2012. Том 53, № 2

Март – апрель

C.305 - 309

УДК 546.161:546.81:543.429.23

ИОННАЯ ПОДВИЖНОСТЬ И ПРОВОДИМОСТЬ В PbSnF4, ДОПИРОВАННОГО ФТОРИДОМ ЩЕЛОЧНОГО МЕТАЛЛА ПО ДАННЫМ ЯМР И ИМПЕДАНСНОЙ СПЕКТРОСКОПИИ

© 2012 В.Я. Кавун*, А.И. Рябов, И.А. Телин, А.Б. Подгорбунский, С.Л. Синебрюхов, С.В. Гнеденков, В.К. Гончарук

Учреждение Российской академии наук Институт химии ДВО РАН, Владивосток

Статья поступила 31 марта 2011 г.

С доработки — 13 мая 2011 г.

Методами ЯМР и импедансной спектроскопии изучены ионная подвижность и ионная проводимость в кристаллических образцах в системах $PbSnF_4$ —MF (M = Li, Na, K) в диапазоне температур 150—473 К. Установлено, что параметры спектров ЯМР ¹⁹F, виды ионных движений и величина ионной проводимости в соединении $PbSnF_4$, допированном фторидом щелочного металла, определяются температурой, природой и концентрацией щелочного катиона. Удельная проводимость кристаллических образцов в системах $PbSnF_4$ —MF (M = Li, Na, K) довольно высока при комнатной температуре и, следовательно, не исключена возможность их использования при создании функциональных материалов с высокой ионной (суперионной) проводимостью.

Ключевые слова: кристаллические образцы в системах PbSnF₄—MF, спектры ЯМР (¹⁹F, ⁷Li), ионная подвижность, ионная проводимость.

Одним из направлений в исследовании фторидных систем является изучение ионной подвижности и ионного транспорта. Ионные проводники с высокой проводимостью по ионам фтора являются перспективными материалами для различных электрохимических устройств, химических сенсоров и др. Ионы фтора, являясь наиболее легкими из анионов (кроме гидридиона), обладают достаточно высоким значением окислительно-восстановительного потенциала, что создает благоприятные условия для использования фторидов в батареях с высокой удельной мощностью. К фторсодержащим соединениям с высокой ионной проводимостью можно отнести фториды тяжелых металлов, такие как LaF₃, CeF₃, PbF₂, SnF₂, BiF₃ и материалы на их основе [1]. Это объясняется высокой поляризуемостью большеразмерных катионов (низкой энергией ионизации), что приводит к снижению энергии активации ионного переноса. Среди многочисленных фторсодержащих соединений и твердых растворов, имеющих высокую ионную проводимость, несомненный интерес вызывают твердые электролиты на основе SnF_2 [2], среди которых наилучшими электрофизическими свойствами обладают соединения состава MSnF₄ и, в частности, соединение PbSnF₄ [2-8]. Отметим, что структура и свойства соединения PbSnF₄ (включая фазовые переходы, ионную подвижность, механизмы ионного транспорта и ионной проводимости и др.) рассмотрены в ряде работ [2-12], а некоторая неоднозначность в результатах этих исследований связана со сложным полиформизмом, характерным для этого соединения [2, 7, 10].

Известно, что природа внешнесферного катиона оказывает существенное влияние на строение и свойства комплексных фторстаннатов(II) [2, 10, 13]. Варьирование состава катионной подрешетки зачастую приводит к образованию соединений, различающихся строением и энергетикой ионных движений. Определенный интерес вызывает вопрос, как изменится ха-

^{*} E-mail: kavun@ich.dvo.ru

рактер динамических процессов в соединении PbSnF₄, в котором часть катионов замещена другим катионом. Примером сказанному могут служить результаты исследования ионной проводимости в тетрагональном PbSnF₄, в котором часть ионов Pb²⁺ и/или Sn²⁺ были замещены катионами Zr⁴⁺, Al³⁺, Ga³⁺, In³⁺ и Na⁺ [14]. Нами были получены (твердофазным способом в вакууме при 250—260 °C) кристаллические образцы в системах PbSnF₄—MF (M = Li, Na, K), и с целью более полного понимания характера динамических процессов (ионной подвижности и ионной проводимости) в них проведено сравнение данных ЯМР ¹⁹F (спектрометр AV-300, частота 282,404 МГц) и импедансной спектроскопии для этих образцов с данными для PbSnF₄ в зависимости от температуры, природы и концентрации щелочного металла.

ИОННАЯ ПОДВИЖНОСТЬ. ДАННЫЕ ЯМР

a) PbSnF₄. При 150 K спектр ЯМР ¹⁹F модельного соединения PbSnF₄ (I) (рис. 1) состоит из асимметричной линии (второй момент $S_2(F) \approx 21 \ \Gamma c^2$, ширина спектра $\Delta H \approx 42.4 \ \kappa \Gamma \mu$ и химический сдвиг XC = 151 м.д.) и судя по отсутствию плато на зависимости S₂(F) в области 200-150 К и данным [8] жесткая решетка фторидной подсистемы наблюдается при температурах ниже 145 К. С повышением температуры до 180 К происходит трансформация спектра (см. рис. 1), связанная с появлением "узкой" компоненты (ХС = 131 м.д.) что свидетельствует о развитии локальной подвижности во фторидной подрешетке соединения І. Интенсивность этой компоненты быстро растет с повышением температуры и одновременно происходит резкое сужение спектра в относительно небольшом температурном интервале (180-200 К). В области температур 210-240 К двухкомпонентный спектр трансформируется в узкую практически симметричную лоренцевую линию (~85 %) с $\Delta H \approx 3$ кГц и XC = 126 м.д. Ширина узкой компоненты (≈3 кГц) практически остается неизменной в области температур 240—300 К. При повышении температуры до 420 К новое сужение линии (до ≈2 кГц, S₂(F) < 0,1 Гс²) связано с фазовым переходом исходной моноклинной фазы PbSnF₄ в тетрагональную [8, 10]. Параметры спектра ЯМР в области температур 300-420 К свидетельствуют о главенствующей роли диффузии во фторидной подрешетке тетрагонального PbSnF₄.

б) **PbSnF₄**, допированный фторидом щелочного металла MF. Параметры спектров ЯМР ¹⁹F и характер ионной подвижности в соединении PbSnF₄, допированном фторидом щелочного металла, определяются природой щелочного катиона и его концентрацией. Варьирование температуры в диапазоне 150—420 К в целом не влияет на характер трансформации спектров ЯМР: широкая асимметричная линия ($\Delta H \sim 40$ —45 кГц ниже 160 К) \rightarrow двухкомпонентный

спектр (170—270 К) \rightarrow узкая симметричная линия ($\Delta H \sim 3$ —1,8 кГц в области 300—420 К). Трансформация спектров ЯМР в диапазоне 150—420 К связана с изменением вида ионной подвижности во фторидной подрешетке при вариациях температуры: жесткая решетка \rightarrow локальные движения \rightarrow трансляционная диффузия ионов фтора.

Допирование PbSnF₄ фторидом лития оказывает положительное влияние на характер подвижности во фторидной подрешетке. Добавка LiF (5 %) приводит к понижению энергии активации локальных движений во фторидной подрешетке, о чем свидетельствуют меньшая ширина спектра ЯМР (19,9 против 26,5 кГц у PbSnF₄ при 180 K) и увеличение доли вы-

Puc. 1. Трансформация спектров ЯМР ¹⁹F соединения PbSnF₄ и кристаллического образца 90PbSnF₄—10LiF при изменении температуры

сокоподвижных ионов фтора при 180 К в образце 95PbSnF₄—5LiF (**II**) по сравнению с PbSnF₄. Двухкомпонентный характер спектра ЯМР сохраняется до 250—270 К в зависимости от концентрации добавки LiF. При комнатной температуре спектр ЯМР образцов PbSnF₄ с 5, 10 и 15 % добавкой LiF (по данным РФА решетка образцов отвечает α -PbSnF₄) состоит из узкой симметричной линии с ΔH менее 2,6 кГц (см. рис. 1) и XC ~126—129 м.д. С повышением температуры до 420 К спектр сужается до 2,3 кГц для образца **II** и менее 2 кГц для образцов состава 90PbSnF₄—10LiF (**III**) и 85PbSnF₄—15LiF (**IV**). Учитывая величину ΔH и S₂(F) для образцов **II**—**IV** в области 360—420 К (0,25—0,1 Гс²), можно констатировать, что основным видом ионных движений является диффузия ионов фтора. По данным ЯМР ⁷Li возможность появления диффузии ионов лития зависит от концентрации фторида лития в образце.

Спектр ЯМР ⁷Li образца 95PbSnF₄—5LiF во всем исследованном интервале температур (300—420 K) состоит из одиночной практически симметричной линии с шириной ≈23.5 кГц. что свидетельствует об отсутствии локальных движений (диффузии) в литиевой подрешетке. Иная ситуация наблюдается в спектрах ЯМР ⁷Li образца 90PbSnF₄—10LiF. В области температур 220—300 К спектр ЯМР образца III представлен одиночной линией, параметры которой $(\Delta H \approx 23 \text{ к}\Gamma \mu \text{ K} S_2(\text{F}) \approx 45 \text{ }\Gamma \text{c}^2)$ свидетельствуют о жесткости позиций ионов лития в кристаллической решетке. Появление "узкой" компоненты ($\Delta H \approx 3$ кГп) зафиксировано выше 300 К. и дальнейшее повышение температуры приводит к росту интенсивности и сужению этой линии. При 420 К спектр ЯМР ⁷Li образца III состоит из узкой и широкой компонент ($\Delta H \approx 1.5$ и 22,5 кГц соответственно). Данные ЯМР ⁷Li свидетельствуют о переходе части ионов лития (при 420 К до 10 % от общего числа ионов Li в образце) к диффузии. Что касается образца $85PbSnF_4$ —15LiF, то в области 300—350 K спектр ЯМР ⁷Li представлен одиночной симметричной линией, ширина которой («24 кГц) остается постоянной в интервале температур 300-420 К. "Узкая" компонента в спектре ($\Delta H \approx 4 \, \mathrm{kFu}$) появляется выше 360 К, однако ее интенсивность с повышением температуры растет незначительно и при 420 К составляет ≈2 % от общей площади спектра ЯМР ⁷Li.

B системе PbSnF₄—NaF (по данным PΦA решетка образцов отвечает β-PbSnF₄) более низкая энергия активации перехода ионных группировок от жесткой решетки к локальным движениям характерна для образца 90PbSnF₄—10NaF (V). В спектрах ЯМР ¹⁹F последнего наблюдается более сильное сужение резонансной линии в исследованной области температур (150 \rightarrow \rightarrow 180 \rightarrow 300 \rightarrow 420 K), чем в спектрах образца 85PbSnF₄—15NaF (VI): 41 \rightarrow 25,6 \rightarrow 2,3 \rightarrow \rightarrow 1,8 кГц и 41 \rightarrow 28 \rightarrow 2,6 \rightarrow 1,95 кГц соответственно. Значения второго момента (< 0,1 Гс²) и ширины спектров ЯМР ¹⁹F образцов V и VI выше 400 K свидетельствуют о диффузионном характере движений ионов фтора в этих образцах. Аналогичные изменения в параметрах спектров ЯМР ¹⁹F наблюдаются для образцов 95PbSnF₄—5KF (VII) и 90PbSnF₄—10KF (VIII) (решетки этих образцов соответствуют решеткам α- и β-PbSnF₄ соответственно — данные РФА). При одинаковых температурах более низкие значения ΔH характерны для образца с меньшей концентрацией KF. В частности, ширина линий в спектрах ЯМР образцов VII и VIII при 420 K равны 1,5 и 1,8 кГц соответственно. Данные ЯМР свидетельствуют о том, что трансляционная диффузия ионов фтора является доминирующим процессом во фторидной подрешетке PbSnF₄, допированном фторидом калия, в области температур 350—420 K.

ИОННАЯ ПРОВОДИМОСТЬ. ДАННЫЕ ИМПЕДАНСНОЙ СПЕКТРОСКОПИИ

Ионная проводимость исследована методом электрохимической импедансной спектроскопии на поликристаллических образцах, спрессованных в таблетки диаметром 13 мм, по методике, описанной ранее в работе [15]. Основные характеристики ионной проводимости образцов представлены на рис. 2 и в таблице. Энергию активации ионного переноса (E_a) рассчитывали по формуле $\sigma T = A \exp(-\Delta E_a/kT)$, где A — предэкспоненциальный множитель. Для всех образцов на аррениусовской зависимости (см. рис. 2) может быть выделено несколько линейных участков, что обусловлено протеканием в исходной тетрагональной модификации β -PbSnF₄ размы-

Рис. 2. Температурные зависимости ионной проводимости соединения PbSnF₄, допированного фторидом щелочного металла

того фазового перехода [7], температурная протяженность которого зависит от степени допирования фторидами металлов(I). Удельная проводимость σ образцов в системах PbSnF₄—MF (M = Li, Na, K) довольно высока уже при комнатной температуре и для некоторых из них соизмерима с проводимостью исходного PbSnF₄. В частности, допирование PbSnF₄ фторидом лития (5— 10 мол.%) приводит к увеличению проводимости в высокотемпературной области (выше 370 K), а для образца с 10 мол.% — практически во всем исследуемом

температурном диапазоне (см. таблицу). Учитывая данные ЯМР ⁷Li, можно предположить, что более высокая электропроводность образца 90PbSnF₄—10LiF по сравнению с PbSnF₄ обусловлена увеличением концентрации ионов Li⁺, осуществляющих перенос заряда. Причем 10 % концентрация ионов лития в образцах в системе PbSnF₄—LiF является оптимальной для достижения максимальных значений проводимости. Снижение проводимости в образце 85PbSnF₄—15LiF может быть объяснено концентрационно-диффузионными ограничениями подвижности носителей заряда. Замена фторида лития на фториды натрия и калия при равных концентрациях фторидов металлов первой группы также снижает проводимость. Вероятнее всего, такой эффект обусловлен меньшим размером ионов лития по сравнению с ионами натрия и калия при более высокой его поляризующей способности, что, по совокупности, сказывается на подвижности ионов, участвующих в переносе заряда. В целом, величина о при температуре 450 K для

Образец	ΔT , K	$E_{\rm a}$, эВ	lg(A), (См/см) · К	σ, См/см
I PbSnF ₄	312—371	0,40±0,01	6,2±0,2	1,5×10 ^{−3} (300 K)
	382—441	0,18±0,01	$1,6\pm0,1$	$1,7 \times 10^{-2}$ (373 K)
	442—450	, ,		$4,0\times10^{-2}$ (450 K)
II 95PbSnF ₄ —5LiF	303—363	0,45±0,01	5,8±0,2	8,0×10 ⁻⁴ (300 K)
	392—462	0,21±0,01	0,9±0,2	1,8×10 ⁻² (373 K)
				5,9×10 ⁻² (450 K)
	462—300			1,3×10 ⁻³ (300 K)
III 90PbSnF ₄ —10LiF	303—382	0,39±0,01	5,8±0,2	1,7×10 ⁻³ (300 K)
	392—462	$0,15\pm0,01$	0,8±0,2	1,7×10 ⁻² (373 K)
	451—355	$0,08{\pm}0,01$	0,15±0,06	6,5×10 ⁻² (450 K)
IV 85PbSnF ₄ —15LiF	293—363	0,39±0,01	6,25±0,18	1,7×10 ⁻³ (300 K)
	363—473	$0,15\pm0,01$	$1,3\pm0,1$	1,15×10 ⁻² (373 K)
				2,5×10 ⁻² (450 K)
VI 5PbSnF ₄ —15NaF	322—392	0,45±0,01	7,3±0,2	1,1×10 ⁻⁴ (300 K)
	392—451	0,31±0,01	$3,75\pm0,13$	1,7×10 ⁻³ (373 K)
				1,0×10 ⁻² (450 K)
VIII 90PbSnF ₄ —10KF	313—373	0,45±0,01	7,45±0,15	2,7×10 ⁻⁴ (300 K)
	383—473	0,17±0,01	$1,75\pm0,13$	4,6×10 ⁻³ (373 K)
				1,4×10 ⁻² (450 K)

Характеристики ионной проводимости некоторых кристаллических образцов (мол.%) в системах PbSnF₄—MF (M = Li, Na, K)

исследованных образцов (за исключением кристаллических образцов 95PbSnF₄—5LiF и 90PbSnF₄—10LiF) несколько ниже, чем для чистого PbSnF₄ (см. таблицу), хотя порядок этой величины для всех образцов, включая I, одинаковый (~ 10^{-2} См/см). Такие высокие значения проводимости позволяют рассматривать исследованные кристаллические образцы в качестве возможной основы при создании функциональных материалов с высокой ионной (суперионной) проводимостью.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 11-03-229).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Трновцова В., Федоров П.П., Фурар И. //* Электрохимия. 2009. **45**. С. 668 678.
- 2. Сорокин Н.И. // Неорган. материалы. 2004. 40. С. 1128 1136.
- 3. Vilminot S., Perez G., Granier W., Got L. // Solid State Ion. 1981. 2. P. 87 90.
- 4. Hagenmuller P., Reau J-M., Lucat C. et al. // Solid State Ion. 1981. 3-4. P. 341 345.
- 5. Denes G., Milova G., Madamba M.C., Perfiliev M. // Solid State Ion. 1996. 86-88. P. 77 82.
- 6. Сорокин Н.И., Соболев Б.П., Брайтер М. // Физ. тв. тела. 2002. **44**. С. 1506 1512.
- 7. Сорокин Н.И., Федоров П.П., Никольская О.К. и др. // Неорган. материалы. 2001. **37**. С. 1378 1382.
- 8. Ahmad M.M., Yamada K., Okuda T. // J. Phys.: Condens. Matter. 2002. 14. P. 7233 7244.
- 9. Berastegui P., Hull S. // Solid State Ion. 2002. **154 155**. P. 605 608.
- 10. Бучинская И.И., Федоров П.П. // Успехи химии. 2004. 73. С. 404 434.
- 11. Ahmad M.M., Yamada K., Okuda T. // Solid State Ion. 2004. 167. P. 285 292.
- 12. Murray E., Brougham D.F., Stankovic J., Abrahams I. // J. Phys. Chem. 2008. 112. P. 5672 5678.
- 13. *Кавун В.Я.* // Журн. структур. химии. 1998. **39**. С. 61 65.
- 14. *Kanno R., Nakamura S., Kawamoto Y. //* Solid State Ion. 1992. **51**. P. 53 59.
- 15. Кавун В.Я., Слободюк А.Б., Синебрюхов С.Л. и др. // Электрохимия. 2007. 43. С. 643 656.