2017. Том 58, № 6

Июль – август

C. 1125 – 1135

УДК 539.194

МОДЕЛИРОВАНИЕ СТРУКТУРЫ И ИК СПЕКТРОВ АЦЕТИЛАЦЕТОНАТА ДИФТОРИДА БОРА И ЕГО ГАЛОГЕНЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ

О.Б. Рябченко, Л.А. Куартон, И.В. Свистунова, В.И. Вовна

Дальневосточный федеральный университет, Владивосток, Россия E-mail: vovna.vi@dvfu.ru

Статья поступила 29 декабря 2016 г.

С доработки — 18 января 2017 г.

Исследованы инфракрасные спектры комплексов ацетилацетоната дифторида бора и его галогензамещенных производных $F_2B(aaX)$ (X = H, Cl, Br, I) в кристаллическом состоянии. На основании квантово-химических расчетов методом DFT/B3LYP в базисе 6-311G(*d*,*p*) выявлено влияние заместителя на геометрию и силовое поле молекул. Исходя из расчетов нормальных колебаний (HK) и распределения потенциальной энергии (РПЭ) выполнено детальное отнесение ИК полос поглощения. Наиболее чувствительные к природе заместителя полосы принадлежат колебаниям с преимущественным участием связей СС и СО кольца, а также некоторым низкочастотным нехарактеристическим HK с участием атома X. Межмолекулярные взаимодействия, в подтверждение данных PCA, оказывают наибольшее влияние на характеристические полосы фрагмента BF₂ в интервалах 1280—1220 и 875—835 см⁻¹; приведены соответствующие этим взаимодействиям последовательности частотных сдвигов ИК полос в ряду заместителей.

DOI: 10.15372/JSC20170604

Ключевые слова: галогензамещенные β-дикетонаты дифторида бора, ИК спектры, квантово-химические расчеты колебательных спектров, межмолекулярные взаимодействия в кристалле.

введение

 β -Дикетонатные комплексы бора находят применение в различных областях науки и производства благодаря ряду полезных свойств, среди которых способность многих производных комплексов бора к люминесценции [1, 2]. Эти соединения применяются в молекулярной электронике как обладающие нелинейными оптическими свойствами [3], двухфотонным поглощением [4]. Комплексы дифторида бора используются в качестве допирующих добавок к полимерам при получении фоточувствительных полимерных материалов [5, 6]. Связь между оптическими свойствами комплексов дифторида бора с ароматическими циклами и их электронным строением успешно исследуется методами фотоэлектронной спектроскопии и квантовохимического моделирования [7—9]. В настоящее время показано, что светотрансформирующие свойства дикетонатов бора зависят не только от строения комплекса, но и от межмолекулярных взаимодействий (MMB). Наличие в молекулах ацетилацетонатов дифторида бора гетероатома в α -заместителе приводит к возникновению подобных взаимодействий. При их исследовании важными являются методы колебательной спектроскопии, однако подробные описания инфракрасных (ИК) спектров α -замещенных дикетонатов немногочисленны [10].

В то время как комплексы, образованные β-дикетонатными ионами с металлами, широко исследованы методами колебательной спектроскопии [11—15], о β-дикетонатах дифторида бора

[©] Рябченко О.Б., Куартон Л.А., Свистунова И.В., Вовна В.И., 2017

О.Б. РЯБЧЕНКО, Л.А. КУАРТОН, И.В. СВИСТУНОВА, В.И. ВОВНА

имеется всего несколько работ, содержащих эмпирическое отнесение лишь некоторых из полос ИК спектра [16—18]. Если при интерпретации спектра опираться на данные по отнесению полос комплексов дикетонатов металлов, это может приводить к ошибкам, так как частоты и состав формы колебаний комплексов дифторидов бора с теми же лигандами могут сущест-

Рис. 1. Комплекс $F_2B(aaX)$ (X = H, Cl, Br, I)

венно отличаться. Кроме того, естественное содержание двух изотопных модификаций бора усложняет спектр ввиду того, что многие нормальные колебания с участием как ¹¹В (80 %), так и ¹⁰В (20 %) проявляются на спектрах со значительными изотопическими сдвигами.

Целью работы было установление влияния *α*-галогензаместителя на геометрию и силовое поле изолированного комплекса, а также подробное отнесение ИК полос на основании расчетов нормальных колебаний с тем, чтобы выявить полосы, чувствительные к природе заместителя и к внешним воздействиям.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследуемые комплексы (рис. 1) были получены по методикам работы [18]. Спектры поглощения зарегистрированы в диапазоне 4000—500 см⁻¹ на ИК Фурье спектрометре Vertex 70, с разрешением 2 см⁻¹. Образцы готовили прессованием в таблетки с KBr.

МЕТОДЫ РАСЧЕТА И ОБРАБОТКИ ДАННЫХ

Квантово-химические расчеты проведены с использованием пакета программ Firefly 8.1.0 [18]. Для всех исследуемых комплексов выполнена оптимизация геометрии и проведен расчет нормальных колебаний методом DFT/B3LYP в базисе 6-311G(d,p) (для атомов Br и I базисные функции заимствованы из [20]) и получено распределение потенциальной энергии по естественным координатам. Для всех комплексов была определена принадлежность к группе симметрии C_s . Плоскость симметрии проходит через атомы F, B, C_α, X перпендикулярно плоскости, образованной связями С—О. Для характеристики состава формы нормальных колебаний использовали набор из 45 независимых естественных колебательных координат (ЕКК). Визуализацию колебаний и построение симулированных спектров проводили с помощью программы ChemCraft 1.8 [21].

Учет ангармоничности выполняли простым масштабированием. В области vCH масштабирующий множитель k = 0,962, в области 1850—1180 см⁻¹ k = 0,970, в области 1180—500 см⁻¹ k = 0,985, теоретические частоты ниже 500 см⁻¹ не масштабировали.

Чтобы корректно моделировать спектры для наглядного сопоставления с экспериментальными, мы провели расчеты НК для комплексов разного изотопного состава по бору. Затем представили результирующий спектральный контур как сумму полос с интенсивностями, корректированными пропорционально естественному содержанию изотопов. В ходе моделирования суммарного спектрального контура лоренцевыми кривыми полуширины полос задавались заведомо меньше экспериментальных (9 см⁻¹ < 20—30 см⁻¹), чтобы сохранить тонкие детали структуры спектра. Разделение экспериментального контура на лоренцевы составляющие проводили с учетом результатов расчетов частот и интенсивностей, а также литературных данных [17].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рассчитанные геометрические параметры изолированных комплексов приведены в табл. 1. Длины связей и валентные углы при введении α-заместителя X меняются незначительно (в пре-

Таблица 1

Cpgai	Длина связи, Å / Силовая постоянная, мдин Å ⁻¹						
Связь	F ₂ B(aaH)	F ₂ B(aaCl)	F ₂ B(aaBr)	F ₂ B(aaI)			
DE	1 367 / 4 610	1 366 / 1 687	1 366 / 4 670	1 367 / 1 675			
	1,307/4,019	1,300/4,087	1,300/4,0/9	1,30774,075			
BF	1,300 / 4,80 /	1,330 / 4,903	1,330 / 4,903	1,330/4,931			
BO	1,524 / 1,804	1,525 / 1,781	1,523 / 1,800	1,521 / 1,834			
$C_{\alpha}C$	1,394 / 5,753	1,401 / 5,438	1,402 / 5,378	1,405 / 5,272			
$C_{\alpha}X$	1,079 / 5,697	1,756 / 2,861	1,914 / 2,238	2,127 / 1,680			
СО	1,286 / 7,391	1,285 / 7,377	1,285 / 7,336	1,286 / 7,306			
CC_m	1,496 / 3,929	1,494 / 3,886	1,495 / 3,876	1,496 / 3,853			
Угол	Валентный угол, град.						
FBF	115 34	115 79	115 75	115.68			
FBO	107.99	107.97	108.01	108.09			
FBO	107,55	107,57	108,01	108,09			
TDO ODO	108,47	108,07	108,70	108,74			
OBO	108,38	107,49	107,37	107,20			
BOC	123,30	123,16	123,25	123,48			
$CC_{\alpha}C$	118,90	119,89	119,71	119,05			
$CC_{\alpha}X$	120,50	119,95	120,05	120,40			
$C_{\alpha}CO$	122,06	120,67	120,66	120,92			
$C_{\alpha}CC_{m}$	122,73	123,20	123,71	124,14			
Угол	Межплоскостной угол, град.						
(OBO) - (OCCO)	15.05	23 34	23 72	23.33			
	2 20	6 29	6.51	6.40			
$(UU_{\alpha}U) \rightarrow (UUUU)$	5,50	0,38	0,51	0,40			

Рассчитанные значения геометрических параметров и силовых постоянных

делах 0—0,011 Å и 0,12—1,41° соответственно). Наибольшие изменения претерпевает длина связи $C_{\alpha}C$ и углы $C_{\alpha}CO$, $C_{\alpha}CC_m$.

Угол OBO уменьшается на 1,18°, а угол $CC_{\alpha}C$ увеличивается на 0,99° (оба изменения в пределах 1 %). Углы изгиба плоскости кольца по линиям С...С и О...О в результате введения заместителя X увеличиваются, но мало меняются в ряду заместителей. Наибольшее изменение при замещении претерпевают двугранные углы изгибов кольца.

Силовая постоянная связи $C_{\alpha}C$ снижается на 7,8 % по мере ее удлинения на 8,3 % в ряду H, Cl, Br, I. Силовая постоянная связи CO уменьшается на 1 %, а связи BO — увеличивается на 2,8 % при практически неизменных длинах этих связей. В целом силовые постоянные связей более чувствительны к замещению и к природе заместителя, чем геометрические параметры. Из сравнения рассчитанных нами параметров с данными PCA [22, 23] следует, что влияние окружения на комплекс в кристалле приводит к увеличению длины связи CO и уменьшению длин остальных связей кольца.

Комплексы симметрии C_s имеют 45 нормальных колебаний, которые можно распределить по типам симметрии (TC): $\Gamma_{vib} = 25A' + 20A''$, все они активны в ИК.

Рассчитанные и измеренные колебательные частоты, рассчитанные интенсивности НК $(I_{\text{теор}})$ и измеренные интегральные интенсивности $(I_{\text{эксп}})$ полос поглощения всех четырех комплексов представлены в табл. 2 и в таблице электронного приложения S.

Диапазон валентных колебаний С—Н. Все НК являются высоко характеристичными (100 % в РПЭ). В спектре незамещенного комплекса присутствует четыре слабых полосы, самая высокочастотная из которых при 3086 см⁻¹ принадлежит колебанию $v(C_{\alpha}H)$. Остальные три

Таблица 2

	F ₂ B(aaH)			Отнесение	F ₂ B(aaBr)				Отнесение
v_{reop}	I_{teop}	$\nu_{_{3KC\Pi}}$	$I_{{\scriptscriptstyle {\mathfrak{I}}}\kappa c \pi}$	(РПЭ, %); ТС	v_{reop}	I_{reop}	V _{эксп}	$I_{{\scriptscriptstyle {\mathfrak{I}}}\kappa c \pi}$	(РПЭ, %); ТС
1	2	3	4	5	6	7	8	9	10
		1614	20				1590	10	
1574	40	1614	20	00(59) 00 (00) //	1550	40	1589	10	
15/4	49	15/9	39	$vCO(58), vCC_{\alpha}(20); A'$	1559	42	1557	3/	$VCO(58), VCC_{\alpha}$ (14), $\gamma CH_{3}(10); A'$
1520	100	1557	100	CC (52) SC H(20) A(0) ///	1466	02	1522	1/	
1338	100	1337	100	$VCC\gamma(52), \delta C_{\alpha}H(20), \Delta(9); A^{n}$	1400	93	1491	100	∇CC_{α} (58), ∇CC_{m} (14), Δ (10); A^{*}
1450	1	1420	15	$\delta CH_3(38), \delta CH_3(24), \nu CO(22),$	1442	10	1456	/	$\gamma CH_3(44), \delta CH_3(28),$
1441	0	1439	15	$\delta C_{\gamma} H(20); A^{\mu} \gamma C H_3(60),$					$VCO(16); A^{\prime\prime}$
1427	2	1400	11	$\delta CH_3(26); A'$	1420	1			
1427	3	1423	11	$\gamma CH_3(68), \delta CH_3(24); A'$	1429	1	1420	6	$\gamma CH_3(68), \delta CH_3(14); A'$
142/	0			$\gamma CH_3(66), \delta CH_3(24); A''$	1420	14	1420	10	$\gamma CH_3(68), \delta CH_3(12); A''$
1200	20	1202	20		1412	14	1410	10	$\gamma CH_3(72), \delta C\gamma H(16); A'$
1396	39	1393	38	$vCO(38)$, $γCH_3(28)$, $vC_αC(16)$;	13/3	4	1381	15	$\delta CH_3(68), VCC_m(16); A'$
1308	11	13/8	11	$A'' \delta CH_3(/4), VCC_m(9); A'$	1257	19	1247	12	$VCO(58), \gamma CH_3(32); A''$
1212	11	1339	22	$\delta CH_3(80); A''$	1337	1	1347	15	$\frac{\delta CH_3(94); A''}{\delta CH_3(92)}$
1313	0	1339	3	vCC_{α} (28), vCC_{m} (24), Δ (14),	1322	1	1329	6	$vCC_{\alpha}(28), vCC_{m}(20),$
		11000		VCO(8); A			11210		$\delta CH_3(16), \Delta(9), VCO(8); A'$
i1270		1228	17	vBF(86), 1(9); A'	i1272		1219	24	vBF(85), T(9); A'
12/9	50	1108 ⁱ 1200	1/		12/3	55	$\frac{11}{3}$	34	
1233	32	1200	62		1220	55	1200	26	
1189	1	но	02	$\delta C_{\nu} H(62) = \nu C O(16)$			1150	20	
1107	1	11.0.		$vCC_{10}(10); 4''$					
		ⁱ 1110		$\frac{1}{2} \frac{1}{2} \frac{1}$			ⁱ 1118		vBF(24) = A(15) = vCO(12)
ⁱ 1103		1088	28	VDI(24), VDO(10),	ⁱ 1099		1092	26	$\nu BO(12), \nu CC(8); 4'$
1078	73	^{<i>i</i>} 1104		$vCC_{(12)}, \Delta(10),$	1075	100	ⁱ 1107	20	$VDO(12), VCC_m(0), A$
		1073	23	$V \subset C_m(0), M$			1078	54	
1046	0	1058	13	δCH ₃ (62), Γ(14); <i>A</i> "	1038	3	1044	7	δCH ₃ (60), γCH ₃ (10); <i>A</i> "
1036	3	1048	3	δCH ₃ (58), Γ(19); <i>A</i> '	1036	0			δCH ₃ (42), γCH ₃ (14), Γ(25),
1027	1	1013	15	$\delta C_m H(68), \nu C C_\alpha$ (6),	1036	0			vBF(12); <i>A</i> ′
				$\delta C_{\alpha} H(5); A''$					$\delta C_m H(70), \nu C C_\alpha(6); A''$
^{<i>i</i>} 1036		^{<i>i</i>} 1023		vBF(39), δCH3(32),	1036	9	1033	12	$\nu BF(27), \delta CH_3(20), \Delta(12),$
1027	25	1013	16	$\nu CC_m(8); A'$	1031	13	1016	12	$vC_{\alpha}Br(7); A'$
975	4	996	10	$\Delta(35), \gamma CH_3(12),$	1007	8	1005	29	γCH ₃ (76), νBF(8),
				νCC_{α} (20), $\nu BF(8)$; A'					$\mathrm{vCC}_{\alpha}(8); A'$
951	0	953	13	$\nu CC_m(64), \nu CC_\alpha$ (16),	934	1	944	10	vCC _m (62), vCO(14); A"
				vCO(12); <i>A</i> "					
788	3	812	8	$\gamma C_{\alpha} H(98); A'$	769	1	794	0	νBO(42), νCC _m (16), Δ(22); A'
^{<i>i</i>} 780		ⁱ 867		vBO(58), Δ(14),	ⁱ 779		ⁱ 860		vBO(58), $\Delta(15)$, γ BF ₂ (6); A''
758	5	842	1	$\gamma BF_2(8); A''$	759	5	837	1	
747	5	780	1	$vBO(42), vCC_m(16),$	656	1	653	4	Γ(78), τC—CH ₃ (12); <i>A</i> '
				$\Delta(23); A'$					
676	1	666	1	Γ(80), τC—CH ₃ (12); <i>A</i> '	658	1	656	1	Γ(75), τC—CH ₃ (13); <i>A</i> '

Отнесение полос в ИК спектрах комплексов с X = H, Br ($v_{reop} u v_{sken} - paccчитанные и измеренные частоты в см⁻¹; <math>I_{reop} u I_{sken} paccчитанные и экспериментальные интенсивности в % от максимальных)$

	-		_			-		-	Окончание табл. 2
1	2	3	4	5	6	7	8	9	10
ⁱ 607		^{<i>i</i>} 620		vBF(23), δBF ₂ (22),	ⁱ 611		^{<i>i</i>} 625		$\Delta(23), vBF(23), \delta BF_2(22),$
603	3	616	1	$\Delta(17)$, vBO(16), vCC _m (14); A'	607	3	621	2	vBO(14), vCC _m (12); A'
558	0	558	0	Γ (68), γBF ₂ (7); <i>A</i> "	ⁱ 560		ⁱ 567		Γ(53), γBF ₂ (38); <i>A</i> "
					555	0	560	1	
ⁱ 532		ⁱ 547		$\Delta(45), \gamma BF_2(45); A''$	540	0	539	1	Γ(62), γBF ₂ (26); <i>A</i> "
526	0	541	1						
497	0	515	0	$\Delta(44), \nu CC_{\alpha}$ (14), $\nu CC_{m}(16); A'$	518	1	523	1	$\Delta(32)$, vCC _{α} (20),
									$vC_{\alpha}Br(13), vCC_m(10); A'$
482	0			$\Gamma(65), \tau BF_2(20), \nu BF(11); A'$	482	0			Γ (54), τBF ₂ (11), νBF(9); <i>A</i> '
455	0			Δ(74), vBO(12); <i>A</i> "	474	0			$\Delta(70), \nu BO(10); A''$
346	0			γBF ₂ (77), Γ(10); <i>A</i> "	413	0			Γ (36), νC _α Br(30), δBF ₂ (10); <i>A</i> '
327	0			$\Gamma(64), \delta BF_2(21); A'$	356	0			Γ (24), γBF ₂ (41), νBO(10); <i>A</i> "
290	0			$\Gamma(50)$, γBF ₂ (27), vBO(22); <i>A</i> "	295	0			Δ (66), vBO(14), δ BF ₂ (8); A'
271	0			$\Delta(72), \nu BO(10); A'$	289	0			Γ (41), γBF ₂ (34), νBO(18); <i>A</i> "
					236	0			Δ (56), vC _{α} Br(33); <i>A</i> '
					233	0			$\gamma C_{\alpha} Br(52), \Gamma(39); A'$
					196	0			$\delta C_{\alpha} Br(81), \Delta(10); A''$
165	0			$\Gamma(91); A'$	141	0			τC—CH ₃ (60), Γ(33); <i>A</i> "
132	0			$\Gamma(95); A'$	129	0			τC—CH ₃ (88); <i>A</i> ′
98	0			τС—СН ₃ (86), Г(11); А"	123	0			Γ(57), τC—CH ₃ (30); <i>A</i> "
92	0			$\Gamma(90); A'$	116	0			Γ (43), γC _α Br(23), τBF ₂ (11); <i>A</i> '
33	0			τBF ₂ (86), Γ(14); A'	29	0			$τBF_2(52), Γ(27), γC_αBr(13); A'$

 i — индексы в парах частот, выделенных жирным шрифтом, относятся к комплексам с 10 B, частоты без индексов в этих парах относятся к комплексам с 11 B.

Символические обозначения типов групповых атомных смещений, составляющих НК: v — валентные колебания; δ — плоские деформационные колебания; γ — неплоские деформационные колебания; Δ — плоские колебания кольца; Γ — неплоские колебания кольца; τ — торсионные колебания; н.о. — не определено.

Относительные экспериментальные интенсивности получены в результате разложения полос. Значения экспериментальных интенсивностей в области 900—500 см⁻¹, меньшие 0,5 % округлены до нуля, хотя были измерены с более высокой точностью.

полосы валентных колебаний метильных групп наблюдаются в спектрах всех четырех комплексов в интервале между 3030 и 2927 см⁻¹, при почти неизменных частотах. Эти полосы как нечувствительные к природе α -заместителя не включены в табл. 2 и S.

Обзорные экспериментальные и теоретические спектры комплексов в диапазоне 1750— 500 см⁻¹ представлены на рис. 2.

Диапазон 1750—1300 см⁻¹. Две самые сильные полосы этого диапазона, лежащие между 1580 и 1480 см⁻¹, принадлежат двум смешанным НК хелатного кольца с преимущественным участием связей СО (58—60 %) в первом и CC_α (48—58 %) во втором колебании. Частоты максимумов этих полос симметричного v(CO) и антисимметричного v(CC_α) колебаний снижаются в последовательности $X = H \rightarrow Cl \rightarrow Br \rightarrow I$ по мере утяжеления заместителя X и уменьшения величин силовых постоянных *f* обеих этих связей (*f*_{CO}: 7,391 \rightarrow 7,377 \rightarrow 7,336 \rightarrow 7,306; *f*_{CCα}: 5,753 \rightarrow 5,438 \rightarrow 5,378 \rightarrow 5,272 мдин/Å).

В спектре незамещенного комплекса (рис. 3) разность экспериментальных частот $v(CO) - v(CC_{\alpha})$ этих двух полос (см. табл. 2) равна 22 см⁻¹ — при измеренных их полуширинах более

1129

700 1500 1500 1100 900 700 500 Волновое число, см⁻¹

Рис. 2. Обзорные спектры комплексов $F_2B(aaX)$ в диапазоне 1750—500 см⁻¹

30 см⁻¹, вследствие чего эти две полосы не проявляются раздельно. Как видно из табл. 2 и S и рис. 2, аналогичные разности для остальных соединений превышают значения полуширин отдельных полос, и поэтому в спектрах галогензамещенных комплексов оба максимума наблюдаются по отдельности. Все экспериментальные разности меньше расчетных. Это может быть связано с чувствительностью фрагментов, определяющих формы данных HK, к воздействию внешнего окружения в кристалле.

В области 1440—1300 см⁻¹ в экспериментальных обзорных спектрах всех четырех комплексов различимы три максимума. При разделении экспериментального контура под ним выявлено шесть-семь полос. В этом диапазоне проявляется столько же нормальных колебаний (со случаями совпадения частот), отвечающих движениям метильных групп и некоторых связей хелатного кольца. Одна из полос (1378—1358 см⁻¹) отвечает антисимметричному нормальному колебанию с большим вкладом связи СО.

Несмотря на то, что порядок следования рассматриваемых полос колебаний с участием связей СО и CC_{α} в спектрах комплексов $Cr(aaCl)_3$ и $Cr(aaBr)_3$ [10] совпадает с тем, что получен в настоящей работе, их положения отличаются.

В спектрах всех комплексов имеется несколько менее интенсивных полос с высокочастотной стороны от полосы v(CO) A' и, кроме того, в спектрах замещенных комплексов — одна полоса с низкочастотной стороны от нее, которые отсутствуют в теоретических спектрах; возможно, они обусловлены составными частотами и/или резонансом Ферми.

Рис. 3. Компоненты экспериментального ИК спектра (вверху) и теоретический спектр (внизу) комплекса F₂B(ааH) в диапазоне 1800—1300 см⁻¹

Рис. 4. Компоненты экспериментального ИК спектра (вверху) и симулированный теоретический спектр (внизу) комплекса F₂B(aaI) в диапазоне 1300—900 см⁻¹

Диапазон 1300—900 см⁻¹. В этом диапазоне, согласно расчетам, все рассматриваемые комплексы имеют характеристическое колебание с преимущественным участием группы BF_2 с частотами в интервалах 1279—1271 см⁻¹ ($^{10}BF_2$) и 1233—1227 см⁻¹ ($^{11}BF_2$). Ранее в работе [17] отнесение соответствующей ИК полосы было доказано авторами с помощью 10 В-изотопного обогащения. Для ряда комплексов, включая $F_2B(aaH)$, они наблюдали два максимума поглощения (для $^{10}BF_2$ и $^{11}BF_2$) с низкочастотным сдвигом в 45—55 см⁻¹ при переходе от растворов в CS₂ к кристаллам. Наш анализ составляющих под измеренным спектральным контуром показал, что одному этому колебанию соответствует не одна, а две пары полос групп BF_2 , лежащих при частотах ниже рассчитанных. На рис. 4 приведен пример спектра поглощения комплекса $F_2B(aaI)$ с разделением полос в этом диапазоне.

Понижение частоты авторы работы [17] объяснили искажающим влиянием кристаллической решетки на группу BF₂, мы же обнаружили более тонкие детали спектральных проявлений этого взаимодействия.

В работе [23] методом РСА было показано, что в кристаллическом состоянии у Cl- и Вгзамещенных комплексов два атома фтора каждого комплекса участвуют в разных межмолекулярных взаимодействиях (рис. 5): аксиальный атом F^a связан с атомом углерода вышележащего комплекса, а экваториальный атом F^e образует мостик с атомом X, принадлежащим следующему комплексу этой же горизонтальной цепочки внутри кристалла.

Мы обнаружили в спектрах проявление обоих взаимодействий. В результате этих MMB, по нашим данным, исходное нормальное колебание не только испытывает низкочастотный сдвиг, но и расщепляется на две компоненты. На рис. 4 для полос рассматриваемого характеристиче-

Рис. 5. Расположение хелатных колец в кристалле на примере комплекса F₂B(aaBr), согласно [23]

ского колебания $F_2B(aaI)$ показаны разности частот изотопных компонент, хорошо совпадающие с теоретическими (46 см⁻¹).

Низкочастотная пара изотопных полос (^{*i*}1199 и 1155 см⁻¹) отвечает большему сдвигу в 72 см⁻¹ по отношению к рассчитанным частотам НК изолированного комплекса ^{*i*}1271 и 1227 см⁻¹ (более сильное ММВ), в то время как пара высокочастотных компонент (^{*i*}1211 и 1169 см⁻¹), испытавшая меньший сдвиг в ~58 см⁻¹, обусловлена более слабым межмолекулярным воздействием.

Сравнительный анализ межмолекулярных расстояний в работе [23] позволяет заключить, что экваториальное взаимодействие F^e...X сильнее, чем аксиальное F^a...C (см. рис. 5).

Хотя данные PCA о геометрических параметрах кристаллов I-замещенного комплекса в литературе отсутствуют, его ИК спектр в этой области качественно очень похож на спектры остальных трех комплексов, поэтому резонно полагать, что свойства MMB аналогичны в данном ряду всех четырех соединений.

Отсюда следует, что величина меньшего низкочастотного сдвига данного колебания отвечает более слабой связи между соседними молекулярными слоями в кристалле, а больший сдвиг является характеристикой более сильного "горизонтального" ММВ между звеньями в цепочке одного слоя. Из табл. 2 и S следует, что сила ММВ убывает в ряду: $F_2B(aaH) > F_2B(aaI) > F_2B(aaBr) > F_2B(aaCl)$.

Исходный комплекс BF₂(ааH) имеет в этой области в значительной степени локализованное (62 % РПЭ) деформационное плоское колебание δC_{α} H с теоретической частотой 1189 см⁻¹. Полоса этого HK, которая в кристаллическом состоянии должна быть смещена под действием MMB, по-видимому, накладывается на одну из компонент под сложным контуром так, что не представляется возможным определить ее положение в экспериментальном спектре без привлечения дополнительных данных. Даже замещение α -водорода дейтерием в работе [17] не позволило обнаружить эту полосу в экспериментальном спектре.

Следующий участок спектра (1154—1073 см⁻¹) у всех комплексов также содержит под экспериментальным контуром четыре полосы, в то время как расчеты дают всего одно нормальное колебание. Оно происходит с участием группы BF2, но на этот раз не является характеристическим (см. табл. 2 и S). При разделении полос (пример для F₂B(aaI) на рис. 4) с учетом рассчитанного изотопического сдвига в 33 см⁻¹ под контуром обнаружили две пары полос с разностью частот 30—33 см⁻¹ в каждой паре. Положения одной из этих пар полос сдвинуты по отношению к расчетным в сторону высоких частот примерно на 27 см⁻¹, а второй пары — в среднем на 12 см⁻¹. Качественно эта закономерность имеет место для всех четырех соединений. Расщепление и сдвиг, возможно, происходят из-за двух типов ММВ, в которых непосредственно участвуют как минимум четыре атома от каждого комплекса, однако чувствительность этого нехарактеристического НК к ММВ значительно ниже, чем характеристического колебания с участием группы BF₂. По-видимому, эта низкая чувствительность к MMB связана с тем, что в состав формы этого колебания входят как валентные, так и деформационные ЕКК, чьи отклики на ММВ могут частично или полностью компенсироваться в результирующем изменении частоты колебания, а следовательно, в величине смещения максимума полосы в ИК спектре. Не исключено присутствие в этом интервале дополнительных полос, обусловленных эффектами ангармоничности.

Стоит отметить, что α -галогензамещенные комплексы хрома вообще не имеют полос в диапазоне 1280—1100 см⁻¹ [10].

Низкочастотная часть (до 980 см⁻¹) рассматриваемой области содержит полосы, принадлежащие деформационным колебаниям с участием метильных групп и хелатного кольца, с вовлечением в некоторые из них валентных смещений связи $C_{\alpha}X$ и смешанных движений группы BF₂, причем присутствие атома бора подразумевает изотопическое расщепление соответствующих полос. Однако некоторые полосы НК с участием атома ¹⁰В не определяются в связи с низкими интенсивностями, малым изотопическим расщеплением ($\Delta_i \leq 8 \text{ см}^{-1}$) и обилием компонент под сложным контуром, поэтому они не приведены в таблицах.

Рис. 6. Экспериментальный ИК спектр (вверху) и симулированный теоретический спектр (внизу) комплекса F₂B(aaCl) в диапазоне 900—500 см⁻¹

Самая низкочастотная компонента рассматриваемой группы полос — в узком интервале 1005—996 см⁻¹ — в спектрах всех комплексов соответствует смешанному НК, слабо чувствительному к природе заместителя.

Изолированная полоса в интервале 953—944 см⁻¹ в спектрах всех комплексов обусловлена валентными движениями связей кольца.

Диапазон 900—500 см⁻¹. В этой области единственный из всех комплекс $F_2B(aaH)$ имеет характеристическое неплоское деформационное колебание $\gamma C_{\alpha}H$ с частотой 788 см⁻¹, которое проявляется на спектре полосой при 812 см⁻¹.

На рис. 6 показаны характерные для галогензамещенных комплексов экспериментальный и рассчитанный спектры на примере комплекса F₂B(aaCl) в этом диапазоне.

Два нормальных колебания в интервале 786—755 см⁻¹ для всех комплексов происходят в основном с участием связи ВО и кольца. Одно из них — антисимметричное — имеет значительный изотопический сдвиг (19—21 см⁻¹). Отнесение полос этого колебания доказано в работе [17] с помощью изотопного обогащения ¹⁰В, где для незамещенного комплекса зарегистрированы максимумы при 865 (¹⁰В) и 842 (¹¹В) см⁻¹ — по нашим данным 867 и 842 см⁻¹ (см. табл. 1). На рис. 6 у комплекса F₂B(aaCl) полосы этого НК расположены при 852 и 829 см⁻¹. На спектре всех комплексов изотопическая пара полос симметричного колебания абсолютных численных значений величин этого сдвига в ряду заместителей X (F₂B(aaH) ≥ F₂B(aaI) > F₂B(aaBr) > F₂B(aaCl)) коррелирует с последовательностью низкочастотных сдвигов полос vBF. Таким образом, сопоставление описанного выше поведения этих полос с поведением полос колебания vBF позволяет предположить, что этот высокочастотный сдвиг также обусловлен межмолекулярными взаимодействиями в кристалле. Второе из этих колебаний, симметричное, проявляется в случае хлорзамещенного комплекса при 791 см⁻¹, его рассчитанный изотопический сдвиг порядка 1 см⁻¹.

Изолированная полоса в интервале 666—652 см⁻¹ в спектрах всех комплексов обусловлена неплоскими вибрациями кольца и крутильными движениями групп CH₃.

Под контуром полосы 630—616 см⁻¹ удалось выделить изотопические компоненты с расщеплением $\Delta_i = 4 \text{ см}^{-1}$, что согласуется с расчетной разностью для нормального колебания с участием атома бора и хелатного кольца. Вероятно, из-за сложности состава формы этого НК положение этой полосы слабо чувствительно к ММВ. Ее отнесение согласуется с приведенным в работе [17]. В интервале 574—514 см⁻¹ присутствуют три нормальных колебания, два из которых антисимметричные и одно симметричное. Для замещенных комплексов в состав последнего НК входит валентная координата $C_{\alpha}X$, так что волновое число соответствующей полосы снижается в ряду X = Cl, Br, I. Два антисимметричных колебания происходят с участием кольца и группы BF₂.

Диапазон ниже 500 см⁻¹. Табл. 2 и S включают, за отсутствием экспериментальных данных, только результаты расчетов НК. В интервале 500—165 см⁻¹ проявляются деформационные колебания кольца, групп BF₂, а также валентные и деформационные колебания с участием BO. Здесь же имеется несколько НК кольца со значительными вкладами ЕКК с участием заместителя. К составу формы колебаний с волновыми числами ниже 165 см⁻¹ примешиваются крутильные движения групп CH₃.

ЗАКЛЮЧЕНИЕ

Проведен анализ составляющих сложного спектрального контура комплексов $F_2B(aaX)$ (X = H, Cl, Br, I) с хорошим совпадением экспериментальных и рассчитанных частот для комплексов разного изотопного состава, что позволило выполнить детальное отнесение ИК полос. Обнаружены и проанализированы некоторые спектральные закономерности колебаний с участием связей CO и CC в высокочастотной области, коррелирующие с рентгеноструктурными данными. Выделены характеристические и нехарактеристические колебания, обладающие различной чувствительностью к природе гало-заместителя и MMB в кристалле. Количественно оценены спектральные проявления двух типов обнаруженых ранее методом PCA межмолекулярных взаимодействий — по полосам характеристических валентных колебаний с участием групп BF₂, которые испытывают расщепление и низкочастотный сдвиг. Обсуждено поведение полос нехарактеристических колебаний под действием MMB. Полученные результаты имеют ценность для дальнейшего изучения более сложных β -дикетонатных комплексов дифторида бора с привлечением методов колебательной спектроскопии.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (государственное задание, проект 16.5904.2017/БЧ).

Авторы благодарны П.Н. Рябченко за содействие и Е.И. Войт за ценные консультации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Sakai A., Tanaka M., Ohta E., Yoshimoto Y., Mizuno K., Ikeda H. // Tetrahedron Lett. 2012. 53. P. 4138 4141.
- 2. Bukvetskii B.V., Fedorenko E.V., Mirochnik A.G., Beloliptsev A.Yu. // J. Struct. Chem. 2012. 53, N 1. P. 73 81.
- 3. Mirochnik A.G., Fedorenko E.V., Nagorny I.G., Pavlov A.N. // Opt. Spectr. 2013. 114, N 4. P. 568 569.
- 4. Zojer E., Wenseleers W., Halik M. et al. // Chem. Phys. Chem. 2004. 5, N 7. P. 982.
- 5. Gerasov A.O., Shandura M.P., Kovtun Yu.P. // Dyes and Pigments. 2008. 77. P. 598 607.
- Kulchin Yu.N., Vitrik O.B., Zhizhchenko A.Yu., Mirochnik A.G., Fedorenko E.V. // Opt. Spectr. 2012. 112, N 4. – P. 514 – 518.
- 7. Vovna V.I., Tikhonov S.A., Kazachek M.V., Lvov I.B., Korochentsev V.V., Fedorenko E.V., Mirochnik A.G. // J. Electron Spectr. Related Phenom. 2013. **189**. P. 116 121.
- 8. Vovna V.I., Kazachek M.V., Lvov I.B. // Opt. Spectr. 2012. 112, N 4. P. 497 505.
- 9. *Tikhonov S.A., Vovna V.I., Gelfand N.A., Osmushko I.S., Fedorenko E.V., Mirochnik A.G. //* J. Phys. Chem. A. 2016. **120**. P. 7361 7369.
- 10. Dolati F., Tayyari F., Vakili M., Ebrahimi A. // J. Mol. Struct. 2016. 1103. P. 1 8.
- Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds. New York, London: John Wiley & Sons, 1963.
- Tayyari S.F., Rahemib H., Nekoei A.R., Zahedi-Tabrizi M., Wang Y.A. // Spectrochim. Acta A. 2007. 66. – P. 394 – 404.
- 13. Diaz-Acosta I., Baker J., Cordes W., Pulay P. // J. Phys. Chem. A. 2001. 105. P. 238.

- 14. Tayyari S.F., Bakhshi T., Mahdizadeh S.J., Mehrani S., Sammelson R.E. // J. Mol. Struct. 2009. 938. P. 76–81.
- 15. *Slabzhennikov S.N., Ryabchenko O.B., Kuarton L.A. //* Russ. J. Coord. Chem. 2008. **34**, N 7. P. 551 553.
- 16. Brown N.M.D., Bladon P. // J. Chem. Soc. A. 1969. N 3. P. 526 532.
- 17. Kopteva T.S., Medvedeva V.G., Rodionov A.N., Ruchyova N.I., Skoldinov A.P., Shigorin D.N. // Zh. Obs. Khim. (Rus.). 1978. 48. P. 1587 1590.
- 18. Svistunova I.V., Fedorenko E.V. // Russ. J. Gen. Chem. 2008. 78, N 8. P. 1515 1523.
- 19. Granovsky A.A. Firefly version 8.1.0, http://classic.chem.msu.su/gran/firefly/index.html.
- 20. Basis Set Exchange: https://bse.pnl.gov/bse/portal.
- 21. *Zhurko G.A., Zhurko D.A.* Chemcraft graphical program for visualization of computed results, http: // www.chemcraftprog.com.
- 22. Mirochnik A.G., Bukvetskii B.V., Gukhman E.V., Zhikhareva P.A., Karasev V.E. // Russ. J. Gen. Chem. 2002. 72. P. 737 740.
- 23. Svistunova I.V., Gerasimenko A.V., Korochentsev V.V., Shapkin N.P., Vovna V.I. // J. Struct. Chem. 2012. 53, N 6. P. 1105 1110.