# УДК 536.46

# СОСТАВ И ХАРАКТЕРИСТИКИ ПЕРВИЧНЫХ ПРОДУКТОВ ГОРЕНИЯ ТОПЛИВ НА ОСНОВЕ БОРА

Цз.-Чж. Лю<sup>1</sup>, Д.-Л. Лян<sup>1</sup>, Цз.-У Сяо<sup>2</sup>, Б.-Х. Чэнь<sup>1</sup>, Я. В. Чжан<sup>1</sup>, Цз.-Х. Чжоу<sup>1</sup>, К.-Ф. Цэнь<sup>1</sup>

<sup>1</sup>Чжэцзянский университет, 310027 Ханчжоу, Китай, jzliu@zju.edu.cn
<sup>2</sup>Институт химических технологий для аэрокосмических приложений, 441003 Сянъян, Китай

Первичные продукты горения топлив на основе бора — это продукты неполного сгорания на выходе из газогенератора твердотопливного ракетного двигателя. Изучение их состава позволяет получить важную информацию о процессе на первой стадии горения, а также лучше понять процессы, протекающие на второй стадии. С помощью лазерного анализатора проведен анализ размеров частиц первичных продуктов горения. Методами дифракции рентгеновских лучей, рентгеновской фотоэлектронной спектроскопии, термогравиметрии и дифференциальной сканирующей калориметрии выполнен качественный анализ состава образца, а затем на основе этих результатов проведен полный количественный анализ состава с применением методов нагрева в трубчатой печи, ионной хроматографии, инфракрасной спектроскопии, хромато-массспектрометрии с индуктивно-связанной плазмой. Кроме того, для анализа микроморфологии и распределения различных компонентов в образце применялась сканирующая электронная микроскопия и энергодисперсионная спектрометрия. Основными компонентами первичных продуктов горения являются B, C, B<sub>m</sub>C<sub>n</sub>, H<sub>3</sub>BO<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, BN, Mg, MgCl<sub>2</sub>, NH<sub>4</sub>Cl. Наибольшее содержание имеют  $B_m C_n$  (22÷24 %), H<sub>3</sub>BO<sub>3</sub> (20 %) и В (16.8 %). Основными горючими компонентами с наибольшим содержанием являются  $B_mC_n$ , B, C (9.8 ÷ 11.8 %). Окислитель NH<sub>4</sub>ClO<sub>4</sub> полностью был израсходован на первой стадии горения, в то время как металлическая добавка (Mg) практически не вступала в реакции. Исследованы микроморфология и распределение B<sub>m</sub>C<sub>n</sub>, H<sub>3</sub>BO<sub>3</sub> (или B<sub>2</sub>O<sub>3</sub>), B, Mg и C в образце. Обнаружено, что некоторые компоненты в образце первичных продуктов горения находятся как в агломерированном состоянии, так и в диспергированном. Крупные частицы в образце состояли преимущественно из В и Mg, а частицы  $B_m C_n$ ,  $H_3 BO_3$ (или B<sub>2</sub>O<sub>3</sub>) и С были более мелкого размера. В целом полнота сгорания топлива на первой стадии горения низка. Таким образом, для улучшения характеристик топлив на основе бора необходимо более детально представлять процессы на второй стадии горения.

Ключевые слова: топлива на основе бора, первичные продукты горения, анализ состава, микроморфология, размер частиц.

DOI 10.15372/FGV20170109

#### ВВЕДЕНИЕ

Твердые составы на основе бора, характеризуемые большими значениями гравиметрического показателя и объемной калорийности [1], представляют интерес для использования их в качестве ракетных топлив. Однако высокие температуры плавления и кипения бора затрудняют его зажигание и полное сгорание [2]. Поэтому, несмотря на превосходные характеристики топлив на основе бора, их практическое применение сопряжено с рядом трудностей [3, 4]. Изучение характеристик горения и путей повышения эффективности использования топлив на основе бора проводилось в работах [5–8].

В твердотопливном ракетном двигателе газогенератор и камера дожигания разделены [9], поэтому горение топлива реализуется в две стадии. Первая стадия — горение в газогенераторе — проходит в условиях обогащения топлива горючим и малого времени пребывания. Затем первичные продукты горения топлива на основе бора (далее — первичные продукты горения) поступают в камеру дожигания. В нее нагнетается внешний воздух, который, смеши-

<sup>©</sup> Liu Jianzhong<sup>1</sup>, Liang Daolun<sup>1</sup>, Xiao Jinwu<sup>2</sup>, Chen

Binghong<sup>1</sup>, Zhang Yanwei<sup>1</sup>, Zhou Junhu<sup>1</sup>, Cen Kefa<sup>1</sup>, 2017.

<sup>&</sup>lt;sup>1</sup>State Key Laboratory of Clean Energy Utilization, Zhejiang University, 310027 Hangzhou, China. <sup>2</sup>Institute of Aerospace Chemotechnology, 441003 Xiangyang, China.

ваясь с продуктами, обеспечивает вторую стадию горения [10], которая протекает в условиях обогащения кислородом и более продолжительного времени пребывания реагентов. Именно на второй стадии выделяется наибольшее количество энергии [11]. Таким образом, первичные продукты горения являются главным связующим звеном между двумя стадиями горения. Изучение состава первичных продуктов может быть полезно не только для анализа процессов на первой стадии, но и для лучшего понимания процессов во второй стадии.

Анализ первичных продуктов горения впервые проведен в работе [11]. Рентгенодифракционным методом в исследуемых образцах обнаружены NH<sub>4</sub>B<sub>5</sub>O<sub>8</sub> и С. Кроме того, методом сканирующей электронной микроскопии были определены размеры частиц бора до и после первичной стадии горения, однако существенных изменений не установлено. В работе [12] проанализирован состав первичных продуктов горения методами ожеспектроскопии, рентгеновской фотоэлектронной спектроскопии (XPS), рентгенодифракционным методом (XRD). Наиболее эффективным методом качественного анализа состава образцов оказался метод XRD, однако с его помощью нельзя сделать количественных оценок. В работе [13] предложен метод кислотноосновного титрования для определения содержания В и В<sub>2</sub>О<sub>3</sub> в первичных продуктах горения. Поскольку селективное определение С,  $B_m C_n$  и BN затруднено, измерить их содержание этим методом невозможно. В работах [14, 15] методом минимизации свободной энергии Гиббса был рассчитан состав первичных продуктов горения, а также проанализировано влияние на них давления и состава исходного топлива. В расчетах [16] был определен химически равновесный состав первичных продуктов горения. Однако в реальности на первой стадии горения полнота сгорания не достигается, поэтому измеренный и рассчитанный составы могут существенно различаться.

Таким образом, эксперименты и термодинамические расчеты — это два основных метода анализа состава первичных продуктов горения. К настоящему времени не разработано комплексного точного метода такого анализа. В данной работе применено несколько методов для всестороннего исследования первичных продуктов горения.

| <i>c</i> |              |         |
|----------|--------------|---------|
| Состав   | исследуемого | топлива |

| Компонент       | Массовое содержание, % |
|-----------------|------------------------|
| В               | 33                     |
| Mg              | 5                      |
| $\rm NH_4ClO_4$ | 27.5                   |
| HTPB            | 29.5                   |

#### 1. МАТЕРИАЛЫ И МЕТОДЫ

Большинство топлив на основе бора состоит из аморфного бора, окислителя, связующего, металлической присадки и других компонентов [6, 14]. Состав исследуемого топлива приведен в табл. 1. Образец топлива (шашка цилиндрической формы, масса 120 г) сжигали в отдельном газогенераторе при среднем давлении 0.2 МПа (в среде аргона); время полного сгорания 3 с. После завершения первой стадии горения полученные твердые продукты быстро охлаждали потоком аргона и собирали. Перед проведением анализов их высушивали в вакууме при 80 °C в течение 12 ч. Образец первичных продуктов горения был получен в Северо-Западном политехническом университете (Китай) и представлял собой порошок черного цвета.

В работе использовался безводный спирт ( $\geq 99.5$  %), раствор HNO<sub>3</sub> (65 ÷ 68 %), раствор H<sub>2</sub>O<sub>2</sub> ( $\geq 30$  %), порошок K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> ( $\geq 99.5$  %) компании «Aladdin Industrial Co.» (Китай).

Размеры частиц образца определялись на лазерном анализаторе Coulter LS-230. Образец диспергировали в безводном спирте. XRDанализ образца проводился на рентгеновском дифрактометре PANalytical X' Pert PRO. Рабочий диапазон углов рассеяния составлял 5÷80°. XPS-анализ образца выполнялся на фотоэлектронном рентгеновском спектрометре ThermoFisher Escalab 250Xi. Энергии связи определялись по пику C1s при 284.8 эВ для стандартизации. Использовался источник рентгеновского излучения Al— $K_{\alpha}$  с энергией фотонов 1 486.6 эВ, сканирование велось по пикам элементарных B, C, Mg. Анализ образца комбинированным методом термогравиметрии и дифференциальной сканирующей калориметрии (TG–DSC) проводился с помощью системы термического анализа при атмосферном давлении (Q100). Для этого образец массой  $\approx 5$  мг помещали в тигель из Al<sub>2</sub>O<sub>3</sub> и нагревали со ско-

Таблица 2

ростью 20 °C/мин от комнатной температуры до 1000 °C в воздухе с постоянной скоростью продува 120 мл/мин.

В работе использовалась трубчатая печь SY2-25-13TS с диапазоном регулирования температуры  $20 \div 1300$  °C. Образцы массой  $\approx 100$  мг нагревали в тиглях из SiO<sub>2</sub>. Температура печи устанавливалась равной 300 °C. Аргон продувался с постоянной скоростью 400 мл/мин.

Содержание ионов Cl<sup>-</sup> определялось на ионном хроматографе DIONEX ICS-2000. Содержание элементарных С и N определялось методом инфракрасной спектроскопии (IR) на элементном анализаторе 5E-CHN2200. Для этого образец нагревали до 950 °C и анализировали инфракрасный спектр газообразных продуктов. Содержание элементарных В и Mg определялось методом хромато-масс-спектрометрии с индуктивно-связанной плазмой (ICP) на приборе Thermo Electron XSENIES.

Микроморфологический анализ проводился с применением автоэлектронного микроскопа Hitachi SU-70 и энергодисперсионной рентгеновской спектроскопии.

# 2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

### 2.1. Лазерный анализ размеров частиц

Для качественного анализа состава образца важно знать размеры частиц. Результаты лазерного анализа размеров приведены на рис. 1 и в табл. 2. Видно, что большинство ча-

3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 0.03 0.1 1 10 100 1000 *d*, MKM

Рис. 1. Распределение частиц образца по диаметру (V — объемное содержание частиц)

Распределение частиц первичных продуктов горения по диаметру (осреднение результатов двух измерений)

| Объемное содержание, % | Размер частиц, мкм |
|------------------------|--------------------|
| <10                    | 1.680              |
| <25                    | 3.199              |
| <50                    | 6.889              |
| <75                    | 16.62              |
| <90                    | 32.85              |

стиц имеют размеры  $d = 1.7 \div 33.0$  мкм. Частиц размером больше 100 мкм не обнаружено. Однако в образце присутствовало незначительное количество частиц размером <1 мкм.

На основе полученных результатов были выбраны наиболее подходящие методы проведения качественного анализа состава образца. В силу высокой проникающей способности рентгеновского излучения [17], для определения валового химического состава образца применялся XRD-анализ, для анализа состава поверхности — XPS-спектроскопия. Для изучения фазовых превращений в образце и его термических свойств использовался TG–DSC анализ.

## 2.2. Рентгенодифракционный анализ (XRD)

На рис. 2 представлен XRD-спектр образца. Образец содержит главным образом C, B<sub>13</sub>C<sub>2</sub>, B<sub>4</sub>C, H<sub>3</sub>BO<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, Mg, NH<sub>4</sub>Cl. Поскольку метод XRD применим только в случае кристаллических материалов, для выполнения всестороннего анализа состава первичных продуктов горения использовались другие методы, такие как XPS и TG–DSC.

# 2.3. Анализ методом рентгеновской фотоэлектронной спектроскопии (XPS)

На рис. 3 представлены фрагменты рентгенофотоэлектронного спектра, соответствующие элементарным В, С, Мg. Приведены измеренный спектр, аппроксимирующая его кривая, а также базовая линия. На рис. 3, *а* присутствуют два пика. Бор на поверхности образца содержится в основном в форме H<sub>3</sub>BO<sub>3</sub> и BN, углерод — в элементарном виде, магний — преимущественно в форме MgCl<sub>2</sub>. Соединения BN

V.%

 $3.5 \cdot$ 



Рис. 2. Рентгенодифракционный спектр образца

и MgCl<sub>2</sub> регистрируются только на поверхности образца, что, возможно, связано с низким содержанием этих двух компонентов (подробнее см. § 2.5). Из спектра элементарного углерода видно, что  $B_{13}C_2$  или  $B_4C$  вовсе отсутствуют на поверхности. Это указывает на то, что они находятся внутри образца.

#### 2.4. Анализ комплексным методом TG-DSC

В TG-DSC эксперименте нагрев образца осуществлялся по температурной программе. Состав образца определяли исходя из полученной зависимости массы *m* и теплового потока q от температуры T (рис. 4). Видно, что процесс термического окисления образца состоит из трех стадий потери массы (1-3) и одной стадии значительного набора массы (4). Первая стадия потери массы, имеющая место примерно при 100 °C, обусловлена слабоэндотермической реакцией распада Н<sub>3</sub>ВО<sub>3</sub> [18]. Вторая стадия потери массы при температуре около 220 °C также связана со слабоэндотермической реакцией. По всей видимости, на этой стадии протекает реакция разложения NH<sub>4</sub>Cl [19, 20]. Третья стадия потери массы — экзотермический процесс, протекающий приблизительно при 450 °C, — это процесс окисления С [17]. Набор массы происходит при температуре  $\approx 750$  °C. Он обусловлен сильноэкзотермической реакцией — по-видимому, процессом окисления бора [17, 21].

Таким образом, на основе анализа методами XRD, XPS, TG–DSC можно сделать вы-



Рис. 3. Фрагменты рентгенофотоэлектронного спектра образца:

a -бор,  $\delta -$ углерод, s -магний; 1 -измеренный спектр, 2 -аппроксимирующая кривая, 3 -базовая линия ( $\varepsilon -$ энергия связи)

вод, что основными компонентами первичных продуктов горения являются  $B, C, B_{13}C_2, B_4C, H_3BO_3, B_2O_3, BN, Mg, MgCl_2, NH_4Cl.$ 

Рис. 4. TG–DSC кривые образца: H<sub>3</sub>BO<sub>3</sub> (1), NH<sub>4</sub>Cl (2), C (3), B (4)

### 2.5. Количественный анализ состава

Количественный анализ состава образца проводился на основе результатов качественного анализа.

В ромбоэдрической фазе карбида бора атомы В и С могут взаимно заменять друг друга.  $B_{13}C_2$  и  $B_4C$  — это два стабильных изомера с очень похожими физико-химическими свойствами, поэтому далее в этом параграфе будем обозначать их  $B_mC_n$ .

Физико-химические свойства первичных продуктов горения сложно определить однозначно, поскольку их состав зависит от образца. Поэтому для проведения количественного анализа требуется набор различных методов. Схема анализа представлена на рис. 5.

В образце, согласно его термодинамическим свойствам, при температуре 300 °C в среде аргона может произойти только разложение  $H_3BO_3$  и NH<sub>4</sub>Cl. Поэтому образец массой  $\approx 0.1$  г в этих условиях нагревался в трубчатой печи. Каждые 20 мин его взвешивали, до тех пор пока масса не стала неизменной. Потеря массы равнялась сумме массы NH<sub>4</sub>Cl и массы H<sub>2</sub>O, образовавшейся при разложении H<sub>3</sub>BO<sub>3</sub> и NH<sub>4</sub>Cl близки, методом программного регулирования температуры невозможно вычислить в отдельности количества NH<sub>4</sub>Cl и H<sub>2</sub>O.

Приблизительно 0.1 г образца с помощью ультразвука диспергировали в растворе HNO<sub>3</sub> в течение 20 мин, этого времени было достаточно для полного диспергирования NH<sub>4</sub>Cl и MgCl<sub>2</sub>. Полученный после фильтрации раствор называем далее раствором 1. Содержание Cl<sup>-</sup> в растворе 1 определялось методом ионной хроматографии (IC) (см. рис. 5).

После нагрева образца в трубчатой печи получен сухой остаток, называемый остатком 1. Приблизительно 0.1 г остатка 1 ультразвуковым методом диспергировали в деионизованной воде в течение 20 мин так, чтобы содержащийся в остатке 1 В<sub>2</sub>О<sub>3</sub> полностью диспергировался [22]. Образовавшийся после фильтрации раствор назвали раствором 2, а остаток — остатком 2. Продуктами реакции В<sub>2</sub>О<sub>3</sub> с водой являются  $HBO_2$  и  $H_3BO_3$ . По результатам ICP-анализа  $B^{3+}$  в остатке 2 вычислено содержание В<sub>2</sub>О<sub>3</sub> в остатке 1. После этого остаток 2 с помощью ультразвука диспергировали в смеси H<sub>2</sub>O<sub>2</sub> и раствора K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> в течение 20 мин, так чтобы весь содержащийся в остатке бор полностью диспергировался [22]. Полученный после фильтрации раствор назвали раствором 3, остаток в основном содержал С,  $B_m C_n$  и ВN. Затем был проведен ICP-анализ раствора 3 и вычислено содержание В в образце. Такой метод анализа B<sub>2</sub>O<sub>3</sub> и В основан на ранее описанных методиках [13]. Однако в работе [13] авторы использовали кислотно-основное титрование, а не ІСРанализ. Поскольку HBO<sub>2</sub> и H<sub>3</sub>BO<sub>3</sub> представляют собой слабые кислоты и соотношение их содержаний трудно определить, метод ІСР позволяет получить более точные результаты, чем кислотно-основное титрование [20].

Приблизительно 0.1 г остатка 1 ультразвуковым методом диспергировали в растворе HNO<sub>3</sub> в течение 20 мин, чтобы содержащийся в остатке 1 MgCl<sub>2</sub> полностью диспергировался. Полученный после фильтрации раствор назвали раствором 4. По результатам ІС-анализа раствора 4 определено содержание  $Cl^-$  в нем, что позволило вычислить содержание MgCl<sub>2</sub> в образце. Содержание  $NH_4Cl$  в образце определяли как разность содержаний Cl<sup>-</sup> в растворе 4 и в образце. Поскольку общая масса NH<sub>4</sub>Cl и воды, образовавшейся при разложении H<sub>3</sub>BO<sub>3</sub>, уже была определена, можно вычислить отдельно содержание воды. После этого, зная соотношение молекулярных масс H<sub>2</sub>O и H<sub>3</sub>BO<sub>3</sub>, можно найти содержание H<sub>3</sub>BO<sub>3</sub> в образце. Количество В<sub>2</sub>О<sub>3</sub> в остатке 1 представляет собой сумму содержаний  $B_2O_3$ , изначально присутствовавшего в образце, и В2О3, образовавшегося при разложении Н<sub>3</sub>ВО<sub>3</sub>. Вычислив содержание образовавшегося В<sub>2</sub>О<sub>3</sub> из соотношения мо-





Рис. 5. Схема проведения количественного анализа

лекулярных масс  $H_3BO_3$  и  $B_2O_3$ , можно определить содержание  $B_2O_3$  в образце (см. рис. 5).

Содержание элементарного Mg в растворе 4 определяли методом ICP. Содержание  $Mg^{2+}$  в образце можно рассчитать через соотношение молекулярных масс  $MgCl_2$  и Mg. После этого несложно вычислить общее содержание Mg и  $Mg^{2+}$  в образце.

Анализируя остаток 1 методом IR, можно получить по отдельности содержание в нем элементарных С и N. Содержание BN в образце рассчитывается по содержанию элементарного N в остатке 1. Содержание элементарного С в остатке 1 — это сумма содержаний чистого углерода и углерода в составе  $B_m C_n$ .

Все первичные продукты горения, включающие в себя В и Mg, остаются в твердой фазе, поэтому можно предположить, что соотношение B/Mg в первичных продуктах горения будет таким же, как и в исходном топливе. Так как содержание элементарного Mg в образце и содержание элементарного бора в B,  $H_3BO_3$ ,  $B_2O_3$  и BN нам уже известно, можно вычислить содержание элементарного бора в  $B_mC_n$  и, соответственно, определить содержание  $B_mC_n$  в образце. Зная общее содержание С и элементарного С в  $B_m C_n$ , можно рассчитать содержание С в образце. Поскольку в  $B_m C_n$  соотношение  $B_4 C$  и  $B_{13}C_2$  не установлено, содержание С и  $B_m C_n$  определено как некоторый интервал значений.

По описанной выше процедуре было найдено содержание девяти компонентов в образце: В, С, В<sub>m</sub>C<sub>n</sub>, H<sub>3</sub>BO<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, BN, Mg, MgCl<sub>2</sub>, NH<sub>4</sub>Cl (табл. 3). Из них в наибольшем количестве присутствуют В<sub>m</sub>C<sub>n</sub>, H<sub>3</sub>BO<sub>3</sub> и В. Это говорит о том, что на первой стадии горения бор в основном реагировал с элементарными С и О, а также совсем незначительно реагировал с элементарным N. Следует отметить, что не весь H<sub>3</sub>BO<sub>3</sub> образовался на первой стадии горения. Частично он мог образоваться за счет поглощения H<sub>2</sub>O оксидом бора B<sub>2</sub>O<sub>3</sub> во время хранения, так как этот оксид очень гигроскопичен и может реагировать с водой с образованием H<sub>3</sub>BO<sub>3</sub>.

При исследовании второй стадии горения основное внимание необходимо уделить горению трех горючих компонентов, присутствуюцих в наибольшем количестве, —  $B_mC_n$ , B, C. Большое количество непрореагировавшего бора (более 50 %) в образце указывает на то, что для улучшения характеристик горения топлив на основе бора важны процессы, происходящие на второй стадии горения, и необходимо их дальнейшее исследование.

В образце не обнаружен NH<sub>4</sub>ClO<sub>4</sub>, что, по-

Таблица 3 Результаты количественного анализа первичных продуктов горения

| переи шелх продуктов торения |                           |  |
|------------------------------|---------------------------|--|
| Компонент                    | Массовое содержание, $\%$ |  |
| ${ m H}_3{ m BO}_3$          | 20.0                      |  |
| $\rm NH_4Cl$                 | 9.2                       |  |
| С                            | $9.8 \div 11.8$           |  |
| Mg                           | 6.0                       |  |
| $\mathrm{MgCl}_{2}$          | 1.9                       |  |
| $\mathbf{B}_m \mathbf{C}_n$  | $22.0 \div 24.0$          |  |
| BN                           | 2.6                       |  |
| В                            | 16.8                      |  |
| $B_2O_3$                     | 8.6                       |  |
| Другие                       | 1.1                       |  |

\*Общее содержание С и  $B_m C_n$  фиксировано (33.8 %).

видимому, связано с тем, что в газогенераторе имеют место условия обогащения горючим. На второй стадии горения кислород поступает только из нагнетаемого воздуха. Незначительное содержание NH<sub>4</sub>Cl в образце указывает на то, что часть NH<sub>4</sub>ClO<sub>4</sub> полностью превратилась в газообразные продукты на первой стадии горения.

Элементарный магний присутствует в образце в основном как Mg, что свидетельствует о том, что степень превращения Mg на первой стадии горения очень мала. Таким образом, Mg как металлическая добавка будет играть роль только на второй стадии горения.

## 2.6. Микроморфологический анализ

Предварительный микроморфологический анализ бора непосредственно после его получения и первичных продуктов горения проводили с помощью сканирующего электронного микроскопа с 3000-кратным увеличением. Результаты приведены на рис. 6. Как видно, частицы бора представляют собой аморфные твердые тела относительно одинакового размера. Однако размеры и форма частиц в образце первичных продуктов горения существенно различаются, кроме того, наблюдается агломерация частиц. Размеры частиц лежат в пределах  $0.1 \div 30$  мкм, что согласуется с результатами лазерного анализа. Мелкие частицы присутствуют как на поверхности больших частиц, так и в пространстве между ними. Одна часть частиц находится в диспергированном состоянии, другая — в агломерированном. При большем увеличении и использовании энергодисперсионного спектрометра получены микроморфологическая структура образца и картина распределения некоторых компонентов в нем (рис. 7). В каждой области удалось обнаружить все возможные элементы, включая В, С. О. N. Mg и Cl. Светлым показаны области, где находится соответствующий элемент.

Микроморфология  $B_mC_n$ ,  $H_3BO_3$  (или  $B_2O_3$ ), B, Mg, C показала следующее.  $B_mC_n$ в основном присутствует в форме хлопьеобразных агломератов, размер которых довольно велик ( $\approx 10$  мкм).  $H_3BO_3$  (или  $B_2O_3$ ) преимущественно покрывает поверхность B, образуя слои незавершенного покрытия. Частицы В большие (более 5 мкм), неправильной формы, с гладкой поверхностью. Частицы Mg имеют сферическую форму (размером  $\approx 3$  мкм), но их поверхность неровная. Частицы C также



Рис. 6. Снимки образца, сделанные с помощью сканирующего электронного микроскопа: *a* — бор непосредственно после получения, *б* — первичные продукты горения

агломерированы, но размеры агломератов менее 1 мкм. Основная часть агломератов С диспергирована между большими частицами. Повидимому, именно частицы С наблюдались при лазерном анализе как частицы размером меньше 1 мкм. Так как проникающая способность электронов при использовании энергодисперсионной спектроскопии велика, невозможно зарегистрировать компоненты, присутствующие только на поверхности образца (MgCl<sub>2</sub>, BN и т. п.). Кроме того, не удалось зарегистрировать NH<sub>4</sub>Cl, что, вероятно, связано с невозможностью обнаружить этим методом атомы H, а также с малым размером частиц NH<sub>4</sub>Cl, образующихся при разложении NH<sub>4</sub>ClO<sub>4</sub>.

Микроморфология твердого топлива существенно влияет на характеристики его энерговыделения. Это особенно важно для первичных продуктов горения. Микропористость, форма распределения и взаимное расположение различных компонентов — все это может существенно повлиять на процессы во второй стадии горения. Например, частицы H<sub>3</sub>BO<sub>3</sub> (или В<sub>2</sub>О<sub>3</sub>), прилипая к поверхности В, могут образовывать покрытие, которое будет препятствовать контакту В и  $O_2$ . Кроме того,  $B_m C_n$ и С будут окисляться и давать СО и СО<sub>2</sub>, которые способствуют разрушению покрытия В<sub>2</sub>О<sub>3</sub>. Следует также отметить, что микроморфологический анализ первичных продуктов горения также полезен для моделирования процессов на второй стадии горения и может обеспечить основу для объединения моделей горения различных составов.

# ЗАКЛЮЧЕНИЕ

Результаты настоящей работы позволяют лучше понять природу и свойства первичных продуктов горения топлив на основе бора.

1. Приблизительно 80 % частиц в образце первичных продуктов горения имеют размер от 1.7 до 33 мкм. В образце присутствовало также небольшое количество очень мелких частиц (<1 мкм). Для определения валового химического состава образца применялся XRD-анализ, качественный анализ состава поверхности проводился с применением XPSспектроскопии. Полученные результаты были подтверждены данными TG–DSC анализа. Установлено, что первичные продукты горения содержат преимущественно В, С,  $B_{13}C_2$ ,  $B_4C$ ,  $H_3BO_3$ ,  $B_2O_3$ , BN, Mg, MgCl<sub>2</sub>, NH<sub>4</sub>Cl.

2. Состав первичных продуктов горения зависит от индивидуально взятого образца, поэтому по полученным результатам нельзя сделать однозначного вывода о физикохимических свойствах исследуемых продуктов. Применено несколько различных методик для количественного анализа первичных продуктов горения: нагрев в трубчатой печи, ионная хроматография, инфракрасная спектроскопия, ICP-хромато-масс-спектрометрия, ультразвуковое диспергирование и др. Для проведения различных анализов использовали растворы HNO<sub>3</sub>, H<sub>2</sub>O, H<sub>2</sub>O<sub>2</sub>, K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. На основе результатов качественного анализа состава разработан и выполнен полный количественный анализ состава образца. В образце в наибольшем количестве присутствуют  $B_m C_n$ 



Рис. 7. Микроструктура и картина распределения элементов в образце первичных продуктов горения:

a— В<br/>\_ $mC_n,\, б$ — Н $_3$ ВО $_3$  (или В $_2$ О $_3)$ + В<br/>,e— В + С,e— М<br/>g + С; 20 мин — время ультразвукового диспергирования  $(22 \div 24 \%)$ , H<sub>3</sub>BO<sub>3</sub> (20 %) и В (16.8 %). Из горючих компонентов в наибольшем количестве присутствуют В<sub>m</sub>C<sub>n</sub>, В и С (9.8 ÷ 11.8 %).

3. На первой стадии горения бор в основном реагировал с элементарными С и О и практически не реагировал с элементарным N. На этой стадии NH<sub>4</sub>ClO<sub>4</sub> разложился полностью. Однако степень полноты реагирования Мд была низкой. При исследовании второй стадии горения необходимо сосредоточить внимание на характеристиках горения основных горючих компонентов  $B_m C_n$ , В и С. Наличие элементарного кислорода на второй стадии горения обеспечивается только за счет нагнетаемого воздуха. Роль Мд как металлической добавки становится значительной только на второй стадии горения. Степень полноты протекания реакций с его участием в первичных продуктах горения низка. Для улучшения характеристик топлив на основе бора необходимо проводить планирование процессов на второй стадии горения.

4. Частицы образца имеют неправильную форму, а их размеры варьируются в широких пределах.  $B_m C_n$  присутствует преимущественно в форме хлопьеобразных агломератов. Частицы В превышают размер 5 мкм и имеют гладкую поверхность. Частицы H<sub>3</sub>BO<sub>3</sub> (или B<sub>2</sub>O<sub>3</sub>) в большинстве своем находятся на поверхности частиц В. Частицы Mg имеют неровную поверхность, их размер около 3 мкм. Частицы С также агломерированы, но размеры агломератов меньше 1 мкм.

Работа выполнена при поддержке Национального фонда естественных наук Китая (№ 51106135).

## ЛИТЕРАТУРА

- 1. Mao C., Li B., Hu S., et al. Overview of models of boron particle ignition in hot air // J. Propul. Technol. — 2001. — V. 22, N 1. — P. 6–9.
- Zang L. An investigation on boron used as a component of solid propellant // J. Propul. Technol. — 1990. — V. 4, N 1. — P. 56–62.
- Gany A., Timnat Y. M. Advantages and drawbacks of boron-fueled propulsion // Acta Astronaut. — 1993. — V. 29, N 3. — P. 181–187.
- Ао В., Чжоу Цз.-Х., Ян В.-Цз., Лю Цз.-Ч., Ван Ю., Цень К.-Ф. Воспламенение, горение и окисление смесей порошков аморфного и кристаллического бора // Физика горения и взрыва. — 2014. — Т. 50, № 6. — С. 47–53.
- King M. K., Komar J., Fry R. S. Fuel-Rich Solid Propellant Boron Combustion. — Alexandria, VA.: Atlantic Research Corp., 1984.

- Ягодников Д. А. Экспериментальное исследование газодисперсного пламени частиц бора // Физика горения и взрыва. — 2010. — Т. 46, № 4. — С. 64–71.
- Liu J., Xi J., Yang W., et al. Effect of magnesium on the burning characteristics of boron particles // Acta Astronaut. — 2014. — V. 96. — P. 89–96.
- Genwang M., Wane W., Songqi H., et al. Influence of HTPB/MA content on pressure exponent of boron-based fuel-rich propellant // Mech. Sci. Technol. Aerosp. Eng. — 2008. — V. 1. — P. 003.
- Obuchi K., Tanabe M., Kuwahara T. Ignition characteristics of boron particles in the secondary combustor of ducted rockets-effects of magnalium particle addition // 46th AIAA Aerospace Sciences Meeting and Exhibit. — 2008. — P. 1–8.
- Spalding M. J. Boron particle ignition and combustion in a shock tube using time-resolved spectroscopy // ProQuest Dissertations and Theses: Thesis (Ph. D.). — University of Illinois at Urbana-Champaign, 2000.
- Mellor A. M. Particulate matter in the exhaust of a boron-loaded solid propellant // AIAA Journal. — 1971. — V. 9, N 10. — P. 1944–1947.
- Pein R., Ciezki H., Eicke A. Instrumental diagnostics of solid fuel ramjet combustor reaction products containing boron // 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. — 1995. — P. 1–9.
- Li S., Ji R. Composition analysis of combustion residues of metallized solid propellant // J. Propul. Technol. — 1996 — V. 1. — P. 83–88.
- Liu L., He G., Yinhong W. Study on the calculation of the combustion products of the boronbased fuel-rich propellant during first combustion stage // Chin. J. Explos. Propel. — 2013. — V. 4. — P. 46–51.
- Zhou H. The Study of Ignition and Combustion of the Primary Combustion Products of the Boron-based Fuel-Rich Propellant. — Inst. for Therm. Power Eng. of Zhejiang Univ., 2012.
- Cruise D. R. Theoretical Computations of Equilibrium Compositions, Thermodynamic Properties, and Performance Characteristics of Propellant Systems. — Naval Weapons Center China Lake CA, 1979.
- Liang D., Liu J., Xiao J., et al. Energy release properties of amorphous boron and boron-based propellant primary combustion products // Acta Astronaut. — 2015. — V. 112. — P. 182–191.
- Yao Y., Watanabe T., Yano T., et al. An innovative energy-saving in-flight melting technology and its application to glass production // Sci. Technol. Adv. Mater. — 2008. — V. 9, N 2. — P. 025013.
- Chen H., Sun Y., Fu Y. Direct preparation of anhydrous lanthanide chlorides from lanthanide oxides chlorinated by NH<sub>4</sub>Cl // Chin. Rare Earths. — 2008. — V. 2. — P. 015.

- Liang D., Liu J., Xiao J., et al. Effect of metal additives on the composition and combustion characteristics of primary combustion products of B-based propellants // J. Therm. Anal. Calorim. — 2015. — V. 122. — P. 497–508.
- Calorim. 2015. V. 122. P. 497–508.
  21. Ao W., Wang Y., Li H., et al. Effect of initial oxide layer on ignition and combustion of boron powder // Propell., Explos. Pyrotech. 2014. V. 39, N 2. P. 185–191.
- Pang W., Zhang J., Zhang Q., et al. Coating of boron particles and combustion residue analysis of boron-based solid propellants // J. Solid Rocket Technol. — 2006. — V. 29, N 3. — P. 204–207.

Поступила в редакцию 1/X 2015 г., в окончательном варианте — 2/III 2016 г.