536.71 + 532.593:546.3

МАЛОПАРАМЕТРИЧЕСКОЕ УРАВНЕНИЕ СОСТОЯНИЯ МЕДИ

С. Д. Гилёв

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Hoвосибирск, gilev@hydro.nsc.ru

Для описания ударного сжатия конденсированного вещества предложено малопараметрическое уравнение состояния вещества в форме Ми — Грюнайзена. Уравнение основывается на постулируемой зависимости коэффициента Грюнайзена от удельного объема и температуры $\Gamma(V,T)$, качественно описывающей сжатие металлических образцов в сильных ударных волнах. По зависимости $\Gamma(V,T)$ с использованием обобщенной формулы для функции Γ рюнайзена найдена кривая холодного сжатия. Тепловые колебания кристаллической решетки описываются в приближении Дебая. Построенная функция Грюнайзена имеет два свободных параметра. Значения других коэффициентов уравнения состояния определяются по справочным данным для вещества при нормальных условиях, а также из предельных значений в экстремальных условиях. Апробация модели выполнена для меди. Построенное уравнение состояния описывает кривую холодного сжатия, нормальную изотерму, ударную сжимаемость, а также кривые разгрузки меди в диапазонах плотности, давления и внутренней энергии, для которых доступны опытные данные. Выполнены расчеты термодинамических характеристик меди (изоэнтропический модуль объемного сжатия, скорость звука, температура Дебая, теплоемкость, коэффициент линейного расширения, температура плавления). Сравнение с имеющимися на сегодняшний день опытными данными показывает, что построенная модель, несмотря на свою простоту, позволяет единообразно описать большой массив экспериментов в области высоких плотностей энергии.

Ключевые слова: уравнение состояния вещества, металлы, коэффициент Грюнайзена, большие давления и температуры, ударное сжатие, высокая плотность энергии, термодинамические свойства.

DOI 10.15372/FGV20180412

ВВЕДЕНИЕ

Одной из актуальных задач физики высоких плотностей энергии является построение уравнения состояния вещества, пригодного для расчетов процессов высокоскоростного соударения, электрического взрыва, ударноволновых явлений, кумулятивных течений, воздействия потоков излучения и т. д. В настоящее время широкое распространение получили полуэмпирические уравнения состояния [1–7]. В основе полуэмпирического подхода лежит та или иная физически обоснованная зависимость между параметрами состояния вещества, качественно описывающая поведение материала в определенной области фазовой диаграммы вещества. Неизвестные значения коэффициентов определяются из условия согласования предлагаемого уравнения с экспериментальными данными. Построенное таким образом уравнение состояния справедливо, строго говоря, в той области состояний (p, V, T) (давление, удельный объем, температура), которая

использовалась для нахождения неизвестных констант. Возможность распространения уравнения состояния на более широкую область $(p,\,V,\,T)$ является дискуссионной.

Для описания поведения вещества в большой области физических состояний от твердого тела до плотной плазмы получили развитие широкодиапазонные уравнения состояния [8–14]. Наиболее разработанные широкодиапазонные уравнения описывают обширный спектр состояний вещества, включая фазовые переходы, плазменное состояние, область теплого плотного вещества, а также диапазон экстремально больших давлений, когда деформируются электронные оболочки атомов. Своеобразной платой за расширение доступных для анализа состояний является значительное усложнение полуэмпирической модели. Обычно широкодиапазонное уравнение состояния включает в себя несколько областей, в каждой из которых используются свои функциональные зависимости и параметры. Это приводит к большому количеству подгоночных констант, каждая из которых может быть найдена с определенным произволом. Так, уравнение состояния [8] содержит 26 свободных параметров, уравнение [13] — 23 свободных параметра.

В настоящее время вместе с широкодиапазонными уравнениями состояния развиваются подходы, основанные на ограничении числа свободных параметров, — малопараметрические уравнения состояния [15–20]. Такие уравнения не претендуют на описание всего спектра физических состояний вещества, но могут быть полезны как в ограниченной области (p, V, T), так и в численных расчетах сложных процессов, где уравнение состояния не является определяющей частью задачи, а для понимания физического результата необходимо обеспечить прозрачность модели.

Подобная ситуация характерна, в частности, для задач магнитной гидродинамики, где кроме уравнений механики сплошной среды используются уравнения Максвелла в квазистационарном приближении. В задачах ударноволновой магнитной кумуляции [21–25] плотность электромагнитной энергии, генерируемой на оси системы, сильно зависит от сжимаемости и электропроводности рабочего вещества, испытывающего при ударном сжатии фазовый переход диэлектрик — металл. В настоящее время сжимаемость высокопористых материалов, которые используются в качестве рабочих веществ, известна со значительными погрешностями ($10 \div 15 \%$ по плотности). Электрические свойства подобных материалов изучены в ограниченной области ударных давлений [26, 27]. При этом относительная погрешность определения электропроводности также оказывается значительной (обычно $\geq 10 \div 15$ %). В силу имеющихся неопределенностей в параметрах вещества, для гидродинамического блока подобных задач достаточна погрешность определения давления на уровне $10 \div 20$ %, что считается неприемлемым для современных прецизионных уравнений состояния. Особое внимание при разработке уравнения состояния должно быть обращено на логичность, непротиворечивость и согласованность построений, использование апробированных физических моделей, минимальное количество произвольных допущений и подгоночных констант.

Одним из наиболее удачных малопараметрических уравнений состояния вещества, пригодных для описания состояния при ударном сжатии, является модель А. М. Молодца [28,

29]. В работах [28, 29] в основе термодинамики ударного сжатия лежит построение коэффициента Грюнайзена в зависимости от удельного объема и температуры $\Gamma(V,T)$. С использованием известных теоретических зависимостей по функции Грюнайзена может быть найдена изотерма вещества и характеристическая температура. В предложенную автором аналитическую зависимость $\Gamma(V,T)$ входит единственный свободный параметр, который находится из сравнения модельной кривой с экспериментальной ударной адиабатой или изотермой. Автором построено термодинамически согласованное уравнение состояния, что позволило описать результаты экспериментов со сплошными материалами до сжатий в $2 \div 3$ раза, давлений до сотен гигапаскалей и температур около 5000 К.

Следуя оригинальной идее А. М. Молодца [28, 29], Е. И. Краус [30] дополнил соотношения для давления и внутренней энергии электронными членами, что позволило получить хорошее описание для области больших температур.

Модель [28, 29] не может описать имеющиеся экспериментальные данные по ударному сжатию конденсированного вещества в области экстремально большой плотности, так же как и в области малой плотности. Состояния с малой плотностью реализуются при ударном сжатии высокопористых материалов и характеризуются определяющим влиянием температурного нагрева. Ограничения модели обусловлены тем, что предлагаемая зависимость коэффициента Грюнайзена от удельного объема и температуры, являясь, несомненно, физически обоснованной, фактически получена в приближении, когда отклонение от состояния сплошного вещества при нормальных условиях полагается малым. Естественно, что такой подход не «работает» для экстремально больших и малых плотностей. Модификация модели [28, 29 для области больших температур приводит к необходимости введения дополнительных подгоночных констант. Важно, что используемая зависимость коэффициента Грюнайзена от удельного объема характеризуется особенностью в области растяжения, что не позволяет использовать модель [28, 29] для этих усло-

В [31] предложено малопараметрическое уравнение состояния, пригодное для расчета ударных свойств металлов и смесей. В [31] ко-

эффициент Грюнайзена зависит только от температуры, а зависимостью от удельного объема пренебрегают. Модель [31] имеет четыре подгоночных параметра. Авторы получили неплохое описание ударного сжатия сплошных и пористых металлов в широкой области ударных нагрузок. Отметим, что игнорирование зависимости коэффициента Грюнайзена от удельного объема ограничивает область применения предлагаемого подхода. Определяемый подобным образом коэффициент Грюнайзена становится в большей степени подгоночным параметром и утрачивает свой физический смысл. Модель [31] не дает корректного поведения холодного давления в области разрежения и не применима для нахождения ряда важнейших характеристик вещества (изотерма и т. п.).

Большинство работ, посвященных исследованию состояния вещества при высоких плотностях энергии, основывается на использовании уравнения Ми — Грюнайзена

$$p = p_c(V) + \frac{\Gamma(V, T)}{V} (E - E_c(V)).$$

Здесь $p_c(V)$ — холодная составляющая давления, E — удельная внутренняя энергия, $E_c(V)$ — потенциальная компонента внутренней энергии.

Коэффициент Грюнайзена $\Gamma(V,T)$, являясь фундаментальной характеристикой твердого тела, определяет в рамках модели Грюнайзена связь между тепловыми компонентами давления и энергии. Начиная с [32] чаще всего рассматривается зависимость коэффициента Грюнайзена только от удельного объема. Для зависимости $\Gamma(V)$ предложено большое количество аналитических формул 9, 10, 17, 28, 33–37. В ряде публикаций коэффициент Грюнайзена представлен в виде функции удельного объема и температуры (или внутренней энергии) [13, 14, 29, 31, 38–43]. Общей особенностью подобных работ (за исключением [28, 29]) является то, что зависимости для потенциальной компоненты внутренней энергии $E_c(V)$ и для коэффициента Грюнайзена $\Gamma(V,T)$ строятся независимо. Это приводит к увеличению количества подгоночных констант и служит источником возможной термодинамической несогласованности полуэмпирической модели. Можно констатировать, что в настоящее время общий вид зависимости $\Gamma(V,T)$ достоверно неизвестен.

В данной работе в рамках полуэмпирического подхода предлагается новое выраже-

ние для коэффициента Грюнайзена $\Gamma(V,T)$, качественно описывающее поведение металлических образцов в сильных ударных волнах. Используя связь между коэффициентом Грюнайзена $\Gamma(V,T)$ и холодным давлением p_c , находим холодные компоненты давления и внутренней энергии. Далее на основе приближения Дебая записывается свободная энергия и формулируется малопараметрическое уравнение состояния вещества в форме Ми — Грюнайзена, пригодное для описания процессов при сильном ударно-волновом сжатии и последующей разгрузке.

В настоящей работе данный подход реализован для меди. Выбор материала обусловлен тем, что медь является эталонным материалом в области высоких давлений и температур (как при статическом, так и при ударно-волновом сжатии). Для меди имеется большое количество опытных данных и расчетных зависимостей. Сравнение предсказаний модели (кривые холодного сжатия и изотермы, ударные адиабаты сплошного и пористого вещества, кривые разгрузки, изоэнтропический модуль объемного сжатия, скорость звука, температура Дебая, теплоемкость, коэффициент линейного расширения, кривая плавления) с доступными экспериментальными и расчетными данными позволяет оценить возможности предлагаемой модели.

1. КОЭФФИЦИЕНТ ГРЮНАЙЗЕНА, ЗАВИСЯЩИЙ ОТ УДЕЛЬНОГО ОБЪЕМА И ТЕМПЕРАТУРЫ

Рассмотрим коэффициент Грюнайзена Г конденсированного вещества в виде зависимости от удельного объема V и температуры T. Предположим, что зависимость $\Gamma(V,T)$ можно представить в виде суммы константы Γ_{∞} и произведения двух функций f(V) и g(T), каждая из которых зависит только от одной переменной:

$$\Gamma(V,T) = \Gamma_{\infty} + f(V)q(T).$$

Основываясь на имеющихся экспериментальных данных и теоретических представлениях, можно описать качественно характер зависимостей f(V) и g(T). При сжатии вещества, равно как и при росте температуры, коэффициент Грюнайзена уменьшается, поэтому функции f(V), g(T) должны быть монотонно падающими (для вещества без фазовых переходов).

В пределе бесконечно сильного сжатия $(V \to 0)$ или нагрева $(T \to \infty)$ коэффициент Грюнайзена стремится к значению Γ_{∞} . Из квантовостатистической модели Томаса — Ферми следует, что $\Gamma_{\infty}=2/3$.

Рассмотрим область расширения. При значительном увеличении удельного объема коэффициент Грюнайзена должен уменьшаться, достигая при бесконечном расширении $(V \to \infty)$ предельного значения 2/3, соответствующего идеальному газу. Предельные значения коэффициента Грюнайзена Γ_{∞} для сильного сжатия и расширения оказываются равны, что позволяет в дальнейшем не различать эти величины. Таким образом, функция f(V) должна иметь максимум в некоторой окрестности состояния вещества при нормальных условиях, а функция g(T) должна быть монотонно падающей.

Рассмотрим следующую зависимость коэффициента Грюнайзена $\Gamma(V,T)$ от удельного объема V и температуры T для области сжатия:

$$\Gamma(V,T) = \Gamma_{\infty} + \left(\frac{V}{V_{0K}}\right)^{\alpha} \frac{\Gamma_{0K} - \Gamma_{\infty}}{1 + \beta T}.$$
 (1)

Здесь $\Gamma_{0\mathrm{K}}$ — коэффициент Γ рюнайзена при $T=0,\ V=V_{0\mathrm{K}},\ \Gamma_{\infty}$ — коэффициент Γ рюнайзена в предельном случае сильного сжатия и нагрева $(V\to 0,\ T\to \infty),\ V_{0\mathrm{K}}$ — удельный объем при $T=0\ (V_{0\mathrm{K}}=1/\rho_{0\mathrm{K}},\ \rho_{0\mathrm{K}}$ — плотность при $T=0),\ \alpha$ и β — постоянные коэффициенты, бо́льшие нуля. Такая зависимость обеспечивает равенство коэффициента Γ рюнайзена при $T=0,\ V=V_{0\mathrm{K}}$ величине $\Gamma_{0\mathrm{K}}$. При ударном сжатии сплошного вещества удельный объем уменьшается, а температура растет, что согласно (1) приводит к уменьшению коэффициента Γ рюнайзена.

Величина $\Gamma_{0{
m K}}$ экспериментально неизвестна, однако известен коэффициент Γ рюнайзена Γ_0 при нормальных условиях ($T_0=293~{
m K},$ $p_0\approx 10^5~{
m H/m^2}).$ Используя величину Γ_0 , формулу (1) можно привести к виду

$$\Gamma(V,T) = \Gamma_{\infty} + \left(\frac{V}{V_0}\right)^{\alpha} \frac{\Gamma_0 - \Gamma_{\infty}}{1 + \beta T} \left(1 + \beta T_0\right). (2)$$

Здесь V_0 — удельный объем при нормальных условиях ($V_0=1/\rho_0,\,\rho_0$ — плотность при нормальных условиях). Такая зависимость обеспечивает равенство коэффициента Грюнайзена при нормальных условиях величине Γ_0 .

Формула (2) качественно описывает изменение коэффициента Грюнайзена при сжатии $(V < V_0)$. В области расширения $V > V_0$ зависимость $\Gamma(V,T)$ в форме (2) нуждается в модификации. Можно использовать для этой области зависимость, аналогичную (2), но с другим степенным коэффициентом:

$$\Gamma(V,T) = \Gamma_{\infty} + \left(\frac{V}{V_0}\right)^{\delta} \frac{\Gamma_0 - \Gamma_{\infty}}{1 + \beta T} \left(1 + \beta T_0\right), (3)$$

где $\delta < 0$. Таким образом, при одинаковой функциональной зависимости коэффициента Грюнайзена от удельного объема и температуры $\Gamma(V,T)$ для области сжатия и расширения будут использоваться коэффициенты α и δ соответственно.

В предлагаемой зависимости $\Gamma(V,T)$ имеется два свободных параметра α и β (для области сжатия) или δ (для области расширения). Эти коэффициенты отражают влияние удельного объема и температуры на коэффициент Грюнайзена Γ . Зависимость вида (1) представляется правдоподобной, но требует проверки путем сравнения предсказаний модели с экспериментальными данными.

2. УРАВНЕНИЕ СОСТОЯНИЯ КОНДЕНСИРОВАННОГО ВЕЩЕСТВА

Для построения уравнения состояния конденсированного вещества по предложенной зависимости коэффициента Грюнайзена (2) воспользуемся методическим приемом, предложенным в [28, 29].

Коэффициент Грюнайзена Γ и кривая холодного сжатия $p_c(V)$ связаны обобщенным модельным уравнением [2]

$$\Gamma = -\frac{V}{2} \frac{\partial^2 (p_c V^{2t/3})/\partial V^2}{\partial (p_c V^{2t/3})/\partial V} + \frac{t-2}{3}.$$
 (4)

Здесь t — постоянная. Формула (4) при t=0 соответствует модели Слэтера — Ландау, при t=1 — модели Дугдала — Мак-Доналда, при t=2 — модели Зубарева — Ващенко.

Используя уравнение (4) и выражение для коэффициента Грюнайзена (2) при температуре T=0, получаем дифференциальное уравнение на функцию $p_c(V)$:

$$\Gamma_{\infty} + \left(\frac{V}{V_0}\right)^{\alpha} (\Gamma_0 - \Gamma_{\infty})(1 + \beta T_0) =$$

$$= -\frac{V}{2} \frac{\partial^2 (p_c V^{2t/3})/\partial V^2}{\partial (p_c V^{2t/3})/\partial V} + \frac{t-2}{3}.$$
 (5)

Решение уравнения (5) имеет вид

$$p_c(V) = V^{-2t/3} \left[C_1 + C_2 \int_{1}^{V/V_0} \tau^{-2\Gamma_{\infty} + 2(t-2)/3} \times \right]$$

$$\times \exp\left(-\frac{2(\Gamma_0 - \Gamma_\infty)}{\alpha}(1 + \beta T_0)\tau^\alpha\right)d\tau$$
. (6)

Здесь C_1 и C_2 — константы интегрирования. Отметим, что функция $p_c(V)$, определенная уравнением (6), является монотонной и дифференцируемой при любых значениях параметров, не имеет разрывов и иных особенностей.

Как отмечалось многими авторами (см., например, [10, 39, 44]), ни одна из трех моделей для коэффициента Грюнайзена (Слэтера — Ландау, Дугдала — Мак-Доналда, Зубарева — Ващенко) не имеет явного преимущества перед другими. Иногда оказывается, что лучшее описание зависимости $p_c(V)$ достигается при нецелочисленном значении параметра t. По этой причине далее мы ограничимся наиболее простой зависимостью в (4) — Слэтера — Ландау, соответствующей t=0. Это позволит выявить характерные особенности предлагаемой модели. (В последнем параграфе статьи мы еще вернемся к вопросу о выборе коэффициента t в модельном уравнении (4).)

Можно убедиться, что при t=0 зависимость вида (6) в области сильного расширения $(V\gg V_0)$ стремится к ненулевой константе. Из физических соображений ясно, что при $V\to\infty$ холодное давление должно обращаться в нуль. Поэтому для области растяжения $V>V_{0\rm K}$ формула для холодного давления должна быть модифицирована, например, путем умножения (6) на уменьшающуюся функцию удельного объема. Для области $V>V_{0\rm K}$ была выбрана следующая зависимость:

$$p_c(V) = \left(\frac{V_{0K}}{V}\right)^{\varepsilon} \left[C_1 + C_2 \int_{1}^{V/V_0} \tau^{-2\Gamma_{\infty} - 4/3} \times \right]$$

$$\times \exp\left(-\frac{2(\Gamma_0 - \Gamma_\infty)}{\alpha}(1 + \beta T_0)\tau^\alpha\right)d\tau$$
. (7)

Коэффициент ε определяется из условия, что энергия связи — $\int\limits_{V_{0{
m K}}}^{\infty}p_c(V)dV$, найденная для хо-

лодного давления в форме (7), совпадает со своим табличным значением E_s .

Параметр Грюнайзена в квазигармоническом приближении связан с характеристической температурой Дебая $\theta_{\rm D}$ известным соотношением

$$\Gamma = -\left(\frac{\partial \ln \theta_{\rm D}}{\partial \ln V}\right)_T. \tag{8}$$

Интегрируя (8), находим зависимость температуры Дебая от удельного объема и абсолютной температуры для области сжатия:

$$\theta_{\rm D}(V,T) = \theta_{\rm D0} \exp\left(\int_{V}^{V_0} \frac{\Gamma(V,T)}{V} dV\right) =$$

$$= \theta_{\rm D0} \left(\frac{V_0}{V}\right)^{\Gamma_{\infty}} \times$$

$$\times \exp\left[\frac{(\Gamma_0 - \Gamma_{\infty})(1 + \beta T_0)}{\alpha(1 + \beta T)} \left(1 - \left(\frac{V}{V_0}\right)^{\alpha}\right)\right]. (9)$$

Здесь $\theta_{\mathrm{D}0}$ — константа интегрирования, которую примем равной температуре Дебая при нормальных условиях. Зависимость $\theta_{\mathrm{D}}(V,T)$ для области $V>V_0$ аналогична (9) с заменой коэффициента α на δ .

Свободная энергия Гельмгольца твердого тела (изохорно-изотермический потенциал) может быть представлена в виде суммы трех слагаемых [1], выражающих вклад холодного сжатия кристаллической решетки, а также тепловых компонент, обусловленных движением атомов и электронов:

$$F(V,T) = F_c(V) + F_a(V,T) + F_e(V,T).$$

Тепловой вклад атомов в твердом теле может быть описан теорией Дебая, а влияние электронов проводимости — простой формулой [1]. Таким образом, свободную энергию Гельмгольца твердого тела можно представить в виде

$$\begin{split} F(V,T) &= E_c(V) + \\ &+ RT \left\{ \frac{9}{8} \frac{\theta_{\rm D}}{T} + 3 \ln \left[1 - \exp \left(-\frac{\theta_{\rm D}}{T} \right) \right] - \right. \end{split}$$

$$-D\left(\frac{\theta_{\rm D}}{T}\right) - \frac{\gamma_0 T^2}{2} \left(\frac{V}{V_0}\right)^{\Gamma_e}, \quad (10)$$

где R — универсальная газовая постоянная, γ_0 — коэффициент электронной теплоемкости, Γ_e — аналог функции Грюнайзена для электронов, D(x) — функция Дебая,

$$D\left(\frac{\theta_{\rm D}}{T}\right) = \frac{3T^3}{\theta_{\rm D}^3} \int_{0}^{\theta_{\rm D}/T} \frac{z^3 dz}{\exp z - 1},$$

 $E_c(V)$ — холодная энергия вещества,

$$E_c(V) = -\int_{V_{0K}}^{V} p_c(V)dV.$$

Величина удельного объема вещества при нулевой температуре $V_{0{
m K}}$ может быть найдена из условия на кривой холодного сжатия $p_c(V_{0K}) = 0.$

Введем вспомогательную функцию

$$M(V,T) = - \left(\frac{\partial \ln \theta_{\rm D}}{\partial \ln T} \right)_V,$$

отражающую зависимость $\theta_{\rm D}$ от температуры. Если θ_D не зависит от температуры, то M = 0.

Зная свободную энергию (10), можно най-

$$p(V,T) = -\frac{\partial F}{\partial V} = p_c(V) + \frac{\Gamma(V,T)}{V} R \times$$

$$\times \left[\frac{9}{8} \theta_{\rm D} + 3TD \left(\frac{\theta_{\rm D}}{T} \right) \right] + \frac{\Gamma_e \gamma_0 T^2}{2V} \left(\frac{V}{V_0} \right)^{\Gamma_e}, (11)$$

внутреннюю энергию

$$E(V,T) = F - T\frac{\partial F}{\partial T} = E_c(V) + \frac{9}{8}(1+M)R\theta_D +$$

$$+3(1+M)RTD\left(\frac{\theta_{\rm D}}{T}\right) + \frac{\gamma_0 T^2}{2} \left(\frac{V}{V_0}\right)^{\Gamma_e},$$
 (12)

энтропию

$$\begin{split} S(V,T) &= -\frac{\partial F}{\partial T} = \\ &= R \bigg\{ \frac{9}{8} M \frac{\theta_{\rm D}}{T} + (3M+4) D \bigg(\frac{\theta_{\rm D}}{T} \bigg) - \bigg. \end{split}$$

$$-D\left(\frac{\theta_{\rm D}}{T}\right) - \frac{\gamma_0 T^2}{2} \left(\frac{V}{V_0}\right)^{\Gamma_e}, \quad (10) \quad -3\ln\left[1 - \exp\left(-\frac{\theta_{\rm D}}{T}\right)\right] + \gamma_0 T \left(\frac{V}{V_0}\right)^{\Gamma_e} \quad (13)$$

и другие термодинамические параметры вещества.

Из соотношений (11), (12) видно, что давление можно представить в форме уравнения Ми — Грюнайзена

$$p(V,T) = p_c(V) + \frac{\Gamma(V,T)}{V(1+M)} E_a(V,T) + \frac{\Gamma_e}{V} E_e(V,T), \quad (14)$$

где $E_a(V,T)$ — тепловая энергия атомов, $E_e(V,T)$ — тепловая энергия электронов.

Вернемся к формулам (6), (7) для холодной компоненты давления. Константы интегрирования C_1 и C_2 в (6), (7) можно определить из физических условий. Константа C_1 находится из условия, что давление р при нормальных условиях $(T = T_0, V = V_0)$ равно атмосферному давлению p_0 . Константа C_2 находится из условия, что изотермический модуль объемного сжатия $-V\left(\frac{\partial \hat{p}}{\partial V}\right)_T$ при нормальных условиях равен своему экспериментальному значению K_{T0} . Непрерывность холодного давления $p_c(V)$ и его производной при переходе от сжатия к растяжению обеспечивает гладкое поведение скорости звука и других физических величин.

Соотношения (2), (3), (6), (7), (9)–(14)определяют предлагаемое полуэмпирическое уравнение состояния конденсированного вещества. Уравнение состояния использует значения величин при начальных условиях V_0 , Γ_0 , $\theta_{\rm D0}, K_{T0}, p_0, T_0$, a также констант γ_0, Γ_e, E_s .

Настоящая модель имеет два свободных параметра α , β для области сжатия ($V < V_0$). Параметрами для области растяжения (V > V_0) являются δ , β . Значения свободных параметров α, β, δ определялись из условия согласования модельных зависимостей с имеющимися экспериментальными и расчетными данными о сжимаемости вещества при высоких давлениях и температурах. В качестве опорных данных при таком сравнении служили кривая холодного сжатия, нормальная изотерма, а также ударные адиабаты сплошного и пористого вещества. Принят следующий алгоритм подбора неизвестных констант. Сначала, используя

$\rho_0, \\ \Gamma/\mathrm{cm}^3$	Γ_0	$ heta_{\mathrm{D0}}, \ \mathrm{K}$	$K_{T0},$ $\Gamma\Pi a$	$\gamma_0,$ кДж/ $(\mathbf{r}\cdot\mathbf{K}^2)$	$E_s,$ кДж/г	Γ_e	$C_1,$ $\Gamma\Pi a$	$C_2,$ $\Gamma\Pi a$	ω	$ ho_{0\mathrm{K}}, \\ \Gamma/\mathrm{cm}^3$	α	$^{\beta}_{10^{-6} \text{ K}^{-1}}$	δ
8.93	1.96 [45]	310 [45]	133 [46]	$1.09 \cdot 10^{-8} \\ [45]$	5.3 [45]	0.58	-2.232	-8287.69	1.58	9.0706	0.65	1.9	-2

Использованные значения коэффициентов состояния меди

 Π римечание. Свободные параметры: α , β (для сжатия), δ (для растяжения), Γ_e (подбирался в области максимальных давлений по ударной адиабате сплошного вещества).

кривую холодного сжатия $p_c(V)$, находили коэффициент α в предположении $\beta=0$. Далее по ударной адиабате сплошного вещества подбиралось значение β . С помощью найденной величины β осуществлялся контроль кривой холодного сжатия и нормальной изотермы. Так как коэффициент β мал, то изменения в этих кривых малозаметны. При необходимости процесс подбора коэффициентов может быть повторен.

Теоретическое значение коэффициента Γ_e при $V \to 0$, следующее из квантово-статистической теории, составляет 2/3, однако при относительно невысоких степенях сжатия, реализованных в эксперименте, коэффициент Γ_e меньше своего предельного значения [1]. Величина Γ_e уточнялась на участке ударной адиабаты сплошной меди, соответствующем максимальным давлениям. Поэтому этот коэффициент в области высоких температур также оказывался в некоторой степени подгоночным.

Для области растяжения $(V > V_0)$ свободный параметр δ находился путем сравнения между модельной кривой и экспериментальной ударной сжимаемостью вещества с максимальной пористостью. При этом использовалось уже найденное значение β .

Табличные и найденные значения констант меди представлены в таблице.

3. КРИВАЯ ХОЛОДНОГО СЖАТИЯ И НОРМАЛЬНАЯ ИЗОТЕРМА

На рис. 1 показана кривая холодного сжатия $p_c(\rho)$, построенная согласно уравнению (6). Сравним наши результаты с данными других авторов, полученных в рамках квантовостатистической теории Томаса — Ферми с поправками [47–49] и ряда полуэмпирических моделей [28, 34, 42, 44, 50]. Модель Томаса — Ферми применима при большой плотности, когда не сказываются особенности строения внешних электронных оболочек. Действительно, при $\rho > 40$ г/см³ модельная кривая

Рис. 1. Модельная кривая холодного сжатия (сплошная кривая) и результаты расчетов других авторов:

1 — [47], 2 — [48], 3 — [49], 4 — [34], 5 — [28]; на врезке: относительное отклонение модельной кривой от кривой холодного сжатия [44] в зависимости от относительной плотности $\rho/\rho_{0\rm K},\,p_c$ — давление, найденное согласно (6), p_{cG} — давление из [44]

(6) хорошо согласуется с теоретическими расчетами [47–49], выполненными по квантовостатистической модели с квантовыми и обменными поправками. В масштабе рисунка модельная кривая практически сливается с зависимостями [42, 44, 50]. На врезке представлено относительное отклонение давления, полученного согласно (6), от результатов [44]. Из рисунка видно, что отличие модели от [44] лежит в пределах ± 6 % при сжатии в диапазоне от начального значения плотности до \approx 670 г/см³. Согласие модельной кривой с известными результатами [42, 44, 47-50] демонстрирует качество расчета, достигнутого столь простыми средствами. При этом результаты расчета по малопараметрической модели [28] могут до четырех раз отличаться от расчетов [44].

Рис. 2. Модельная изотерма при $T=293~{\rm K}$ (сплошная кривая) и данные экспериментов и расчетов других авторов (1-5): эксперимент: 1-[34], 2-[51], 3-[52]; расчет:

эксперимент: I — [34], 2 — [51], 3 — [52]; расчет: 4 — [37], 5 — полуэмпирическая модель Калиткина [53]; на врезке: относительное отклонение модельной кривой от изотермы [53] в зависимости от плотности, p — давление, найденное согласно (11), p_K — давление на изотерме из [53]

На рис. 2 показана нормальная изотерма, найденная согласно настоящей модели. Здесь же представлены имеющиеся экспериментальные данные по сжимаемости меди при комнатной температуре [34, 51, 52], результаты расчета [37] и глобальная изотерма меди, предложенная Н. Н. Калиткиным в рамках полуэмпирического подхода [53]. Модельная изотерма хорошо согласуется с известными экспериментальными и теоретическими данными.

Взяв изотерму Калиткина [53] в качестве критерия достоверности расчетов, можно получить представление о степени отличия предсказаний модели от признанных результатов. На врезке к рис. 2 показано относительное отклонение давления для настоящей модели от [53] в зависимости от плотности вещества. Как видно из рисунка, разница в давлении, определяемом по модельной зависимости (11) с использованными значениями констант и по модели [53], не превышает 8 % вплоть до плотности $\rho \approx 10^3$ г/см³. При плотности $\rho = 95$ г/см³, соответствующей максимальному отклонению модели от [53], погрешность определения плотности составляет 3 %.

4. УДАРНЫЕ АДИАБАТЫ И КРИВЫЕ РАЗГРУЗКИ

Используя предлагаемое уравнение состояния и уравнение энергии при ударном сжатии

$$E - E_0 = \frac{p + p_0}{2} \left(\frac{m}{\rho_0} - \frac{1}{\rho} \right),$$

можно рассчитать ударную адиабату вещества. (Здесь $m=\rho_0/\rho_{00}$ — пористость вещества, ρ_{00} — начальная плотность пористого вещества.) Полагается, что поверхностная энергия порошка пренебрежимо мала; таким образом, внутренние энергии единицы массы порошка и сплошного вещества одинаковы. В качестве начального состояния при расчетах ударного сжатия принято состояние вещества при нормальных условиях ($p=p_0$, $T=T_0$, $\rho=\rho_0$).

На рис. 3 в переменных давление p — массовая скорость u представлены экспериментальные данные по ударному сжатию медных образцов различной пористости m [54], а также соответствующие модельные зависимости. Как видно из рисунка, согласие модельных и экспериментальных данных в таких переменных очень хорошее.

Рис. 3. Зависимость давления от массовой скорости для медных образцов различной пористости:

точки — эксперимент [54], сплошные линии — молель

На рис. 4 экспериментальные данные и модельные зависимости приведены в виде зависимости давления от плотности $p(\rho)$. Именно зависимость $p(\rho)$ наиболее показательна и полезна для тестирования возможностей модели.

Сравнение модельных зависимостей с экспериментальными данными необходимо проводить с учетом погрешностей ударно-волновых измерений. Для опытов с образцами пористостью m = 1, 4, 10 на рисунке указаны погрешности плотности ударно-сжатого вещества, вычисленные на основе измерения массовых и волновых скоростей с точностью 1.5 % методом отражения в ударно-волновом эксперименте. Такая точность характерна для тщательно выполненных ударно-волновых измерений [55, 56]. В области экстремально больших давлений для сплошной меди и в области малых давлений для высокопористых образцов массовые и волновые скорости близки. Поскольку плотность вещества находится через разность волновой и массовой скоростей, погрешности плотности оказываются в указанных областях значительными (до 7 % для сплошного вещества, до 15 % при коэффициенте пористости m=10).

Для высокопористых образцов имеется заметное расхождение между модельными зависимостями и экспериментальными данными при p < 4 ГПа. По-видимому, это обусловлено влиянием микроструктуры порошковых образцов, которое не учитывается в данной модели. В настоящее время отсутствует адекватная физическая модель для этой области параметров.

На врезке к рис. 4 показано относительное отклонение ударного давления, найденного по настоящей модели для сплошной меди, от широкодиапазонной ударной адиабаты [53]. Как видно из рисунка, отклонение по давлению не превышает 3 % вплоть до плотности 31 г/см³, что характеризует качество данной модели.

В целом, соответствие модельных зависимостей ударной сжимаемости и соответствующих экспериментальных данных можно оценить как удовлетворительное.

С целью тестирования возможностей предлагаемой модели выполнен расчет кривых разгрузки ударно-сжатой сплошной меди. Для этого использовалось уравнение энтропии (13). На рис. 5 показаны модельные зависимости давления от массовой скорости при разгрузке, а также экспериментальные данные [54]. Отметим, что давление на рис. 5 изменяется на пять порядков величины. Из рисунка видно, что модельные зависимости близки к экспериментальным данным. При максимальной ин-

Рис. 4. Модельные зависимости ударной сжимаемости от плотности (сплошные кривые) и экспериментальные данные для медных образцов различной плотности [54] (точки):

на врезке: относительное отклонение модельного давления p от широкодиапазонной ударной адиабаты p_{HK} [53] в зависимости от плотности при m=1

Рис. 5. Зависимость давления от массовой скорости при разгрузке сплошной меди, сжатой в ударной волне:

сплошные кривые — модель, точки — эксперимент [54], штриховая линия — модельная ударная адиабата, пунктирная — зависимость, соответствующая зеркальному отражению ударной адиабаты при $p=1\,413\,\Gamma\Pi{\rm a}$

тенсивности ударной волны ($p=1413\ \Gamma\Pi a$) модельная зависимость при сильной разгрузке дает значение массовой скорости, которое несколько меньше экспериментального. В то же время это значение находится в пределах экспериментальной погрешности, указанной в оригинальной работе [57]. На том же рисунке пунктиром показана кривая, соответствующая зеркальному отражению ударной адиабаты при $p=1413\ \Gamma\Pi a$. Здесь заметно отличие от правила удвоения массовой скорости при разгрузке [1], справедливого при малых ударных давлениях. На основании рис. 5 можно утверждать, что настоящая модель адекватно описывает разгрузку вещества.

5. ТЕМПЕРАТУРА ДЕБАЯ

Температура Дебая представляет собой фундаментальный физический параметр, который напрямую не может быть найден экспериментально. Соотношение (9) дает зависимость температуры Дебая от удельного объема и абсолютной температуры.

На рис. 6 показана найденная зависимость температуры Дебая от плотности при нормальной температуре. Здесь же представлены результаты расчетов [58]. Из рисунка видно, что температура Дебая значительно растет при сжатии. Расчет по формуле (9) качественно согласуется с данными [58], отличаясь от них лишь на 4 %.

Рис. 6. Зависимость температуры Дебая от плотности при нормальной температуре:

1 — данные расчетов [58], 2 — настоящая модель

6. ТЕПЛОЕМКОСТЬ И КОЭФФИЦИЕНТ ЛИНЕЙНОГО РАСШИРЕНИЯ

Теплоемкость кристаллической решетки при постоянном объеме и при постоянном давлении в приближении Дебая равна соответственно

$$c_V(T) = -T \left(\frac{\partial^2 F}{\partial T^2}\right)_V \approx$$

$$\approx 3R \left[4D \left(\frac{\theta_{\rm D}}{T}\right) - \frac{3\theta_{\rm D}/T}{\exp(\theta_{\rm D}/T) - 1}\right],$$

$$c_p(T) = c_V(T)(1 + \alpha_{TV}\Gamma(V, T)T).$$

Здесь α_{TV} — объемный коэффициент теплового расширения,

$$\alpha_{TV} = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \approx \frac{\Gamma(V|T)}{1} \int_{-\infty}^{\infty} \frac{\partial V}{\partial T} dT dT dT$$

$$\approx 3R \frac{\Gamma(V,T)}{V} \frac{1}{K_T} \left[4D \left(\frac{\theta_{\rm D}}{T} \right) - \frac{3\theta_{\rm D}/T}{\exp(\theta_{\rm D}/T) - 1} \right],$$

 K_T — изотермический модуль сжатия, $K_T = -V \frac{\partial P}{\partial V}$, который может быть найден из (11).

На рис. 7 показаны результаты расчетов теплоемкости c_p, c_V вместе с экспериментальными данными из справочника [59]. Из рисунка

Рис. 7. Зависимость теплоемкости от температуры:

расчет: 1 — зависимость $c_p(T)/3R$, 2, 3 — зависимость $c_V(T)/3R$ при $\rho=8.93$ и 14.37 г/см 3 соответственно; точки — эксперимент [59]

видно, что модельная зависимость $c_p(T)$ хорошю согласуется с экспериментальной кривой до температуры $\approx 1\,000$ К. При $T=1\,500$ К ее отличие от экспериментальной составляет 9 %. Приведенные на рисунке кривые $c_V(T)$ соответствуют плотностям 8.93 и 14.37 г/см³. Эти значения плотности соответствуют давлениям 10^{-4} и 200 ГПа при T=293 К. Из рисунка видно, что теплоемкость меди существенно зависит как от температуры, так и от давления. Рост давления приводит к уменьшению теплоемкости c_V , т. е. действует в том же направлении, что и уменьшение температуры.

На рис. 8 показана модельная зависимость коэффициента линейного расширения $\alpha_{Tl} =$ $\alpha_{TV}/3$ от температуры вместе со справочными данными [59, 60]. Модельная кривая качественно верно описывает экспериментальную зависимость $\alpha_{Tl}(T)$, хотя разница между моделью и экспериментом растет при увеличении температуры, достигая 19 % при T = 1200 K. Отметим, что теплоемкости c_n , c_V , а также коэффициент теплового расширения α_{TV} определяются через первую производную от давления p(V,T) или вторую производную от свободной энергии F(V,T). Поэтому качественное согласие модельных и экспериментальных зависимостей можно рассматривать как удовлетворительный результат для рассматриваемой малопараметрической модели.

Рис. 8. Зависимость коэффициента линейного расширения от температуры при нормальном давлении:

1 — модель, 2, 3 — данные из справочников [59] и [60] соответственно

7. ИЗОЭНТРОПИЧЕСКИЙ МОДУЛЬ СЖАТИЯ И СКОРОСТЬ ЗВУКА

Для нахождения изоэнтропического модуля сжатия $K_S = -V \left(\frac{\partial p}{\partial V}\right)_S$ использовалось термодинамическое тождество

$$K_S = V \left[\frac{T}{c_V} \left(\frac{\partial p}{\partial T} \right)_V^2 - \left(\frac{\partial p}{\partial V} \right)_T \right],$$

а также зависимость p(V,T), задаваемая уравнением (11).

На рис. 9 показана найденная зависимость изоэнтропического модуля сжатия от давления вместе с экспериментальными данными [2, 61, 62]. Здесь же показана точка, соответствующая нормальному давлению. Она получена из соотношения $K_{S0} = \rho_0 C_0^2$, где ρ_0 , C_0 — соответственно плотность и скорость звука при нормальных условиях. Как видно из рисунка, модельная зависимость хорошо согласуется с экспериментальными данными.

Объемная скорость звука в сжатом веществе находилась по формуле

$$C_B = \sqrt{K_S/\rho}.$$

На рис. 10 показана найденная зависимость скорости звука в меди от ударного давления, а также экспериментальные результаты [2, 61, 62]. Из рисунка видно, что модельная кривая для объемной скорости звука (сплошная

Рис. 9. Модельная зависимость изоэнтропического модуля сжатия от давления (линия) и данные экспериментов (1-3):

1 — [61], 2 — [2], 3 — [62]; 4 — значение при нормальных условиях

Рис. 10. Модельная зависимость объемной скорости звука меди от давления на ударной адиабате сплошного вещества (сплошная кривая):

результаты измерений: 1 — [61], 2 — [2], 3 — [62]; 4 — значение скорости звука при нормальных условиях [59]

кривая) неплохо описывает экспериментальные данные.

8. КРИВАЯ ПЛАВЛЕНИЯ

Для нахождения кривой плавления воспользуемся уравнением Линдемана — Гилварри для дебаевской модели твердого тела в форме [3]

$$T_m = T_{m0} \left(\frac{\rho_{m0}}{\rho_m}\right)^{2/3} \left(\frac{\theta_{Dm}}{\theta_{Dm0}}\right)^2, \quad (15)$$

где T_{m0} — температура плавления при нормальном давлении $p_0; \theta_{\mathrm{D}m0}$ — температура Дебая при плавлении и давлении p_0 ; ρ_{m0} и ρ_m плотность расплава при T_{m0} и T_m соответственно; $\theta_{\mathrm{D}m}$ и T_m — соответственно температура Дебая и температура плавления при давлении р. Формула (15) получена в предположении, что плавление происходит, когда амплитуда колебаний достигает половины межатомного расстояния в кристалле. Соотношение (15) не является строгим критерием плавления [63], но часто используется для качественных оценок в области высоких давлений. Уравнение (15) вместе с зависимостью для температуры Дебая (9) позволяет для известных $T_{m0}~(T_{m0}=1\,356~{\rm K}~[59])$ и $\rho_{m0}~($ значение $\rho_{m0}=$ $8.416 \,\, \Gamma/{\rm cm}^3 \,\,$ получено из модели при $T=T_{m0})$

Рис. 11. Модельная кривая плавления меди (сплошная кривая) и данные экспериментов и расчетов других авторов (1-5):

эксперимент:
$$1$$
 — [64], 2 — [65]; расчет: 3 — [68], 4 — [66], 5 — [67]

найти кривую плавления. Модельная зависимость температуры плавления от давления показана на рис. 11 сплошной линией. Здесь же представлены экспериментальные данные [64, 65] и результаты расчетов из первых принципов [66–68]. Имея в виду качественный характер формулы (15), согласие между полученной модельной зависимостью и экспериментальными данными [64, 65] можно оценить как хорошее. Во всяком случае модельная зависимость, основанная на формуле (1), описывает экспериментальные данные не хуже, чем сложные модели [66–68].

9. ОБСУЖДЕНИЕ И ВЫВОДЫ

Полученные результаты показывают, что малопараметрическое уравнение состояния, основывающееся на зависимости коэффициента Грюнайзена от удельного объема и температуры в форме (1), позволяет описать достаточно большую область физических состояний меди и ее разнообразные свойства. Модель удовлетворительно описывает кривую холодного сжатия и нормальную изотерму (до сжатия в ≈ 100 раз), ударные адиабаты сплошного и пористого вещества в широких диапазонах давления (до $20\ T\Pi a$), плотности $(3.7 \div 31\ r/cm^3)$ и внутренней энергии (до $830\ кДж/r$), кривую разгрузки первоначально сжатого вещества, зависимость изоэнтропического модуля объемного сжатия и

объемной скорости звука от давления, кривую плавления.

Построенное уравнение состояния является термодинамически полным и согласованным. Используя коэффициент Грюнайзена в виде (1), холодное давление в виде (6), (7), свободную энергию в виде (10), можно найти все термодинамические параметры состояния вещества, в том числе не поддающиеся прямым измерениям (например, температура Дебая).

Существенное отличие настоящей модели от малопараметрической модели [28, 29] состоит в значительном расширении диапазона физических параметров в области сильного сжатия и высоких температур: примерно в 30 раз по плотности, на 4 порядка величины по давлению и удельной внутренней энергии. Существенно, что предлагаемая модель описывает ударные адиабаты в области расширенного вещества, где модель [28, 29] не «работает».

В настоящей работе для связи холодного давления с коэффициентом Грюнайзена использовалось уравнение Слэтера — Ландау. При более широком подходе коэффициент t в уравнении (4) можно рассматривать как дополнительный свободный параметр модели. Анализ показал, что применение уравнений Дугдала — Мак-Доналда или Зубарева — Ващенко вместо уравнения Слэтера — Ландау не приводит к явному улучшению согласования модели с известными данными. По этой причине в данной работе была выбрана модельная зависимость Слэтера — Ландау как наиболее простая и физически прозрачная.

Обсудим вопрос о точности полученных модельных зависимостей. Из § 3, 4 следует, что максимальная погрешность расчета давления на кривой холодного сжатия меди составила $6 \% (\rho \lesssim 670 \text{ г/см}^3)$, на нормальной изотерме — 8% ($\rho < 10^3 \text{ г/см}^3$), на ударной адиабате сплошной меди — 3 % ($\rho < 31 \text{ г/см}^3$). Как ясно из врезок на рис. 1, 2, при ограничении диапазона изменения плотности погрешность расчетов уменьшается. Дополнительная возможность состоит в вариации изотермического модуля объемного сжатия K_{T0} , который выше принимался равным своему экспериментальному значению при нормальных условиях. При небольшом изменении параметра K_{T0} (до 142 ГПа) отклонение давления на нормальной изотерме от опорной зависимости [53] уменьшается до 3 % (при $\rho < 25 \text{ г/см}^3$).

Естественно, построенное уравнение со-

стояния не может конкурировать по точности и рабочему диапазону с широкодиапазонными уравнениями состояния, имеющими $20 \div 30$ свободных параметров. Вместе с тем приведенные выше погрешности приемлемы для малопараметрического уравнения состояния.

В заключение необходимо указать другие ограничения настоящей модели. Модель не описывает фазовые переходы и не может быть использована для нахождения параметров, которые сильно зависят от структуры вещества. Модель достаточно грубо описывает область сильно расширенного вещества. Параметр δ в зависимости коэффициента Грюнайзена $\Gamma(V,T)$ для области $V > V_0$ найден по ударной адиабате высокопористого вещества. Как указывалось выше, погрешность экспериментального определения плотности для таких материалов значительна, поэтому точность нахождения δ , по-видимому, невелика. Для расчета ударной сжимаемости высокопористых материалов это обстоятельство не столь важно, так как определяющим фактором в этом случае является влияние температуры. Вклад температурного нагрева в давление и внутреннюю энергию существенно больше вклада соответствующих холодных компонент. В то же время при моделировании холодного вещества или теплой плотной плазмы (малые плотности, малые давления, большие значения внутренней энергии) погрешность определения δ может оказаться уже неприемлемо большой. Далее, для экстремальных удельных объемов ($V \ll V_0$ и $V \gg V_0$) и больших температур приближение Дебая не «работает», поэтому в этих областях расчеты по модели нужно рассматривать как оценочные. Отмеченные недостатки являются своеобразной платой за простоту модели и небольшое число ее параметров.

Выполненный анализ показал, что разработанная модель может быть полезна для моделирования высокоскоростных процессов в области больших плотностей энергии.

ЛИТЕРАТУРА

- 1. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. 2-е изд. М.: Наука, 1966.
- 2. **Альтшулер Л. В.** Применение ударных волн в физике высоких давлений // Успехи физ. наук. — 1965. — Т. 85, вып. 2. — С. 197–258.

- 3. Жарков В. Н., Калинин В. А. Уравнения состояния твердых тел при высоких давлениях и температурах. М., 1968.
- 4. **Бушман А. В., Фортов В. Е.** Модели уравнений состояния веществ // Успехи физ. наук. 1983. Т. 140, № 2. С. 177–232.
- 5. Godwal B. K., Sikka S. K., Chidambaram R. Equation of state theories of condensed matter up to about 10 TPa // Phys. Rep. 1983. V. 102, N 3. P. 121–197.
- Eliezer S., Ghatak A., Hora H. Fundamentals of Equations of State. — World Scientific, 2002.
- 7. **Фортов В. Е.** Уравнения состояния вещества от идельного газа до кварк-глюонной плазмы. М.: Физматлит, 2012.
- 8. Альтшулер Л. В., Бушман А. В., Жерноклетов М. В. и др. Изэнтропы разгрузки и уравнения состояния металлов при высоких плотностях энергии // ЖЭТФ. 1980. Т. 78, № 2. С. 741–760.
- 9. Бушман А. В., Канель Г. И., Ни А. Л., Фортов В. Е. Теплофизика и динамика интенсивных импульсных воздействий. Черноголовка: ИХФ АН СССР, 1988.
- Бушман А. В., Ломоносов И. В., Фортов В. Е. Уравнения состояния металлов при высоких плотностях энергии. Черноголовка: ИХФ РАН, 1992.
- 11. Khishchenko K. V., Fortov V. E., Lomonosov I. V. Multiphase equation of state for carbon over wide range of temperatures and pressures // Intern. J. Thermophys. 2005. V. 26, N 2. P. 479–491.
- 12. **Lomonosov I. V.** Multiphase equation of state for aluminum // Laser and Particle Beams. 2007. V. 25. P. 567–584.
- 2007. V. 25. P. 567–584.

 13. Гордеев Д. Г., Гударенко Л. Ф., Жерноклетов М. В., Куделькин В. Г., Мочалов М. А. Полуэмпирическое уравнение состояния металлов. Уравнение состояния алюминия // Физика горения и взрыва. 2008. Т. 44, № 2. С. 61–75.
- 14. Гордеев Д. Г., Гударенко Л. Ф., Каякин А. А., Куделькин В. Г. Модель уравнения состояния металлов с эффективным учетом ионизации. Уравнения состояния Та, W, Al, Be // Физика горения и взрыва. 2013. Т. 49, № 1. С. 106–120.
- 15. Vinet P., Rose J. H., Ferrante J., Smith J. R. Universal features of the equation of state of solids // J. Phys.: Condens. Matter. 1989. V. 1, N 11. P. 1941–1963.
- Kumari M., Dass N. An equation of state applied to sodium chloride and caesium chloride at high pressures and high temperatures // J. Phys.: Condens. Matter. 1990. V. 2, N 14. P. 3219–3229.
- 17. Taravillo M., Baonza V. G., Núñez J., et al. Simple equation of state for solids under compression // Phys. Rev. B. 1996. V. 54. P. 7034–7045.

- Roy S. B., Roy P. B. An equation of state applied to solid up to 1 TPa // J. Phys.: Condens. Matter. 1999. V. 11, N 50. P. 10375–10390.
- Holzapfel W. B. Equations of state and thermophysical properties of solids under pressure //
 High Pressure Crystallography / A. Katrusiak,
 P. McMillan (Eds.). Dordrecht: Kluwer Academic Publ., 2004. P. 217–236.
- 20. Sun J. X., Wu Q., Cai L. C., et al. Equation of state for solids with high accuracy and satisfying the limitation condition at high pressure // Physica B: Condens. Matter. 2006. V. 371, N 2. P. 257–271.
- Nagayama K. New method of magnetic flux compression by means of the propagation of shock-induced metallic transition in semiconductors // Appl. Phys. Lett. 1981. V. 38, N 2. P. 109–110.
- 22. Гилев С. Д., Трубачев А. М. Получение сильных магнитных полей ударными волнами в веществе // Письма в ЖТФ. 1982. Т. 8, вып. 15. С. 914–917.
- 23. Биченков Е. И., Гилев С. Д., Рябчун А. М., Трубачев А. М. Ударно-волновой метод генерации мегагауссных магнитных полей // ПМТФ. 1987. N 3. С. 15–24.
- 24. Nagayama K., Mashimo T. Explosive-driven magnetic flux cumulation by the propagation of shock-compressed conductive region in highly porous metal powders // J. Appl. Phys. 1987. V. 61, N 10. P. 4730–4735.
- 25. **Gilev S. D.** Model of shock-wave magnetic cumulation // J. Phys. D: Appl. Phys. 2009. V. 42, N 2. 025501.
- 26. **Гилев С. Д.** Электропроводность металлических порошков при ударном сжатии // Физика горения и взрыва. 2005. Т. 41, № 5. С. 128–139.
- 27. **Гилев С. Д.** Измерение электропроводности конденсированного вещества в ударных волнах (обзор) // Физика горения и взрыва. 2011. Т. 47, № 4. С. 3–23.
- 28. **Молодец А. М.** Функция Грюнайзена и нулевая изотерма трех металлов до давлений 10 ТПа // ЖЭТФ. 1995. Т. 107, вып. 3. С. 824–831.
- Молодец А. М. Изохорно-изотермический потенциал и термодинамика ударного сжатия твердых тел // Хим. физика. 1997. Т. 16, № 9. С. 132–141.
- 30. **Краус Е. И.** Малопараметрическое уравнение состояния твердого вещества при высоких плотностях энергии // Вестн. НГУ. Сер. Физика. 2007. Т. 2, вып. 2. С. 65–73.
- 31. **Кинеловский С. А., Маевский К. К.** Модель поведения алюминия и смесей на его основе при ударно-волновом воздействии // Теплофизика высоких температур. 2014. Т. 52, № 6. С. 843–851.

32. Маккуин Р., Марш С., Тейлор Дж. и др. Уравнение состояния твердых тел по результатам исследований ударных волн // Высокоскоростные ударные явления / под ред. Р. Кинслоу. — М.: Мир, 1973. — С. 299–427.

- 33. Boehler R., Ramakrishnan J. Experimental results on the pressure dependence of the Gruneisen parameter // J. Geophys. Res. Ser. B. 1980. V. 85, N B12. P. 6996–7002.
- 34. **Альтшулер Л. В., Брусникин С. Е., Кузьменков Е. А.** Изотермы и функции Грюнайзена 25 металлов // ПМТФ. 1987. № 1. С. 134–146.
- 35. **Burakovsky L., Preston D. L.** Analytic model of the Grüneisen parameter all densities // J. Phys. Chem. Solids. 2004. V. 65, N 8-9. P. 1581–1587.
- 36. **Прут В. В.** Полуэмпирическая модель уравнения состояния конденсированных сред // Теплофизика высоких температур. 2005. Т. 43, вып. 5. С. 713–726.
- 37. Greeff C. W., Boettger J. C., Graf M. J., et al. Theoretical investigation of the Cu EOS standard // J. Phys. Chem. Solids. 2006. V. 67, N 9-10. P. 2033–2040.
- 38. **Кормер С. Б., Фунтиков А. И., Урлин В. Д., Колесникова А. И.** Динамическое сжатие пористых металлов и уравнение состояния с переменной теплоемкостью при высоких температурах // ЖЭТФ. 1962. Т. 42. С. 686–697.
- 39. Сапожников А. Т., Першина А. В. Полуэмпирическое уравнение состояния металлов в широком диапазоне плотностей и температур // Вопросы атомной науки и техники. Сер. Методики и программы численного решения задач математической физики. 1979. Вып. 4(6). С. 47–56.
- 40. Фомин В. М., Гулидов А. И., Сапожников Г. А. и др. Высокоскоростное взаимодействие тел. Новосибирск: Изд-во СО РАН, 1999.
- 41. Гударенко Л. Ф., Гущина О. Н., Жерноклетов М. В. и др. Ударное сжатие и изоэнтропическое расширение пористых образцов вольфрама, никеля и олова // Теплофизика высоких температур. — 2000. — Т. 38, вып. 3. — С. 437–444.
- 42. **Хищенко К. В.** Холодная кривая и калорическое уравнение состояния меди // Физика экстремальных состояний вещества 2004 / под ред. В. Е. Фортова и др. Черноголовка, 2004. С. 45–48.
- 43. **Хищенко К. В.** Уравнение состояния магния в области высоких давлений // Письма в ЖТФ. 2004. Т. 30, № 19. С. 65–71.
- 44. Гударенко Л. Ф., Прялов С. Н. Аппроксимация потенциального давления на основе обобщенной формулы для коэффициента Грюнайзена // Хим. физика. 1999. Т. 18, \mathbb{N} 10. С. 52–59.

45. **Gschneidner K. A.** Physical properties and interrelationships of metallic and semimetallic elements // Solid State Phys. — 1964. — V. 16. — P. 275–426.

- 46. **Францевич И. Н., Воронов С. С., Бакута С. А.** Упругие постоянные и модули упругости металлов и неметаллов: справочник. Киев: Наук. думка, 1982.
- 47. **Калиткин Н. Н., Кузьмина Л. В.** Таблицы термодинамических функций вещества при высокой концентрации энергии. М., 1975. (Препринт Института прикладной математики АН СССР; № 35).
- 48. Perrot F. Zero-temperature equation of state of metals in the statistical model with density gradient correction // Physica A: Statistic. Mech. Appl. — 1979. — V. 98, N 3. — P. 555–565.
- 49. Albers R. C., McMahan A. K., Müller J. E. Electronic and x-ray-absorption structure in compressed copper // Phys. Rev. B. 1985. V. 31. P. 3435–3450.
- 50. **Кузьменков Е. А.** Композиционные полуэмпирические уравнения состояния сжатых металлов // Изв. Сиб. отд-ния АН СССР. Сер. техн. наук. 1989. Вып. 6. С. 109–112.
- 51. Nellis W. J., Moriarty J. A., Mitchell A. C., et al. Metals physics at ultrahigh pressure: Aluminum, copper, and lead as prototypes // Phys. Rev. Lett. 1988. V. 60. P. 1414–1417.
- 52. **Dewaele A., Loubeyre P., Mezouar M.** Equations of state of six metals above 94 GPa // Phys. Rev. B. 2004. V. 70. 094112.
- 53. Kalitkin N. N., Kuzmina L. V. Wide-range characteristic thermodynamic curves // Shock Waves and Extremal Conditions of Matter / V. E. Fortov et al. (Eds). New York: Springer, 2004. P. 109–176.
- 54. Электронный ресурс база ударно-волновых данных. http://www.ihed.ras.ru/rusbank/.
- 55. Методы исследования свойств материалов при интенсивных динамических нагрузках / под ред. М. В. Жерноклетова. — Саров: РФЯЦ-ВНИИЭФ, 2003.
- 56. Трунин Р. Ф., Гударенко Л. Ф., Жерноклетов М. В., Симаков Г. В. Экспериментальные данные по ударно-волновому сжатию и адиабатическому расширению конденсированных веществ. 2-е изд. Саров: РФЯЦ-ВНИИЭФ, 2006.
- 57. Глушак Б. Л., Жарков А. П., Жерноклетов М. В. и др. Экспериментальное изучение термодинамики плотной плазмы металлов при высоких концентрациях энергии // ЖЭТФ. 1989. Т. 96, вып. 4(10). С. 1301–1318.
- 58. Liu Y. B., Li X. S., Feng Y. L., Cui Y. L., Han X. Thermodynamic properties of Cu under high pressure // Physica B: Condens. Matter. 2007. V. 394, iss. 1. P. 14–17.

- Физические величины: справочник / под ред. И. С. Григорьева, Е. З. Мейлихова — М.: Энергоатомиздат, 1991.
- Thermophysical properties of matter. V. 4: Specific Heat-Metallic Elements and Alloys / Y. S. Touloukian, E. H. Buyco (Eds). NewYork, Washington: IFI/Plenum, 1970.
- 61. Альтшулер Л. В., Кормер С. Б., Бражник М. И., Владимиров Л. А., Сперанская М. П., Фунтиков А. И. Изэнтропическая сжимаемость алюминия, меди, свинца и железа при высоких давлениях // ЖЭТФ. 1960. Т. 38. С. 1061–1073.
- 62. Hayes D., Hixson R. S., McQueen R. G. High pressure elastic properties, solid-liquid phase boundary and liquid equation of state from release wave measurements in shock-loaded copper // Shock Compression of Condensed Matter 1999. Melville, New York, 2000. P. 483–488. (AIP Conf. Proc.; V. 505).
- 63. **Стишов С. М.** Термодинамика плавления простых веществ // Успехи физ. наук. 1974. Т. 114, вып. 1. С. 1–40.

- 64. Brand H., Dobson D. P., Vocadlo L., Wood I. G. Melting curve of copper measured to 16 GPa using a multi-anvil press // High Pressure Res. 2006. V. 26, N 3. P. 185–191.
- 65. Japel S., Schwager B., Boehler R., RossM. Melting of copper and nickel at high pressure: the role of d electrons // Phys. Rev. Lett. — 2005. — V. 95. — 167801.
- 66. Moriarty J. A. High-pressure ion-thermal properties of metals from ab initio interatomic potentials // Shock Waves in Condensed Matter / Y. M. Gupta (Ed.). New York: Plenum, 1986. P. 101–106.
- 67. Belonoshko A. B., Ahuja R., Eriksson O., Johansson B. Quasi ab initio molecular dynamic study of Cu melting // Phys. Rev. B. 2000. V. 61. P. 3838–3844.
- 68. Vocadlo L., Alfe D., Price G. D., Gillan M. J. Ab initio melting curve of copper by the phase coexistence approach // J. Chem. Phys. 2004. V. 120. P. 2872–2878.

Поступила в редакцию $26/IV\ 2017\ \epsilon$., в окончательном варианте — $23/XI\ 2017\ \epsilon$.