификации и задача исследования. Рассматривается вероятностная
модель, заданная преобразованиями

Ω

P
XN |Ω
−−−−−→ XN

Q
Ω̂|XN

−−−−−→ Ω̂, (1)

где Ω = {ωi}ci=1 и Ω̂ = {ωj}cj=1 — множества классов и их оценок, c > 2; XN — множе-

ство блоков из N > 1 объектов. Последовательность Ω, XN , Ω̂ удовлетворяет марковскому
свойству, согласно которому элементы каждого множества зависят только от элементов
предыдущего множества, и PXN |Ω, QΩ̂|XN — множества условных по классам распределе-

ний блоков объектов и условных по блокам распределений оценок классов соответственно.
На множестве Ω заданы априорные вероятности классов.

Используя среднюю взаимную информацию IQ
Ω̂ |XN

(XN ; Ω̂) и среднюю вероятность

ошибки EQ
Ω̂ |XN

(XN ; Ω̂) в форме средней погрешности по мере Хэмминга как функциона-
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лы, зависящие от QΩ̂|XN , в работах [1, 2] для значений ε > 0 введена функция «взаимная

информация—вероятность ошибки»

R(ε) = min
N

min
Q

Ω̂ |XN :EQ
Ω̂ |XN

(XN ;Ω̂)6ε
IQ

Ω̂ |XN
(XN ; Ω). (2)

Здесь внутренний минимум берётся по всевозможным распределениям из множества

QΩ̂ |XN при выбранном ε-ограничении вероятности ошибки, а внешний — по длине бло-

ков N . Для функции (2) найдена нижняя граница R (ε) 6 R(ε) в форме

R (ε) = I(Ω;X)− h(ε− εmin)− (ε− εmin) ln (c− 1), (3)

где I(Ω;X) — средняя взаимная информация между Ω и X, h(z) = −z ln z − (1− z) ln (1−
− z). Функция R (ε) монотонно убывает на отрезке εmin 6 ε 6 εmax, R (εmin) = I(Ω;X)
и R (εmax) = 0. Наименьшая вероятность ошибки εmin уменьшается с ростом I(Ω;X), а

εmax = (c − 1)
c

min
i=1

P (ωi), где P (ωi) — априорная вероятность класса ωi ∈ Ω. В случае

I(Ω;X) = H(Ω) имеем εmin = 0 и R (ε) совпадает с границей Шеннона [4]. В силу монотон-
ности границы (3) обратная функция R−1(I) даёт нижнюю границу вероятности ошибки
классификации объектов на множестве X при фиксированных значениях количества ин-
формации I 6 I(Ω;X), а величина 1 − R−1(I) соответствует верхней границе точности
классификации при заданных значениях количества обрабатываемой информации.

Вычисление характеристик I(Ω;X) и εmin в (3) требует знания совместного распреде-
ления на множествах Ω и X. Априорное распределение классов на множестве Ω считается

равномерным с вероятностями 1/c, а условные по классам вероятности объектов опреде-
ляются с использованием расстояний d(x∗,x∗i ) > 0, i = 1, . . . , c, между объектом x ∈ X
и представителем i-го класса xi ∈ X в пространстве представлений X∗ объектов множе-
ства X.

С учётом представлений x∗ ∈ X∗, x∗i ∈ X∗ условные по классам вероятности объектов
имеют вид

PX∗ |Ω(x∗|ωi) =
exp (−w∗i d2(x∗,x∗i ))∑

x∗∈X∗
exp (−w∗i d2(x∗,x∗i ))

, (4)

где w∗i > 0, i = 1, . . . , c — свободные параметры. В качестве представителей классов

выбираются центральные объекты с представлениями

x∗i = arg min
x̂∗∈X∗i

∑
x∗∈X∗i

d2(x∗, x̂∗) (5)

в подмножествах X∗i ⊂ X∗, i = 1, . . . , c.
Условные распределения (4) относительно представителей классов (5) и равномерное

априорное распределение классов позволяют вычислить значения I(Ω;X) = I(Ω;X∗) и
εmin = ε∗min в границе (3). Реализации границы строятся на множествах изображений лиц
Xf и подписей Xs от c = 25 персон, по 40 объектов от каждой персоны. Для указанных

данных рассматриваются множества древовидных представлений лиц Xt
f и подписей Xt

s

наборами эллиптических примитивов [1] и множества представлений Xv
f и Xv

s векторами

расстояний [10] объектов до центральных представителей классов в пространстве древо-
видных представлений. Используемые древовидные представления строятся путём дихо-
томического разбиения объектов на непересекающиеся сегменты и аппроксимации сегмен-
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Рис. 1. Примеры древовидных представлений изображений лица и подписи

тов эллиптическими примитивами, размеры и ориентация которых определяются эллип-
сами рассеяния соответствующих сегментов. Примитивы имеют яркостную окраску, кото-
рая определяется средней яркостью пикселей аппроксимируемых сегментов. Для каждого
объекта строится набор эллиптических примитивов, которые соответствуют вершинам
бинарного дерева глубины L. Уровни дерева с номерами l = 0, . . . , L, содержащие 2l при-
митивов, образуют многоуровневое представление объекта, в котором параметры прими-
тивов задаются в собственных координатах объекта и нормируются относительно пара-
метров примитива нулевого уровня. Указанные операции обеспечивают инвариантность
представлений всех уровней относительно сдвига, поворота, масштаба и уровня яркости
представляемого объекта. Примеры представлений лица и подписи эллиптическими при-
митивами, образующими бинарные деревья глубины L = 8, даны на рис. 1. В таких пред-
ставлениях l-й уровень дерева содержит 2l примитивов, которые соответствуют вершинам
этого уровня.

На множестве древовидных представлений Xt объектов используется расстояние

d(xt, x̂t) = dL(x, x̂), xt ∈ Xt, x̂t ∈ Xt, которое определяется метрикой dL(x, x̂) > 0 с квадра-
тичным ядром для пары объектов x ∈ X, x̂ ∈ X, представленных деревьями глубины L [1].
Множество векторных представлений Xv образовано векторами xv = (xv1, . . . , x

v
c) длины c,

компоненты которых xvi = d(xt,xti), i = 1, . . . , c, заданы расстояниями между древовидным
представлением xt объекта и древовидными представлениями xt

i, i = 1, . . . , c, центральных
объектов вида (5) в соответствующих классах. Для любой пары объектов с векторными
представлениями xv ∈ Xv, x̂v ∈ Xv введено среднеквадратичное расстояние

d(xv, x̂v) =
(1

c

c∑
i=1

(xvi − x̂vi )2
)1/2

,

которое позволяет вычислить на множестве Xv условные по классам вероятности вида (4)
с соответствующими представителями классов вида (5).

Численные реализации границы R (ε). Методика вычисления характеристик
I(Ω;X) и εmin границы вида (3) подробно изложена в работе [2]. Вычисление указанных ха-
рактеристик выполнено с использованием матриц расстояний на множествах древовидных

представлений лиц Xt
f [12] и подписей Xt

s [13]. Матрицы расстояний получены для древо-
видных представлений глубины L = 8, содержащих информативные уровни l = 1, . . . , 8.
Численные реализации границы R (ε) показаны на рис. 2 сплошными кривыми f и s для
изображений лиц и подписей. Пунктирная кривая соответствует границе Шеннона, когда
I(Ω;X) = H(Ω) = ln c = 3,219 и εmin = 0. Кривые на рис. 2, a вычислены на множествах
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Рис. 2. Реализации границы R (ε) на множествах изображений лиц (f) и под-
писей (s) для древовидных представлений: I(Ω; Xt

f ) = 3,110, εtf min = 0,092;

I(Ω; Xt
s) = 3,184, εtsmin = 0,052 (a) и векторных представлений: I(Ω; Xv

f ) = 3,187,
εvf min = 0,060; I(Ω; Xv

s) = 3,215, εvsmin = 0,015 (b)

древовидных представлений Xt
f и Xt

s, кривые на рис. 2, b — на множествах векторных

представленийXv
f иX

v
s . Поскольку для множеств представлений объектов каждой модаль-

ности выполняется соотношение I(Ω;Xv) > I(Ω;Xt), которое обеспечивает εvmin < εtmin,
реализации границы R (ε) в векторном пространстве представлений проходят ближе к
границе Шеннона по сравнению с реализациями границы в пространстве древовидных

представлений.
Увеличение средней взаимной информации между множеством предъявляемых объек-

тов и множеством классов и, как следствие, уменьшение наименьшей вероятности ошиб-
ки могут быть достигнуты комплексированием древовидных и векторных представлений.
Комплексирование предполагает совместное использование метрик, заданных на множе-
ствах представлений Xt и Xv, которые на ансамбле XtXv порождают условные по классам

вероятности объектов

PXtXv |Ω(xt,xv | ωi) =
exp {−(wt

id
2(xt,xti) + wv

i d
2(xv,xv

i ))}∑
(xt,xv)∈XtXv

exp {−(wt
id

2(xt,xti) + wv
i d

2(xv,xv
i ))}

, (6)

где суммирование выполняется по парам представлений всех объектов. Распределения ви-
да (6) совместно с равномерным распределением классов дают среднюю взаимную инфор-
мацию I(Ω;XtXv) и наименьшую вероятность ошибки εmin(XtXv), значения которых для
ансамблей древовидных и векторных представлений лиц и подписей отражены в таблице.
Для сравнения в таблице даны аналогичные характеристики, полученные на множествах
древовидных и векторных представлений объектов от указанных источников. Очевидно,
что для рассматриваемых ансамблей представлений объектов численные реализации гра-
ницы R (ε) вида (3) с характеристиками, приведёнными в таблице, должны быть ближе к
границе Шеннона по сравнению с реализациями нижней границы, показанными на рис. 2,
для отдельных представлений.

Из сопоставления приведённых в таблице характеристик, полученных для древовид-
ных и векторных представлений объектов и для ансамбля этих представлений, следует,
что поведение функции «взаимная информация—вероятность ошибки» обеспечивает на
ансамбле представлений потенциальную возможность повышения точности классифика-
ции при фиксированных значениях количества анализируемой информации. Увеличение



8 АВТОМЕТРИЯ. 2024. Т. 60, № 5

Таб л иц а

Средняя взаимная информация и наименьшая вероятность ошибки

на множествах древовидных и векторных представлений изображений лиц

и подписей, а также на ансамбле этих представлений

Space: X∗ Xt
fXv

f Xt
f Xv

f Xt
sX

v
s Xt

s Xv
s

I(Ω; X∗) 3,189 3,110 3,187 3,217 3,184 3,215
εmin(X∗) 0,057 0,092 0,060 0,005 0,052 0,015

средней взаимной информации между ансамблем и множеством классов и, соответственно,
понижение наименьшей вероятности ошибки могут быть обеспечены увеличением размера

ансамбля. В этом случае в условных по классам вероятностях (6) под знаком экспонент ис-
пользуются взвешенные суммы квадратов расстояний по всем представлениям, входящим
в ансамбль.

Заключение. Исследованы реализации функции «взаимная информация—
вероятность ошибки» на множествах древовидных и векторных представлений класси-
фицируемых данных с известными метриками. Благодаря монотонности такой функции,
её обращение даёт нижнюю границу вероятности ошибки классификации в выбранном

пространстве представлений при фиксированных значениях количества обрабатываемой

информации. Кроме того, отклонение нижней границы вероятности ошибки от единицы
соответствует верхней границе точности классификации объектов в выбранном простран-
стве их описаний. Для множеств изображений лиц и подписей продемонстрирована более
высокая эффективность векторных представлений по сравнению с древовидными. Иссле-
дованные векторные представления данных могут найти применение для высокоточной

классификации изображений с применением решающих алгоритмов на основе опорных

векторов и нейронных сетей. Продемонстрирована возможность понижения нижней

границы вероятности ошибки при фиксированных значениях количества анализируемой

информации путём комплексирования представлений с различными метриками.
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