2017. Том 58, № 1

Январь – февраль

C. 96 – 102

УДК 548.73

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ $[M(En)_3](ReO_4)_2$ (M = Ni, Zn)

С.П. Храненко¹, Е.А. Быкова², А.В. Задесенец^{1,3}, С.А. Громилов^{1,3}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: grom@niic.nsc.ru

²*Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany*

³Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 29 марта 2016 г.

Изучено строение двух изоструктурных фаз $[M(\text{En})_3](\text{ReO}_4)_2$ (M = Ni, Zn; En — этилендиамин). Кристаллические структуры относятся к триклинной сингонии, но демонстрируют псевдогексагональный мотив упаковки. Показано, что продукт термического разложения $[\text{Zn}(\text{En})_3](\text{ReO}_4)_2$ (атмосфера водорода, 400 °C) представляет собой гомогенную смесь нанокристаллических порошков цинка и рения с размерами областей когерентного рассеяния ~30 нм.

DOI: 10.15372/JSC20170113

Ключевые слова: никель, цинк, рений, этилендиамин, кристаллохимия, рентгеноструктурный анализ.

Биметаллические комплексные соли (КС) представляют интерес как удобные предшественники металлических тугоплавких наносплавов. Получение таких сплавов с участием рения путем термического разложения соответствующих КС было описано в ряде работ [1—9]. Особо следует отметить, что наносплавы образуются при температурах до 700 °C, т.е. заметно ниже температур плавления компонентов. Так, в работе [10] был получен сплав $Os_{0,5}Re_{0,5}$ при 500 °C, что в 6 раз ниже температур плавления рения и осмия (3180 и 3054 °C соответственно).

Наличие в составе КС органического лиганда-восстановителя позволяет рассчитывать на получение сплава при термическом разложении КС в инертной атмосфере Не. В этом плане этилендиаминовые катионы представляют особый интерес. В [11] показано, что термическое разложение [Pt(En)₂](ReO₄)₂ (En — этилендиамин) в атмосфере Не при 880 °C приводит к образованию твердого раствора Pt_{0,33}Re_{0,67}.

Кристаллохимический интерес к изучению КС связан с изучением закономерностей взаимной упаковки катионных и анионных фрагментов структуры при различных соотношениях между их формами и численными соотношениями, например в структуре [Co(En)₃](ReO₄)₃ соотношение комплексных катионов (KK) и перренат-анионов (соответственно и соотношение металлов) равно 1:3 [12], а в [Ni(En)₃](ReO₄)₂ 1:2 [13]. Представляется целесообразным поиск изоструктурных КС, что позволяет целенаправленно синтезировать предшественники с тремя (и более) сортами атомов металлов и варьировать их соотношения в широких пределах.

ЭКСПЕРИМЕНТ

[ZnEn₃](ReO₄)₂. На первом этапе синтезировали комплекс [Zn(En)₃](NO₃)₂. 1 ммоль Zn(NO₃)₂·6H₂O (Ч), растворяли в 10 мл ацетона (ОСЧ) и вносили в раствор, охлажденный

[©] Храненко С.П., Быкова Е.А., Задесенец А.В., Громилов С.А., 2017

льдом. Затем при перемешивании вносили 4 ммоля этилендиамина (Ч). Выпавший белый кристаллический осадок отсасывали на стеклянном пористом фильтре, трижды промывали ацетоном и высушивали на воздухе при комнатной температуре. Выход продукта 97—98 %. Идентификацию [Zn(En)₃](NO₃)₂ проводили методом рентгенофазового анализа (РФА) по литературным данным [14].

На втором этапе 2 ммоля [Zn(En)₃](NO₃)₂ (1,5 г) растворяли в 5 мл воды и вносили в раствор при перемешивании NaReO₄ (ЧДА, 4 ммоля, 1,093 г) в трех мл H₂O. Выделившийся белый кристаллический осадок отсасывали на пористом фильтре, промывали небольшим объемом воды, затем ацетоном и высушивали на воздухе при комнатной температуре. Выход продукта 71—72 %. Дополнительную порцию соединения удалось выделить при концентрировании вдвое маточного раствора. Кристаллы для проведения рентгеноструктурного исследования получали медленным испарением разбавленного водного раствора комплекса.

ИК спектры регистрировали на ИК Фурье-спектрометрах Scimitar FTS-2000 и Vertex 80 (область 4000—400 см⁻¹; таблетки, запрессованные с КВг). Основные линии: 3346_c, 3285_c, 3168_{cл}, 2955_{ср}, 2930сл., 2885_{ср}, 1576_{ср}, 1460_{ср}, 1329_{ср}, 1277_{сл}, 1138_{сл}, 1130_{сл}, 1006_c, 970_{ср}, 913_c, 652_{ср}, 500_{ср}, 462_{сл} см⁻¹.

 β -[Ni(En)₃](ReO₄)₂. Кристаллы были получены при медленном (~6 месяцев) концентрировании маточного раствора, оставшегося после синтеза α -[Ni(En)₃](ReO₄)₂, описанного в работе [13]. По данным РФА полученный продукт представляет собой смесь α - и β -модификаций.

Рентгенодифрактометрическое исследование синтезированных продуктов проведено на дифрактометре SHIMADZU XRD7000 (Си K_{α} -излучение, Ni-фильтр, сцинтилляционный детектор) при комнатной температуре. Дифрактограммы комплексных солей полностью проиндицированы по данным исследования монокристаллов. Использована программа полнопрофильного уточнения PCW [15]. Рентгенофазовый анализ продукта термического разложения [Zn(En)₃](ReO₄)₂ (атмосфера водорода, 400 °С) показал образование двухфазного продукта — гомогенной смеси нанокристаллических цинка и рения с размерами областей когерентного рассеяния ~30 нм.

Исследование монокристаллов проведено на дифрактометре X8 APEX Bruker (MoK_{α} -излучение, графитовый монохроматор) при T = 150 К. Кристаллографические данные, условия проведения экспериментов и характеристики уточнения кристаллических структур приведены в табл. 1, основные межатомные расстояния и валентные углы — в табл. 2. Структуры решены прямым методом и уточнены в анизотропном (изотропном — для атомов водорода) приближении. Атомы водорода заданы геометрически. Все расчеты выполнены по комплексу программ SHELX-97 [16]. Координаты и тепловые параметры атомов депонированы в Кембриджский банк структурных данных ССDС [17] (соответствующие номера указаны в табл. 1) и могут быть получены по адресу www.ccdc.cam.ac.uk/data request/cif.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

В ходе проведения рентгеноструктурного анализа монокристаллов была установлена изоструктурность β -[Ni(En)₃](ReO₄)₂ и [Zn(En)₃](ReO₄)₂. Обе структуры триклинные, на каждый КК [M(En)₃]²⁺ приходится два перренат-аниона. Далее будет дано описание кристаллической структуры β -[Ni(En)₃](ReO₄)₂. На рис. 1 показано: строение ионов, нумерация атомов, эллипсоиды тепловых колебаний и один из кратчайших межионных контактов. Координационный полиэдр центрального атома в КК представляет собой искаженный октаэдр, образованный шестью атомами азота трех бидентатных Еп-лигандов. Все лиганды имеют *гош*-конфигурацию атомы углерода отклоняются от плоскостей треугольников N—М—N в разные стороны. Величины отклонений для трех лигандов даны в последней строчке табл. 2.

При анализе кристаллической структуры α -[Ni(En)₃](ReO₄)₂ (кристаллоструктурные характеристики см. в табл. 3) в работе [13] были выделены характерные четверки перренат-анионов, образующие паркетную укладку с расстояниями Re...Re 4,315 и 4,703 Å. Принципиальное отличие β -[Ni(En)₃](ReO₄)₂ — наличие двух типов перренат-анионов (рис. 2). Анионы, содержа-

Таблица 1

β -[Ni(En) ₃](ReO ₄) ₂	$[Zn(En)_3](ReO_4)_2$	
C ₆ H ₂₄ N ₆ O ₈ Re ₂ Ni	$C_6H_{24}N_6O_8Re_2Zn$	
739,42	746,08	
8,3936(5), 9,0102(5), 14,1600(6)	8,4393(3), 9,0561(3), 14,2055(5)	
72,715(1), 79,594(1), 63,021(1)	72,004(2), 79,743(2), 63,142(1)	
<i>P</i> -1	<i>P</i> -1	
2; 909,93(8)	2; 920,24(6)	
2,699	2,693	
0,09×0,06×0,06	0,12×0,07×0,03	
2,62—30,51	1,51—30,50	
8640 / 5366	11216 / 5569	
4447	4763	
0,0192	0,0214	
98,1	99,9	
208	208	
1,018	0,990	
0,0272 / 0,0510	0,0209 / 0,0387	
0,0384 / 0,0534	0,0280 / 0,0402	
1468087	1468088	
	$\begin{array}{c} \beta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

Кристаллографические характеристики

Таблица 2

I еометрические характеристики [$M(En)_3$](ReO ₄) ₂						
Параметр	β -[Ni(En) ₃](ReO ₄) ₂	$[Zn(En)_3](ReO_4)_2$				
<i>M</i> —N, Å	2,115(3)-2,137(4)	2,175(3)-2,219(2)				
(<i>M</i> —N) _{cp} , Å	2,125	2,199				
∠N— <i>М</i> —N, град.	81,20(13)—81,63(14)	78,9(1)-79,9(1)				
(∠N— <i>М</i> —N) _{ср} , град.	81,48	79,5				
N—C, Å	1,470(4)—1,486(4)	1,477(4)				
(N—C) _{cp} , Å	1,481	1,482				
C—C, Å	1,508(7)—1,523(6)	1,501(5)—1,526(4)				
(C—C) _{cp} , Å	1,513	1,515				
Re—O, Å	1,708(4)—1,734(3)	1,708(2)-1,731(3)				
(Re—O) _{ср} , Å	1,720	1,723				
∠О—Re—О, град.	107,9(2)—111,8(2)	107,95(12)—111,42(13)				
(∠О—Re—О) _{ср} , град.	109,5	109,47				
Δ, Å*	-0,393 / 0,323; -0,308 / 0,437;	-0,406 / 0,299; -0,337 / 0,391;				
	-0,285 / 0,420	-0,257 / 0,450				

Геометрические характеристики [*M*(En)₃](ReO₄)₂

* Отклонения атомов углерода от плоскостей треугольников азот—металл—азот для трех лигандов.

щие атомы Re(1), образуют цепочки, внутри которых расстояния Re...Re 4,51 и 4,67 Å; анионы, содержащие Re(2), располагаются парами, в них расстояния Re...Re 4,13 Å. Кратчайшее расстояние между атомами кислорода, принадлежащими соседним перренат-анионам, равно 2,96 Å.

Рис. 1. Нумерация атомов и эллипсоиды тепловых колебаний (кроме атомов Н) в кристаллической структуре β-[Ni(En)₃](ReO₄)₂.
Второй симметрически независимый анион (ReO₄)⁻ не показан. Штриховой линией показан межионный контакт О...Н—С

Таблица 3

Кристаллоструктурные характеристики комплексных солей, содержащих [Ni(En)₃]²⁺

Формула	α -[Ni(En) ₃](ReO ₄) ₂	$[Ni(En)_3](ClO_4)_2H_2O$	[Ni(En) ₃](MoO ₄)	[Ni(En) ₃](NO ₃) ₂	[Ni(En) ₃](SO ₄)
Ссылка	[13; 17,	[17,	[17,	[22; 17,	[24; 17,
	XEMWET01]	TENNIP]	GAWSIG01]	YUXZIB05]	TENNIS10]
<i>a</i> , Å	*	**	16,0024(16)	8,8647	8,946(5)
<i>c</i> , Å			9,9608(19)	11,3595	9,634(5)
Пр. гр.	$P2_1/c (N_2 14)$	<i>Pbca</i> (№ 61)	<i>P</i> -3 <i>c</i> 1 (№ 165)	<i>P</i> 6 ₃ 22 (№ 182)	<i>P</i> -31 <i>c</i> (№ 163)
Ζ	4	8	6	2	2
<i>V</i> , Å ³	1858,68	3662.3	2209,00	773,07	667,72
V/Z, Å ³	464,67	457,79	368,17	386,53	333,86
$d_{\rm выч}, \Gamma/{\rm cm}^3$	2,642	1,559	1,799	1,56	1,666
Ni—N, Å	2,114—2,136	2,099—2,141	2,132; 2,156	2,132	2,214(6)
∠N—Ni—N, град.	81,16—81,21	80,79—82.24	81,0—79,9	81,90	82,1(2)
N—C, Å	1,470—1,475	1,401—1,527	1,403—1,486	1,470	1,476(9)
C—C, Å	1,473—1,498	1,399—1,462	1,549, 1,554	1,471	1,544(9)
NiNi, Å	7,195; 8,400	8,522; 9,016	7,275; 7,334	7,646	7,241

* $a = 8,3868, b = 15,7749, c = 14,2747 \text{ Å}, \beta = 100,204^{\circ}.$ ** a = 17,043, b = 15,992, c = 13,496 Å.

Рис. 2. Взаимное расположение анионов (ReO₄)⁻ в структуре β-[Ni(En)₃](ReO₄)₂. Анионы, содержащие Re(2), располагаются парами (*a*), содержащие атомы Re(1) образуют цепочки (*б*). Числовые значения соответствуют расстояниям Re...Re.

Штриховыми линиями показаны контакты О...O < 3,4 Å

Рис. 3. Теоретические дифрактограммы для α- и β-[Ni(En)₃](ReO₄)₂: результаты расчета по всем атомам (a, б); только по атомам Ni (в, г). Выделены индексы отражений от плоскостей, образующих подрешетку, которой следуют атомы Ni

Исходя из того, что перренат-анионы по размерам существенно уступают КК, при определении мотива построения структур α- и β-[Ni(En)₃](ReO₄)₂ в первую очередь необходимо ориентироваться на поиск взаимного расположения именно катионов. Так как "вес" (т.е. число электронов) центрального атома КК заметно меньше веса атома рения, использование методики выделения трансляционной подрешетки [18], основанной на анализе индексов hkl сильнейших рефлексов дифрактограммы, невозможен. На рис. 3, а, б показаны теоретические дифрактограммы α- и β-[Ni(En)₃](ReO₄)₂. Для выделения вклада катионов были рассчитаны дифрактограммы только по атомам Ni. Использование такого подхода для ряда примеров было описано в [19, 20]. В результате расчета наиболее интенсивные отражения указывают на плоскости, наиболее заселенные конкретными атомами; в нашем случае это атомы никеля. Среди таких плоскостей с помощью программы [21] находим такие тройки, для которых матрица, составленная из индексов *hkl*, имеет детерминант, равный числу атомов Ni, приходящихся на элементарную ячейку, т.е. числу Z. Далее среди всех возможных вариантов находим такой, в котором подрешетка наиболее симметричная. Для моноклинной структуры α-[Ni(En)₃](ReO₄)₂ такой вариант получен (см. рис. 3, в и табл. 3)

с использованием трех семейств кристаллографических плоскостей с индексами (1 1 0) и (-1 1 0), (0 0 2). Первые два семейства связаны элементом симметрии. Параметры псевдогексагональной подъячейки: $a_{\rm T}$ = 8,87, $b_{\rm T}$ = 8,87, $c_{\rm T}$ = 7,12 Å, $\alpha_{\rm T}$ = 85,1, $\beta_{\rm T}$ = 94,9, $\gamma_{\rm T}$ = 56,5°.

В случае β-[Ni(En)₃](ReO₄)₂ подъячейка с близкими линейными и угловыми параметрами — $a_{\rm T} = 8,39, \ b_{\rm T} = 9,01, \ c_{\rm T} = 7,08$ Å, $\alpha_{\rm T} = 72,7, \ \beta_{\rm T} = 79,6, \ \gamma_{\rm T} = 63,0^{\circ}$ — получена при использовании тройки плоскостей (см. рис. 3, *г*) с индексами (1 0 0) и (0 1 0) и (0 0 2). Вектора трансляционной подрешетки: $a_{\rm T} = a, \ b_{\rm T} = b, \ c_{\rm T} = c/2$. Ее узлам должны следовать атомы Ni, действительно линейные параметры подъячейки хорошо коррелируют с расстояниями Ni…Ni: 8,394, 9,010 и 7,088 Å. Так как угол $\gamma_{\rm T}$ близок к 60°, а $a_{\rm T} \approx b_{\rm T}$, можно рассмотреть упаковку кристаллической структуры

Рис. 4. Сравнение мотивов построения структур: β-[Ni(En)₃](ReO₄)₂ (*a*), [Ni(En)₃](ClO₄)₂H₂O (*б*), [Ni(En)₃](NO₃)₂ (*в*) и [Ni(En)₃](MoO₄) (*г*). Атомы водорода не показаны

 β -[Ni(En)₃](ReO₄)₂ в направлении оси *c* (рис. 4, *a*). Мотив расположения атомов Ni (следовательно и КК) действительно близок и его можно характеризовать как псевдогексагональный.

Рассмотрим по этой же схеме упаковку кристаллической структуры [Ni(En)₃](ClO₄)₂H₂O [17, TENNIP]. Кристаллоструктурные характеристики даны в табл. 3. На ромбическую элементарную ячейку приходится 8 формульных единиц. Параметры трансляционной подъячейки: $a_{\rm T} = b_{\rm T} = 9,03$, $c_{\rm T} = 6,75$ Å, $\alpha_{\rm T} = \beta_{\rm T} = 90$, $\gamma_{\rm T} = 56,3^{\circ}$ и выражения для соответствующих векторов подрешетки: $a_{\rm T} = a/4 + b/2$, $b_{\rm T} = -a/4 + b/2$, $c_{\rm T} = c/2$ позволяют рассматривать ее как псевдогекса-гональную в направлении оси *z*. Сравнивая эти метрики с найденными в α - и β -[Ni(En)₃](ReO₄)₂, можно отметить удовлетворительное сходство. На рис. 4, δ показано взаимное расположение фрагментов структуры [Ni(En)₃](ClO₄)₂H₂O в слое. Очевидно, что именно расположение КК является доминирующим при построении рассмотренных структур. Расположение анионов и молекул воды можно считать подчиненным.

Сравнивая мотив упаковки структур α - и β -[Ni(En)₃](ReO₄)₂ с [Ni(En)₃](NO₃)₂ (см. рис. 4, ϵ), можно отметить их принципиальное отличие: в этой гексагональной структуре меньшие по размеру анионы сдваиваются и в таком виде чередуются с КК в направлении оси z. Такой же способ упаковки демонстрируют [Ni(En)₃](SO₄) и [Ni(En)₃](MoO₄) (см. рис. 4, ϵ). Кристаллографические характеристики указанных структур даны в табл. 3.

Таким образом, в настоящей статье установлена изоструктурность комплексных солей [Ni(En)₃](ReO₄)₂ и [Zn(En)₃](ReO₄)₂. Проведен сравнительный кристаллохимический анализ

структур КС, содержащих [Ni(En)₃]²⁺. Показан простой способ получения гомогенной смеси нанокристаллических порошков цинка и рения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Беляев А.В., Коренев С.В., Лисойван В.И., Громилов С.А. // Пат. 1410378 РФ, МКИ4 В 22 F 9/16. (РФ). № 4144926. Заяв. 10.10.86. Опубл. 30.03.88. Бюл. № 17.
- 2. Коренев С.В., Байдина И.А., Корольков И.В., Громилов С.А. // Журн. структур. химии. 2002. **43**, № 3. С. 527 533.
- 3. Губанов А.И., Коренев С.В., Громилов С.А., Шубин Ю.В. // Журн. неорган. химии. 2003. 48, № 3. С. 407 412.
- 4. Громилов С.А., Коренев С.В., Корольков И.В., Юсенко К.В., Байдина И.А. // Журн. структур. химии. 2004. **45**, № 3. С. 508 515.
- 5. Юсенко К.В., Громилов С.А., Корольков И.В., Байдина И.А., Романенко Г.В., Коренев С.В. // Журн. неорган. химии. 2004. **49**, № 4. С. 568 573.
- 6. Юсенко К.В., Громилов С.А., Байдина И.А., Корольков И.В., Коренев С.В. // Журн. структур. химии. 2005. 46, № 1. С. 111 117.
- 7. Корольков И.В., Задесенец А.В., Громилов С.А., Юсенко К.В., Байдина И.А., Коренев С.В. // Журн. структур. химии. – 2006. – 47, № 3. – С. 503 – 511.
- 8. Громилов С.А., Юсенко К.В., Шушарина Е.А. // Журн. структур. химии. 2007. 48, № 5. С. 957 962.
- 9. Байдина И.А., Макотченко Е.В., Шушарина Е.А., Плюснин П.Е., Смоленцев А.И., Громилов С.А. // Журн. структур. химии. 2010. **51**, № 3. С. 544 551.
- 10. Юсенко К.В., Корольков И.В., Громилов С.А., Коренев С.В. // Журн. структур. химии. 2007. **48**, № 2. – С. 385 – 388.
- 11. *Храненко С.П., Куратьева Н.В., Громилов С.А. //* Журн. структур. химии. 2015. **56**, № 2. С. 367 371.
- 12. Байдина И.А., Филатов Е.Ю., Макотченко Е.В., Смоленцев А.И. // Журн. структур. химии. 2012. **53**, № 1. С. 117 123.
- 13. Быкова Е.А., Храненко С.П., Громилов С.А. // Журн. структур. химии. 2012. 53, № 1. С. 186 190.
- 14. Neill D., Riley M.J., Kennard C.H.L. // Acta Crystallogr. 1997. C53. P. 701.
- 15. Kraus W., Nolze G. // J. Appl. Cryst. 1996. 29. P. 301 302.
- 16. Sheldrick G.M. // Acta Crystallogr. 2008. A64, N 1. P. 112 122.
- 17. Allen F.H. // Acta Crystallogr. 2002. B58, N 3-1. P. 380 388.
- 18. Борисов С.В. // Журн. структур. химии. 1986. 27, № 3. С. 164 167.
- 19. Громилов С.А., Борисов С.В. // Журн. структур. химии. 2003. 44, № 4. С. 724 742.
- Громилов С.А. Определение структурных мотивов координационных соединений на основе точных рентгендифрактометрических данных поликристаллов. Автореф. дисс. ... докт. физ.-мат. наук. – Новосибирск: ИНХ СО РАН, 2004.
- 21. Громилов С.А., Быкова Е.А., Борисов С.В. // Кристаллография. 2011. 56, № 6. С. 1013 1018.
- 22. Macchi P., Burgi H.-B., Chimpri A.S., Hauser J., Gal Z. // J. Appl. Crystallogr. 2011. 44. P. 763.
- 23. Jameson G.B., Schneider R., Dubler E., Oswald H.R. // Acta Crystallogr., Sect.B: Struct. Crystallogr. Cryst. Chem. 1982. **38**. P. 3016.
- 24. Mazhar-Ul-Haque, Caughlan C.N., Emerson K. // Inorg. Chem. 1970. 9, N 11. P. 2421 2424.
- 25. Singh R., Gautam R.K. // J. Indian Chem. Soc. 1987. 64. P. 631.