$\textbf{ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ}$

2013. Том 54, № 3
Май – июнь
С. 427 – 431

УДК 547.27

$\textbf{Н—Н ВЗАИМОДЕЙСТВИЕ В ФЕНАНТРЕНЕ: ПРИТЯЖЕНИЕ ИЛИ ОТТАЛКИВАНИЕ?}$

А.В. Ващенко, Т.Н. Бородина

Иркутский институт химии СО РАН им. А.Е. Фаворского
E-mail: sasha@iriocb.irk.ru

Статья поступила 2 июля 2012 г.
С доработкой — 27 сентября 2012 г.

На примере строения фенантрена методами неэмпирической квантовой химии изучен характер Н—Н взаимодействия. Проведенные расчеты подтвердили правильность выводов Бейдера об аттрактивном характере Н—Н взаимодействия, сделанные на основе QTAIM анализа, и опровергли репульсивный характер вышеуказанного взаимодействия, основанный на EDA методике.

Ключевые слова: фенантрен, антрацен, QTAIM, EDA, Н—Н взаимодействие.

Наиболее известным представителем поликонденсированных ненасыщенных систем является молекула C_{14}H_{10}, представленная в виде двух изомеров: фенантрен (1) и антрацен (2). Исследование пространственного и электронного строения этих молекул посвящен ряд экспериментальных [1—4] и теоретических [5—11] работ. Несмотря на то, что изогнутый изомер C_{14}H_{10} выглядит стерически более напряженным по сравнению с линейным, фенантрен (1) энергетически более предпочтителен, чем антрацен (2). По разным оценкам [5—11] эта предпочтительность составляет 4—8 ккал/моль. Объяснение такой предпочтительности было дано Полингом и Шерманом [5] (\approx5,52 ккал/моль) на основе исследования резонансных структур и вывода о лучшем сопряжении π-систем в фенантрене (1). В работе Матта и соавторов [9], проведенной на основе QTAIM (quantum theory atoms in molecules), было показано, что дополнительным фактором, обеспечивающим большую стабильность фенантрена (1), служит Н—Н взаимодействие, которое носит аттрактивный характер. Величина аттрактивного вклада в полную энергию молекулы, по оценке Матта [9], может составлять до 10 ккал/моль. Столь значительная величина энергии Н—Н взаимодействия нашла ярких противников в лице Потера и соавторов [12], которые провели тщательное исследование фенантрена и антрацена методом EDA (energy decomposition analysis), разработанным Морокум [13]. Авторы [12] пришли к выводу о репульсивном характере Н—Н взаимодействия и ущербности QTAIM, разработанной Бейдером [14].

Результаты и их обсуждение

Цель данной работы — провести исследование, которое не базировалось бы ни на QTAIM, ни на методе EDA, для независимой оценки роли Н—Н взаимодействия в фенантрене (1). Для этого был проведен расчет обеих молекул методом MP2 в базисе 6-311++G(d,p) при помощи квантово-химического пакета Gaussian 09 [15].

Энергетическая предпочтительность фенантрена (1) по отношению к антрацену (2) составляет 6,5 ккал/моль. Таким образом, наши расчеты попадают в тот диапазон значений, который

© Ващенко А.В., Бородина Т.Н., 2013

Для сравнения влияния H—H взаимодействия на полную энергию молекул (1) и (2) Потер [12] использовал соответствующие бирадикалы (3) и (4), в которых были удалены взаимодействующие протоны (схема 3). По данным Потера [12], исходный фенантрен (1) стабильнее своего изомерного аналога (2) на 4,24 ккал/моль, в то время как его бирадикальная форма (3) стабильнее своего линейного аналога (4) на 5,16 ккал/моль. Отсутствие стерического отталкивания в бирадикальной форме (3) приводит к дополнительному выигрышу в энергии (0,92 ккал/моль). Такой подход, предложенный Потером и соавторами [12], имеет право на существование, но с нашей точки зрения он не совсем корректен, поэтому мы провели сходные сравнения, но для нейтральных молекул.

Прежде чем приступить к обсуждению предложенной нами методики сравнения, необходимо напомнить, что в изогнутом (1) и линейном (2) изомерах различная степень сопряжения π-систем. В работе Полинга [5] и более поздней Зубарева [17] было показано, что в фенантрене (1) кольцевые токи локализованы на терминальных бензольных фрагментах, в то время как в антрацене (2) кольцевой ток локализован на центральном бензольном фрагменте (схема 4).

Исходя из этих данных, мы провели расчет (MP2/6-311++G(d,p)) следующих молекул: 2,9-дигидроантрацен (5), 3,9-дигидроантрацен (6), 3,6-дигидроантрацен (7) и 4,5-дигидроантрацен (8)....
тран (8). Цель данных расчетов — проследить, как меняется общая энергия молекулы, если нарушать π-сопряжение в том или ином фрагменте поликонденсированной системы. Напомним, что изначально фенантрен (1) на 6,5 ккал/моль энергетически предпочтительнее антрацена (2). Сравним 2,9-дигидроантрацен (5) и 3,9-дигидрофенантрен (6). Расчет дает более предпочтительным 2,9-дигидроантрацен (5) на 3,3 ккал/моль. В случае структур (5) и (6) мы нарушали ароматичность центральных колец и одного из боковых. Так как π-сопряжение в исходном фенантрене (1) выше, чем в антрацене (2), то и потери в полной энергии за счет снижения степени сопряжения в фенантрене больше, именно поэтому наблюдается инверсия и дигидроантрацен (5) становится энергетически более выгоден, чем дигидрофенантрен (6) (схема 5). Что будет, если нарушить ароматичность в обоих терминальных фрагментах фенантрена (1)? Полная энергия системы еще больше возрастает. Энергетическая преимущественность 3,9-дигидрофенантрена (6) по сравнению с 3,6-дигидрофенантреном (7) составляет ≈ 24 ккал/моль. Нарушение ароматичности в обоих терминальных кольцах фенантрена приводит к существенному изменению полной энергии, что косвенно подтверждает выводы других авторов [5, 17] о месте локализации кольцевых токов в фенантрене (1) и антрацене (2) и степени π-сопряжения в этих системах. Тем не менее пока мы не ответили на вопрос о репulsive или атtractive характере H—H взаимодействия в фенантрене (1).

Сравним 3,6-дигидрофенантрен (7) и 4,5-дигидрофенантрен (8). В обеих молекулах (7) и (8) нарушена ароматичность, но в молекуле (7) близкий контакт имеет место для двух атомов водорода, а в дигидрофенантрене (8) — для четырех. Необходимо отметить, что в первом из упомянутых случаев расстояние H—H составляет 2,25 Å, а во втором 2,21 Å, что меньше суммы van-дер-ваальсов радиусов этих атомов. Можно предположить, что если H—H взаимодействие носит репulsive характер, то полная энергия 4,5-дигидрофенантрена (8) должна быть выше по сравнению с 3,6-дигидрофенантреном (7) и, наоборот, в случае атtractive характера H—H взаимодействия. Сравнение 3,6-дигидрофенантрена (7) и 4,5-дигидрофенантрена (8) дает энергетическое преимущество последнему в 4,2 ккал/моль. Таким образом, даже в 2 раза большее число близко расположенных атомов водорода не может сместить баланс в сторону 3,6-дигидрофенантрена (7). Проведенные расчеты, хоть и косвенно, показывают, что в фенантрене (1) H—H взаимодействие носит скорее атtractive характер, чем репulsive.

Для однозначного ответа на данный вопрос было решено провести дополнительные исследования, базирующиеся на анализе RDG (reduced density gradient), свойства которого были изучены Зупаном с соавторами [18, 19]

\[
RDG = \frac{1}{2\sqrt{3} \pi^2} \left| \frac{\nabla \rho}{\rho^{4/3}} \right|
\]

(1)
RDG имеет практически стремящиеся к нулю значения как в области ковалентных связей, так и в областях, где имеет место нековалентное взаимодействие разной природы. В области формирования нековалентных взаимодействий характерна низкая электронная плотность и малая величина RDG. Второй чрезвычайно важной для анализа величиной является знак Лапласиана электронной плотности \(V'p \), точнее, собственные значения его диагонализованной формы

\[
V'p = \frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2},
\]

(2)

\[
\Lambda = \begin{pmatrix}
\frac{\partial^2 p}{\partial x^2} & 0 & 0 \\
0 & \frac{\partial^2 p}{\partial y^2} & 0 \\
0 & 0 & \frac{\partial^2 p}{\partial z^2}
\end{pmatrix} = \begin{pmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{pmatrix}.
\]

(3)

Анализ знака \(\lambda_2 \) позволяет идентифицировать разные типы нековалентных взаимодействий [14, 20, 21]. Методика анализа областей со слабыми нековалентными взаимодействиями недавно была предложена Джонсон с соавторами [22]. Эта же группа авторов представила программу для визуализации расчетных данных NCIPLOT [23].

Для начала мы провели расчет молекулы антрацена (2) (рис. 1). Слева приведена зависимость RDG от \(\lambda_2 p \), с учетом знака собственного значения матрицы Гессе. На графике присутствуют спады в области 0,020 ат. ед. (по оси абсцисс), соответствующие стерическим напряжениям, возникающим в кольцевых ненасыщенных фрагментах. Эти три стерически напряженные области, соответствующие изоповерхности RDG = 0,5 ат. ед., помечены на правой части рисунка черными точками.

В случае молекулы фенантрена (1) на графике наблюдается три спада. Хвосты в области 0,020—0,021 ат. ед. (по оси абсцисс) соответствуют стерическим взаимодействиям в трех сопряженных кольцах. Спад в области 0,012 ат. ед. соответствует небольшому стерическому напряжению, локализованному на незамкнутом кольце в бассейне H—H взаимодействующих атомов. Все три области помечены на правой части рис. 2 черным цветом (цветной рисунок см. в содержании номера). Четвертый спад на графике, расположенный в области отрицательных значений (−0,013 ат. ед.), соответствует слабому притягательному взаимодействию между двумя атомами водорода. Область помечена на рис. 2. Такое взаимодействие можно охарактеризовать как ван-дер-ваальсовское. Таким образом, анализ зависимости RDG от \(\lambda_2 p \), с учетом знака собственного значения матрицы Гессе, не выявил репульсивного характера H—H взаи-

Рис. 1. График зависимости RDG от sign(\(\lambda_2 p \)) для антрацена (слева). RDG изоповерхность (RDG = 0,5 ат. ед.) (справа)
модействия, что позволяет говорить о корректности QTAIM и правильности выводов Матта и соавторов [9] об прямым характере H–H взаимодействия. Количество величина в \(\approx 10 \) ккал/моль [9] может быть оспорена, но при этом правильность фундаментальных выводов о характере такого типа взаимодействия в ненасыщенных полициклических системах остается.

СПИСОК ЛИТЕРАТУРЫ