УДК 553.314:553.319:553.26

РЕДКОЗЕМЕЛЬНЫЕ ФОСФАТЫ В КЕРЧЕНСКИХ ИКРЯНЫХ РУДАХ А.В. Некипелова¹, Э.В. Сокол¹, С.Н. Кох¹, П.В. Хворов²

¹ Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090, Новосибирск, просп. Академика Коптюга, 3, Россия

² Институт минералогии УрО РАН, 456317, Миасс, Челябинская обл., Россия

На основе минералогических, геохимических и REE+Y характеристик валовых проб и фракций икряных руд Камыш-Бурунской мульды (Керченский железорудный бассейн) определен вклад различных фаз-носителей редкоземельных элементов (REE) и Y в их общий Σ REE бюджет. Наряду с MREE, сорбированными на Fe^{3+} -(окси)гидроксидах, икряные руды содержат аутигенные фосфаты LREE. Преобладают фазы рабдофанового типа (Ce(PO₄)·nH₂O), обогащенные La, Pr, Nd, Ca, обедненные Ce и лишенные Th. Диагностированы два типа твердых растворов: LREE(PO₄)·nH₂O—(Ca,Ce,Th)(PO₄)·H₂O (рабдофаноподобная фаза и броккит) и LREE(PO₄)·nH₂O—(Ca, U, Fe^{3+})((PO₄),(SO₄))·2H₂O (рабдофаноподобная фаза и тристрамит). Фосфаты REE концентрируются во фракциях \leq 0.25 мм, где средние и максимальные содержания Σ REE ($X_{\rm cp} = 606$ —1954 г/т; $X_{\rm max} = 769$ —3011 г/т) сопоставимы с таковыми в промышленных месторождениях КНР. Высокие отношения Pr/Ce и Nd/Ce в керченских рудах минимизируют затраты на селективное извлечение этих востребованных элементов, а низкие концентрации Th и U резко снижают класс радиологической опасности концентратов и отходов. Особенности накопления REE в керченских рудах характеризуют их как коммерчески привлекательный тип нетрадиционного редкоземельного сырья.

Керченские железные руды, редкие земли, аутигенные фосфаты редких земель, Pr, Nd, рабдофан, тристрамит, нетрадиционное редкоземельное сырье

RARE EARTH PHOSPHATES IN THE KERCH CAVIAR IRONSTONES

A.V. Nekipelova, E.V. Sokol, S.N. Kokh, P.V. Khvorov

The mineralogy and contents of major and trace elements (including REE+Y) in bulk samples and separate size fractions of caviar-like ironstones from the Kamysh-Burun deposit (Kerch iron province) are studied to estimate the contributions of different REE+Y species to the total budget. The analyzed ore samples contain MREE adsorbed on Fe³+-(oxy)hydroxides, as well as LREE authigenic phosphates. The predominant rhabdophane-type (Ce(PO₄)·nH₂O) phases are enriched in La, Pr, Nd, and Ca, depleted in Ce, and free from Th. The REE carriers belong to solid solution series of two main types: LREE(PO₄)·nH₂O – (Ca,Ce,Th)(PO₄)·H₂O (rhabdophane-like phase and brockite) or LREE(PO₄)·nH₂O – (Ca,U,Fe³+)((PO₄),(SO₄))·2H₂O (rhabdophane-like phase and tristramite). REE phosphates occur most often in the ≤ 0.25 mm fractions of ironstones, where average and maximum Σ REE contents ($X_{av} = 606-1954$ ppm; $X_{max} = 769-3011$ ppm) are comparable with the respective amounts in the Chinese industrial clay-type REE deposits. The Kerch ores are commercially attractive unconventional resources of highly demanded Pr and Nd: they can be extracted at relatively low costs, due to high Pr/Ce and Nd/Ce ratios, while low Th and U reduce the environmental risks from stockpiled wastes.

Kerch ooidal ironstones; rare earth elements (REE); authigenic LREE phosphates; Pr, Nd, rhabdophane; tristramite; unconventional REE resources

ВВЕДЕНИЕ

Редкоземельные элементы (REE) и их соединения обладают рядом уникальных свойств (каталитических, металлургических, ядерных, электрических, магнитных и люминесцентных). Это определяет их широкое использование в инновационных технологиях и итоговое стратегическое значение [Jordens et al., 2013; Wall, 2014; Balaram, 2019]. В настоящее время глобальным производителем REE концентратов является Китай, который контролирует не менее 65 % от общего объема поставок этого сырья на мировой рынок. Агрессивная экспортная политика китайских властей в период 2005—2014 гг. вынудила страны-потребители REE экстренно искать новые источники редкоземельного сырья за пределами КНР [Hatch, 2012; Hu, 2012; Wübbeke, 2013], в число которых входят морские илы, угли, фосфориты и Fe-Mn конкреции [Kato et al., 2011; Seredin, Dai, 2012; Emsbo et al., 2015]. Осадочные железные руды также привлекают внимание с позиций оценки их REE потенциала [Gloaguen et al., 2007; Salama et al.,

⊠e-mail: nekipelova@igm.nsc.ru

DOI: 10.15372/GiG2021135

2012; Baioumy et al., 2014, 2017; Afify et al., 2015, 2018; Garnit, Bouhlel, 2017; Shaltami et al., 2017; Hoвоселов и др., 2018; Rahiminejad, Zand-Moghadam, 2018; Rudmin et al., 2019, 2020a, b; Diab et al., 2020; Sokol et al., 2020]. Вместе с тем существует дефицит информации о формах нахождения редкоземельных элементов в рудах этого типа. Их точная диагностика имеет принципиальную важность, поскольку именно формы нахождения в значительной мере определяют технологию обогащения руд, полноту извлечения REE и рентабельность добычи в целом. Цели данной статьи: 1) характеристика распределения REE и Y и их фаз-концентраторов в различных типах керченских железных руд; 2) сравнительный анализ REE потенциала месторождений осадочных железных руд; 3) оценка перспектив их использования в качестве нетрадиционного источника REE. Поскольку морфология фосфатов REE и Y и особенности их локализации в оолитовых железных рудах ранее систематически не изучались, этому вопросу в данной работе уделено особое внимание.

ХАРАКТЕРИСТИКА КЕРЧЕНСКИХ ОСАДОЧНЫХ ЖЕЛЕЗНЫХ РУД

Промышленные месторождения осадочных железных руд Керченского полуострова расположены в пределах Азово-Черноморской железорудной провинции, охватывающей территории России, Украины и Грузии (рис. 1). Контуры этой провинции совпадают с очертаниями северного шельфа мелководного Эвксинского водоема (Восточный Паратетис) в раннем плиоцене (киммерийское время) (см. рис. 1, *a*) [Лимонов, 1992; Popov et al., 2004; Попов и др., 2010]. Палеогеографическая обстановка и теплый семиаридный субтропический климат на территории современного Северного Причерноморья в

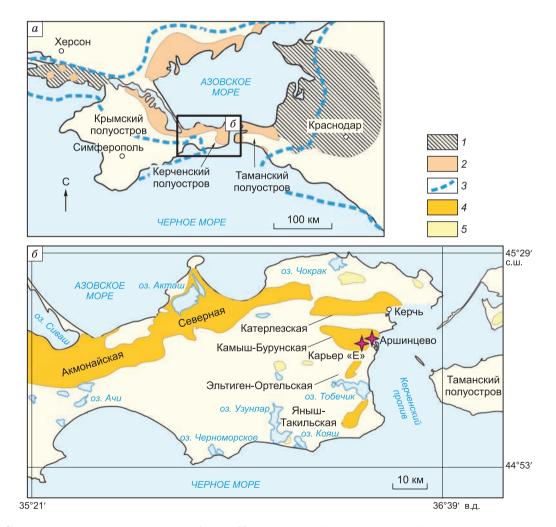
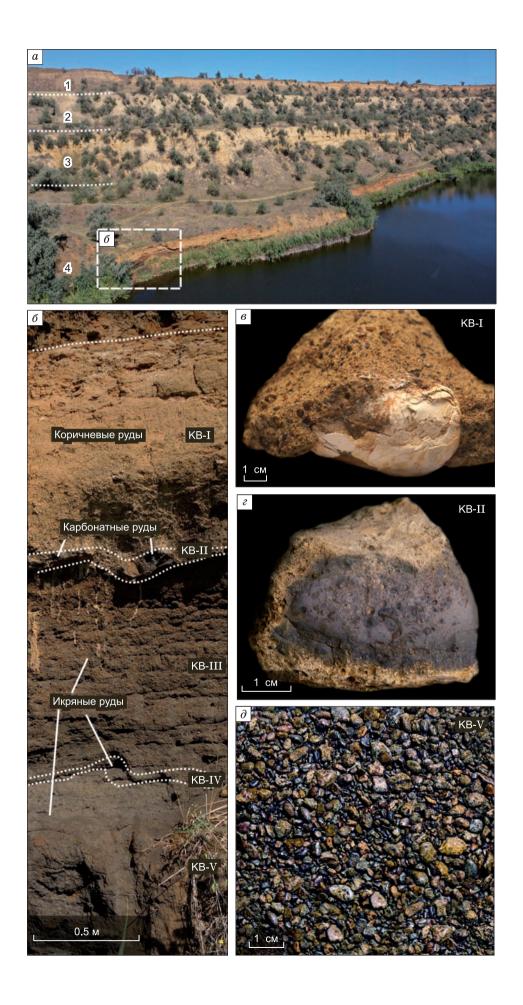


Рис. 1. Схема распространения пород Азово-Черноморской киммерийской железорудной провинции.

а — схема распространения киммерийских рудоносных отложений в пределах Азово-Черноморской провинции, по [Шнюков, 1965]; б — локализация железорудных мульд (брахисинклиналей) и вдавленных синклиналей Керченского полуострова, по [Chukanov, 2005]. I — киммерийские отложения; 2 — киммерийские оолитовые железные руды; 3 — контуры северного шельфа Эвксинского водоема (Восточный Паратетис) [Лимонов, 1992]; 4 — рудоносные мульды; 5 — рудоносные вдавленные синклинали.

среднем киммерии (занклский ярус (N_1^1)) благоприятствовали миграции железа с южной периферии Русской платформы и его масштабной аккумуляции в прибрежных осадках [Холодов и др., 2014]. На фоне понтийской (N_1^3) регрессии в районах современного Северного Причерноморья и побережья Азовского моря сформировались ландшафты низинных болот, опресненных лагун и лиманов. В эти взаимосвязанные системы реками палеобассейнов Дона, Днепра, Днестра и др. транспортировалось колоссальное количество взвешенного и растворенного материала. Основными источниками речного сноса считаются латеритные коры выветривания, развитые по породам Украинского кристаллического щита. На геохимическом барьере, возникающем при смешении пресных речных и лиманно-болотных вод с солоноватыми морскими, происходила массовая коагуляция Fe коллоидов и образование железистых осадков. Условия осадконакопления в киммерийских бассейнах колебались от насыщенных кислородом (аэрированных) до бескислородных, благодаря чему возникали чередующиеся ритмы осадков, сложенных Fe³⁺-(окси)гидроксидами, Fe-Mn карбонатами или слоистыми силикатами Fe⁺² (в частности, ферросапонитом) [Ципурский, Голубовская, 1989; Chukanov, 2005]. Колебания уровня киммерийского моря и активная гидродинамика прибрежной зоны ответственны за многочисленные эпизоды окисления (подводного и/или надводного) первичных руд, перемыва и переотложения рудного материала и его сложный состав [Шнюков, 1965; Голубовская, 1997, 1999, 2001; Холодов и др., 2014].


На Керченском полуострове промышленные железорудные месторождения сосредоточены в Камыш-Бурунской, Эльтиген-Ортельской и Яныш-Такильской мульдах (рис. 1, δ). Рудные горизонты среднекиммерийского возраста (N_2^1) с незначительным угловым несогласием залегают на органогенных известняках мэотиса и понта (N_1^3) и перекрываются суглинками, глинами, алевритами куяльницкого яруса (N_2^1 - Q_p) и четвертичными (Q_h) отложениями (рис. 2, a). Мощность рудных горизонтов колеблется от 0.5 до 15.0 м, составляя в среднем 9.0 м [Шнюков, 1965].

По морфологии, химическому и минеральному составу промышленные керченские руды подразделяют на табачные, коричневые и икряные. Карбонатные руды (сидеритовые и родохрозитовые) относятся к категории бедных [Малаховский, 1956; Шнюков, 1965; Голубовская, 1997, 1999, 2001; Холодов и др., 2014]. Горизонты табачных руд, состоящих главным образом из богатого Fe⁺² триоктаэдрического смектита ряда сапонит—ферросапонит, залегают в основании рудных пластов. Они рассматриваются как коллоидные осадки, сформированные в неглубоких застойных лагунах, где отсутствовали придонные течения и вертикальная циркуляция вод [Малаховский, 1956; Шнюков, 1965; Голубовская, 2001]. Коричневые руды преобладают в краевых частях мульд и представляют собой продукты окисления табачных руд. При окислении ферросапонита возникал агрегат Fe³⁺-содержащего диоктаэдрического смектита и Fe³⁺-(окси)гидроксидов (в значительной мере аморфизованных) [Шнюков, 1965; Ципурский, Голубовская, 1989; Голубовская, 1997, 2001; Sokol et al., 2020]. Пачки Fe³⁺-(окси)гидроксидных икряных руд залегают в верхах рудной толщи и всегда располагаются в северо-восточной оконечности мульд. Икряные руды рассматриваются как пляжные фации, сформированные на песчаных отмелях или в зоне действия нагонных волн, и интерпретируются как продукты перемыва и переотложения сформированного ранее материала рудных пачек [Шнюков, 1965; Голубовская, 1999, 2001].

ФАКТИЧЕСКИЙ МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследования керченских железных руд осуществлены на материале коллекции пород Камыш-Бурунской мульды, отобранных авторами в 2017 и 2020 гг. (40 образцов). Опробован северный борт карьера «Е» Камыш-Бурунского месторождения, где уступы 1-3 вскрывают четвертичные (Q_h) и куяльницкие (N_2^1 - Q_{gl}) отложения, а 4-й уступ — киммерийские (N_2^1) железные руды (см. рис. 2, a). В верхней части опробованной пачки (см. рис. 2, b) залегает горизонт коричневых руд (КВ-I), ниже расположен горизонт карбонатных руд (КВ-II) и в основании — три горизонта икряных руд (КВ-III, КВ-IV, КВ-V). Пять валовых проб рыхлых икряных руд (весом от 2.5 до 3.0 кг) были разделены на девять размерных фракций без предварительной механической обработки: ≤ 0.074 мм (фракция A); 0.074—0.100 мм (B); 0.10—0.25 мм (C); 0.25—0.50 мм (D); 0.5—1.0 мм (E); 1—3 мм (F); 3—5 мм (G); 5—10 мм (H); >10 мм (I).

Анализы были преимущественно выполнены в лабораториях ЦКП многоэлементных и изотопных исследований СО РАН (г. Новосибирск). Петрографические наблюдения выполнены с помощью микроскопов OLYMPUS BX 51 и ZEISS AXIO A1. Диагностика минералов, характеристика морфологии и определение их химического состава были осуществлены с применением растрового сканирующего электронного микроскопа MIRA3-LMU (Tescan Orsay Holding) с энергодисперсионной системой химического микроанализа AZtec Energy XMax-50 (Oxford Instruments Nanoanalysis Ltd). Использованы следующие стандарты: SiO_2 (Si и O), диопсид (Mg и Ca), альбит (Na), ортоклаз (K), $Ca_2P_2O_7$ (P), BaF_2 (Ba и F), SrF_2 (Sr), металлы Ti, Fe, Mn, V, $Y_3Al_5O_{12}$ (Y, Al), $LiCe(WO_4)_2$ (Ce), $KLa(MoO_4)_2$ (La), $CsPr(MoO_4)_2$ (Pr), $RbNd(MoO_4)_2$ (Nd), UO_2 (U), ThO_2 (Th). Валовые составы псевдооолитов, оолитов, их ядер и концентров, а также цементов руд были определены на основании характеристических спектров рентгенов-

Рис. 2. Облик керченских осадочных железных руд и рудоносных отложений (карьер «Е», западный борт Камыш-Бурунской мульды).

a — панорама северной части карьера «Е» (высота съемки ~130 м); I—4 — номера уступов карьера «Е»; δ — расположение в разрезе горизонтов железных руд (КВ-I — КВ-V), вскрытых в разрезе карьера «Е»; ϵ —образец коричневой руды с фаунистическими останками; ϵ — типичная карбонатная будина со свежей зеленовато-коричневой центральной частью, содержащей незначительное количество псевдооолитов, на периферии будины развита кайма, сложенная продуктами окисления первичных Fe-Mn карбонатов; δ — рыхлые икряные руды, сложенные слабоокатанными фрагментами коричневых руд (псевдооолитами). Псевдооолиты имеют блестящую гладкую поверхность.

ского излучения, полученных с площадей размером от ≈ 100 до ≈ 2000 мкм². Диагностика фосфатов REE и Y и анализ их распределения были выполнены методом растровой электронной микроскопии (РЭМ) на материале тонких фракций (≤ 0.25 мм) икряных руд с максимальными содержаниями ΣREE и Y. Были изучены препараты двух типов — свежие сколы псевдооолитов и полированные монтированные шлифы. Определение макрокомпонентного состава руд выполнено рентгенфлуоресцентным методом с использованием установки СРМ-25 (аналитики Н.Г. Карманова, А.Н. Торяник). В ЮУ ФНЦ МиГ УрО РАН, Институт минералогии (г. Миасс) был произведен количественный рентгенофазовый анализ пород (дифрактометр SHIMADZU XRD-6000 с Си анодом и графитовым монохроматором). Количественные соотношения между минералами рассчитаны в программе SIROQUANT V.4 методом Ритвельда. Микроэлементный состав руд определен методом масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС) на спектрометре Agilent Technologies 7700х (США) (ЮУ ФНЦ МиГ УрО РАН). Детали всех методик изложены в работе [Sokol et al., 2020].

При анализе спектров распределения REE и Y использованы индикаторные отношения $(Yb/La)_N$, $(Gd/La)_N$, а также и величина Y* аномалии. Отношение $(Yb/La)_N$ используется для численного выражения соотношения между тяжелыми (HREE: Ho, Er, Tm, Yb, Lu) и легкими REE (LREE: La, Ce, Pr, Nd); $(Gd/La)_N$ отношение характеризует соотношение средних (MREE: Sm, Eu, Gd, Tb, Dy) и легких REE [Yang et al., 2017]. Величина Y* аномалии рассчитана по формуле Y* = Y $_N$ / (½ Dy $_N$ + ½ Ho $_N$) [Bolhar et al., 2004]. Нормировка содержаний REE и Y в изученных образцах выполнена на соответствующие их содержания в постархейском австралийском сланце (PAAS) [Taylor, McLennan, 1985]; подстрочный индекс «N» обозначает нормализованную величину.

РЕЗУЛЬТАТЫ

Общая характеристика руд разреза Камыш-Бурун, карьер «Е»

Северный борт карьера «Е» Камыш-Бурунского месторождения вскрывает верхний интервал среднекиммерийской рудной пачки, который включает коричневые, карбонатные (преимущественные родохрозитовые) и икряные руды (см. рис. 2). Типизация Fe³+-(окси)гидроксидных руд и терминология заимствованы из работ [Шнюков, 1965; Шнюков, Орловский, 2008; Геологический словарь, 2011]. Термин «оолиты» характеризует минеральные агрегаты (окси)гидроксидов Fe³+ овальной или эллипсоидной формы, обладающие концентрической зональностью/слоистостью и сопоставимой мощностью отдельных ритмов (концентров). Их размер варьирует от долей миллиметра до первых сантиметров. При визуальной и оптической диагностике в структуре оолитов выделяются от 3 до 15 концентров, при использовании методов высокого разрешения — до нескольких десятков. В ядрах оолитов обычно находятся песчинки, обломки пород (включая фрагменты других оолитов) или органические останки. Псевдооолиты монолитны, лишены зональности, имеют как угловатую, так и окатанную форму и представляют собой фрагменты перемытых и переотложенных Fe³+-(окси)гидроксидных руд. Их размер варьирует от долей миллиметра до первых сантиметров.

Горизонт КВ-I коричневых руд мощностью 1.2 м залегает в верхах рудного интервала и перекрывается куяльницкими $(N_2^1-Q_{gl})$ и четвертичными (Q_h) осадками (см. рис. 2, δ , δ). Руды состоят из бурых оолитов (около 60 об. %), погруженных в рыхлый желтовато-бежевый цемент. Содержание гетита в валовых пробах не менее 50 мас. % от общего количества кристаллических фаз; слоистых силикатов — около 20 мас. %; кварца — 20—30 мас. %. Количество рентгенаморфной фазы составляет порядка 40 мас. % (от общей массы пробы). Главным образом это аморфные гидроксиды Fe^{3+} и продукты окисления ферросапонита, присутствующие как в составе оолитов, так и в цементе.

Оолиты размером от 1—2 мм до 2—4 см имеют сферическую или эллипсоидную форму. В их ядрах находятся угловатые и слабоокатанные обломки псевдооолитов, сложенных массивным гетитом/гидрогетитом. В нерегулярных трещинах, секущих ядра и не выходящих в концентры, спорадически присутствуют фосфаты REE. Ядра обрамлены множеством тонких (~10 мкм), слаборазличимых концентров. Во внешних оболочках, как правило, различимы 1—2 открытые концентрические трещины, в кото-

рых изредка присутствуют кристаллы КСІ. Цемент, в который погружены оолиты, состоит из ферросапонита и продуктов его аморфизации, содержит зерна кварца (30—300 мкм), а также фрагменты раковин двустворчатых моллюсков (до 3—5 см), преимущественно арагонитового состава.

Горизонт КВ-II, расположенный ниже, сложен плотными массивными зеленовато-коричневыми **Мп-Fe карбонатными рудами**. Они образуют пласты, протяженные линзы и будины мощностью до 0.2 м (см. рис. 2, δ , ϵ). Эти руды на 50—95 мас. % состоят из мелкозернистого родохрозита и реже из Mn-сидерита. Оба Fe-Mn карбоната богаты Ca, бедны Mg (CaO, $X_{\rm cp} = 9.9$ мас. %; MgO, $X_{\rm cp} = 0.3$ мас. %, n = 103) и образуют твердые растворы широкого диапазона: (Mn $_{0.28-0.74}$ Fe $_{0.03-0.47}$ Ca $_{0.12-0.33}$ Mg $_{0.0-0.09}$)(CO $_3$). Карбонатные руды содержат 2—15 мас. % кварца и ≤ 3 мас. % слоистых силикатов. Они также включают многочисленные костные останки морских млекопитающих, состоящие из рекристаллизованного биоапатита. Центральные части свежих карбонатных будин содержат не более 5—10 об. % рудных псевдооолитов; количество гетита в них не превышает 30 мас. % (от общего количества кристаллических фаз). На периферии будин оно возрастет до 50 мас. % за счет роста количества псевдооолитов (до 20 об. %) и окисления первичных Fe-Mn карбонатов (см. рис. 2, 2).

Горизонты KB-III, KB-IV, KB-V сложены икряными рудами, их видимая мощность составляет 1.5 м. Они, как правило, лишены цемента и представляют собой черно-коричневые разнозернистые пески и гравий (см. рис. 2, δ , δ) с характерной тонкой субгоризонтальной (~2°) слоистостью. Мощность отдельных ритмов 7—10 см. Эти руды на 90—95 об. % сложены псевдооолитами — слабоокатанными обломками плотных коричневых руд. Распределение обломков по размерности таково: ≤ 0.25 мм (до 5 %), 0.25—0.50 мм (до 23 %), 0.5—1.0 мм (до 31 %), 1—3 мм (до 36 %), > 3 (не менее 5 %). Валовые пробы рыхлых икряных руд на 80—95 мас. % состоят из гетит-гидрогетита, содержат ≤ 15 мас. % слоистых силикатов и ≤ 5 мас. % кварца (от количества кристаллических фаз); содержание рентгеноаморфной составляющей ~ 50 %.

Крупные фракции (> 0.25 мм) несцементированных икряных руд содержат до 95 мас. % гетитгидрогетита при минимальном количестве силикатного материала (до 6 мас. % кварца и до 5 мас. % слоистых силикатов). Доля рентгеноаморфной составляющей достигает 60 %. Единичные пробы обогащены баритом (до 25 мас. %). В составе тонких фракций (≤ 0.25 мм) также преобладает гетит-гидрогетит (60—80 мас. %), доля слоистых силикатов достигает 30 мас. %, а кварца 20 мас. %. Здесь также концентрируются барит (до 20 мас. %), слабоокатанные зерна терригенных минералов (кварца, рутила, ильменита, циркона, монацита, ксенотима), сростки кристаллов гипса (~30 мкм) и церуссита (~5 мкм).

Локальные участки икряных руд в пределах горизонтов KB-IV и KB-V сцементированы родохрозитом и/или баритом, вследствие чего содержание гетита-гидрогетита снижается в них до 50—85 мас. %. Родохрозит цементов образует ряд твердых растворов в направлении кутнагорита: ($Mn_{0.56-0.83}Ca_{0.14-0.39}Fe_{0.0-0.08}Mg_{0.0-0.08})(CO_3)$. Минерал формирует сростки изометричных индивидов (80—100 мкм), выполняет пустоты и прожилки в руде и образует псевдоморфозы по раковинам моллюсков [Chukanov, 2005]. Для барита ($Ba_{0.99-1.00}Sr_{0.00-0.01}(SO_4)$) характерны сростки пластинчатых и призматических кристаллов (размером 300—500 мкм). Скопления мелких зерен кварца и слоистых силикатов главным образом сосредоточены в цементе — в интерстициях между сростками родохрозита и барита.

Псевдооолиты зачастую уплощены, имеют неправильную или эллипсоидную форму и существенно варьируют по размеру (0.1—0.6 мм по малой оси и 0.2—1.4 мм по большой оси) (рис. 3). Большинство псевдооолитов содержат многочисленные угловатые и слабоокатанные песчинки кварца, калиевого полевого шпата и кислых плагиоклазов, изредка рутил, циркон, а также детритовые ксенотим и монацит; размер частиц от 5—10 до 50—70 мкм (см. рис. 3, a). Псевдооолиты часто рассечены нерегулярными трещинами, которые не продолжаются в кайму обрастания. Эти трещины обычно заполняет барит ($\text{Ва}_{0.83-1.00}\text{Sr}_{0.00-0.13}(\text{SO}_4)$) либо (реже) водные фосфаты REE (см. рис. 3, b, a). Основное количество редкоземельных фосфатов было обнаружено именно в таких трещинах (рис. 4). В икряных рудах абсолютно преобладают псевдооолиты, состоящие на b0 % из b1. Часто в укладывается в узкий диапазон (мас. %): b2.3—15.2, b3.3—15.2, b4.3—1.0—5.7, b6.3—50.5—76.3, b7.3 мпО — 0.4—5.6, b7.4—1.5, b7.5—1.7—4.1.

Псевдооолиты часто окружены узкой (20—30 мкм) каймой обрастания, сходной с корками пустынного загара, которая обогащена марганцем (MnO — 13.5—51.1 мас. %) и V_2O_3 (до 2.28 мас. %). Ее часто секут тонкие радиальные трещины (см. рис. 4, \varkappa). Изредка в таких каймах различимы микроиндивиды (окси)гидроксидов Мn (см. рис. 3, a, a). Содержания петрогенных компонентов в каймах широко варьируют (мас. %): SiO_2 — 9.2—33.9, Al_2O_3 — 0.2—5.7, Fe_2O_3 $_{oбщ}$ — 3.9—35.8, MgO — 0.3—1.9, CaO — 0.9—2.8, Na_2O — 0.5—0.8, K_2O — 0.3—0.7, P_2O_5 — 0.3—2.0 (рис. 5).

Количество эллиптических и сферических оолитов (0.3 до 1.5 мм в диаметре) в валовых пробах икряных руд не превышает 10 об. %. В их ядрах зачастую находятся резорбированные или угловатые

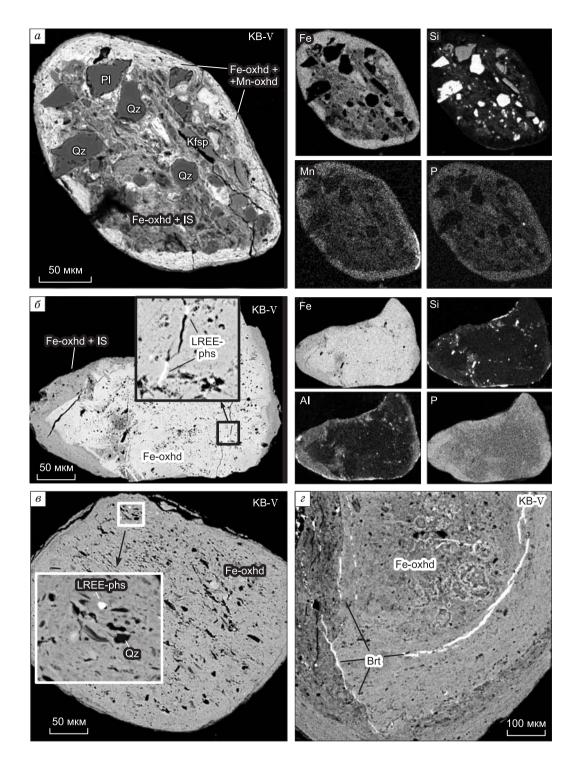


Рис. 3. Внутреннее строение типичных псевдооолитов, слагающих икряные руды Камыш-Бурунской мульды, карьер «Е».

a — слабоокатанный псевдооолит с тонкой оболочкой из (окси)гидроксидов Fe и Mn, развитой вокруг неоднородной центральной части, содержащей множество угловатых включений детритового кварца и полевых шпатов; δ — неравномерно-зональный слабоокатанный псевдооолит с нерегулярными слепыми трещинами, выполненными LREE фосфатами; ϵ — сфероидный пористый однородный псевдооолит с тонкой Fe³⁺-(окси)гидроксидной внешней оболочкой; ϵ — неравномерно-зональный окатанный псевдооолит с концентрическими и нерегулярными трещинами, выполненными баритом.

a, δ — РЭМ-фото в отраженных электронах и характеристическом излучении Fe, Si, Mn, Al и P; ϵ , ϵ — РЭМ-фото в отраженных электронах.

Brt — барит; Fe-oxhd — Fe³⁺-(окси)гидроксиды (гетит-гидрогетит); IS — железистый иллит-смектит (ферросапонит); Kfsp — калиевый полевой шпат; LREE-phs — аутигенные фосфаты LREE; Mn-oxhd — Mn-(окси)гидроксиды; Pl — плагиоклаз; Qz — кварц.

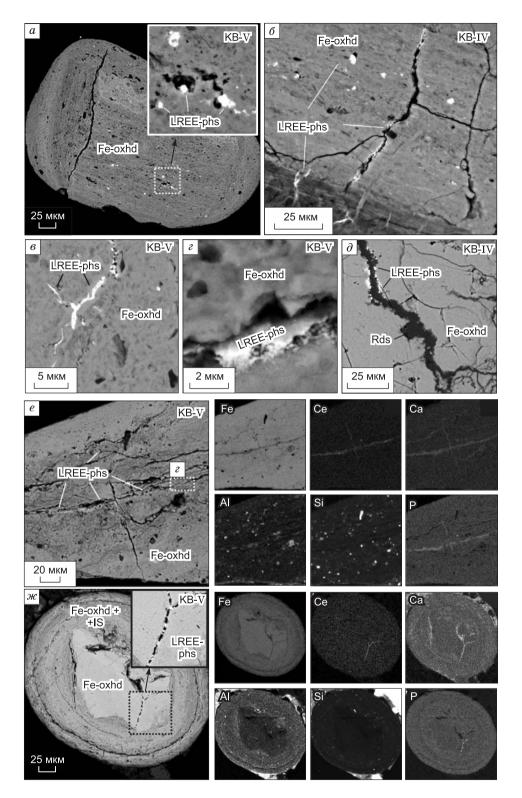


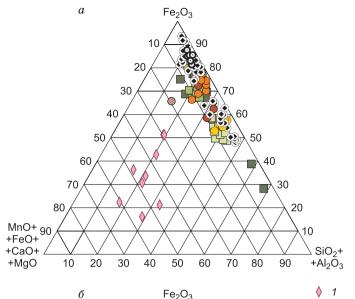
Рис. 4. Распределение аутигенных фосфатов типа рабдофан-тристрамит в псевдооолитах и оолитах из икряных руд Камыш-Бурунской мульды, карьер «Е».

a — выполнение LREE фосфатами пор во внутренней части псевдооолита; δ — выполнение LREE фосфатами пор и трещин в ядре и внутренних концентрах оолита; e — выполнение LREE-фосфатами слепых трещин во внутренней части псевдооолита; e — выполнение LREE фосфатами и родохрозитом системы трещин, полностью рассекающих псевдооолит; e — выполнение LREE фосфатами систем слепых трещин во внутренней части псевдооолита; e — выполнение LREE фосфатами слепых трещин, рассекающих угловатое e — e

Рис. 5. Состав керченских железных руд, их размерных фракций, а также отдельных псевдооолитов, оолитов и их внешних оболочек в координатах (MnO + FeO + CaO + MgO)—($SiO_2 + Al_2O_3$)— Fe_2O_3 (a) и (FeO + CaO + MgO)—MnO— Fe_2O_3 (б) (мас. %), Камыш-Бурунская мульда.

1 — карбонатные (родохрозитовые и сидеритовые) руды; 2-4 — коричневые руды: 2 — валовые пробы, 3 — грубые (> 0.25 мм) фракции, 4 — тонкие (≤ 0.25 мм) фракции; 5-7 — икряные руды: 5, a — валовые пробы, 5, b — с карбонатно-баритовым цементом. b — грубые (> 0.25 мм) фракции, b — тонкие (b 0.25 мм) фракции, b — индивидуальные псевдооолиты; b — индивидуальные концентры оолитов; b — кайма обрастания псевдооолитов и оолитов.

обломки псевдооолитов, обрамленные 3—4 отчетливыми концентрами (см. рис. 3). Внешние оболочки состоят в основном из гетит-гидрогетита ($\mathrm{Fe_2O_{306iii}}$. — 60.7—73.1 мас. %); доля прочих компонентов незначительна (мас. %): $\mathrm{SiO_2} = 4.0$ —7.6, $\mathrm{Al_2O_3} = 2.1$ —4.2, $\mathrm{MnO} = 1.1$ —2.3, $\mathrm{MgO} = 0.6$ —0.8, $\mathrm{CaO} = 0.6$ —1.0, $\mathrm{P_2O_5} = 2.2$ —3.0 (см. рис. 5).


Химический состав валовых рудных проб и их фракций

Информация о содержаниях макро- и микроэлементов в осадочных железных рудах карьера «Е» Камыш-Бурунского месторождения суммирована в табл. 1, 2. Коричневые руды наиболее богаты силикатным материалом (мас. %): $SiO_2 = 46.0 - 55.4$, $Al_2O_3 = 3.3 - 5.4$ (см. рис. 5). Содержания Fe_2O_3

(24.4-34.5 мас. %) и P_2O_5 (1.3—1.6 мас. %) в них умеренные, а CaO (1.6—1.9 мас. %), MnO (0.6—1.0 мас. %), MgO (0.5—0.7 мас. %) и FeO (0.2 мас. %) низкие. В изученном разрезе для этих руд характерны повышенные количества (г/т): Zr (88.4—94.4), Th (3.00—6.02), умеренные — V (308—422), As (219—360) и пониженные — Sr (135—153).

Минимальные — SI (155—155). Минимальные — SI (155—155). Минимальные содержания Fe_2O_3 (12.1—32.0 мас. %) типичны для карбонатных руд, сложенных родохрозитом. Отношение Fe_2O_3 /FeO определяет степень вторичных изменений Mn-Fe карбонатов и количество Fe^{3+} -(окси)гидроксидных рудных частиц. Эти руды наиболее богаты MnO (21.5—31.4 мас. %; $X_{cp} = 24.4$ мас. %) и CaO (5.6—12.7 мас. %; $X_{cp} = 8.1$ мас. %). По содержанию силикатного материала они занимают промежуточное положение между икряными и коричневыми рудами (мас. %): SiO₂ = 10.6—23.1, $Al_2O_3 = 2.5$ —3.3, $Na_2O = 0.3$ —0.4, $K_2O = 0.3$ —0.4), при этом бедны V (147—345 г/т), Zr (32.0—40.8 г/т) и Th (2.50—3.23 г/т). Образцы карбонатных руд, где сосредоточены костные останки, обогащены фосфором (3.1—6.4 мас. % P_2O_5), барием (0.4—0.5 мас. % BaO) и Sr (124—958 г/т), а образцы с многочисленными псевдооолитами — As (до 452 г/т).

Икряные руды содержат Fe_2O_3 (31.6—65.1 мас. %) и отличаются максимальным отношением $Fe_2O_3/FeO=300$ —650; в коричневых рудах эта величины снижается до 100—200, а в карбонатных до 2—10 (см. рис. 5). Икряные руды хорошо сортированы и бедны силикатным материалом (мас. %): $SiO_2=9.7$ —20.7, $Al_2O_3=3.3$ —4.3, $K_2O=0.4$ —0.7 Концентрации в них BaO (0.1—12.2 мас. %) и MnO (0.8—14.0 мас. %) достигают максимумов в участках развития баритовой и родохрозитовой цементации. Для икряных руд характерны резкие всплески содержаний As (до 1684 г/т) и V (до 768 г/т). Наибольшие концентрации Sr (179—2078 r/т) свойственны пробам с баритовым цементом (1.2—6.2 мас. % SrO в составе $Ba(SO_4)$). Содержания Zr и Th в валовых пробах икряных руд варьируют незначительно (44.5—64.4 и 4.45—4.90 r/т соответственно).

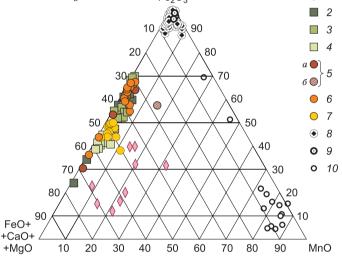


Таблица 1. Макро- (мас. %) и микрокомпонентный состав (г/т) валовых проб руд Камыш-Бурунской мульды (карьер «Е»)

Компо- нент		Карбонат			Корич	рричневые Икряные руды						
	KB-I-81	KB-I-9b ¹	KB-II-2	КВ-II-4	KB-I-3	KB-I-4	KB-III-1	KB-III-2	KB-IV-1 ²	КВ-V-1	KB-V-3	KB-V-4
SiO_2	18.93	23.12	10.64	11.18	55.44	46.03	12.38	11.30	9.71	12.25	14.64	20.84
${\rm TiO_2}$	0.16	0.12	0.09	0.12	0.28	0.31	0.18	0.17	0.17	0.16	0.18	0.21
Al_2O_3	3.33	2.51	3.22	3.24	3.34	5.37	4.31	3.61	3.27	3.89	4.13	4.24
Fe_2O_3	12.09	16.44	20.26	31.17	24.40	34.53	64.06	57.74	31.53	65.05	59.30	55.39
FeO	7.25	5.12	3.04	2.77	0.24	0.17	0.18	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
MnO	16.46	19.16	31.42	22.39	1.04	0.55	0.77	0.90	13.95	1.04	3.33	1.87
MgO	0.51	0.41	0.67	0.65	0.51	0.72	0.72	0.73	0.81	0.83	0.91	0.34
CaO	12.74	8.32	5.93	5.56	1.93	1.61	0.86	0.81	3.01	0.84	1.31	1.37
Na_2O	0.44	0.31	0.29	0.28	0.19	0.32	0.28	0.38	0.44	0.32	0.31	0.11
K_2O	0.38	0.26	0.22	0.28	0.49	0.64	0.45	0.38	0.36	0.41	0.45	0.66
P_2O_5	6.42	3.11	1.30	1.68	1.58	1.27	2.35	2.00	1.20	2.17	1.95	1.62
BaO	0.50	0.42	< 0.01	0.15	0.05	0.03	0.05	7.34	12.19	0.07	0.21	0.09
SO_3	0.67	0.85	0.53	0.68	0.18	< 0.03	< 0.03	2.27	6.76	< 0.03	0.04	< 0.03
H ₂ O-	1.06	0.64	0.76	1.08	2.48	2.26	1.90	1.90	1.56	2.12	2.46	2.30
CO_2	17.20	17.60	19.14	17.15	0.35	0.37	< 0.10	0.18	9.00	0.23	0.63	0.20
П.п.п.	2.54	2.06	3.24	2.16	7.02	6.60	12.42	9.68	6.58	10.78	10.36	10.07
Сумма	100.69	100.45	100.74	100.54	99.52	100.80	100.91	99.39	100.53	100.18	100.21	99.31
V	147	166	235	345	308	422	697	574	274	768	590	557
As	106	208	280	452	219	360	1159	1132	719	1687	1164	1158
Sr	958	438	124	223	135	153	178	500	2078	179	309	238
Zr	36.6	40.8	32.0	40.6	94.4	88.4	64.4	44.5	29.1	56.1	50.8	62.0
Th	2.50	2.74	2.57	3.23	3.00	6.02	4.86	4.48	2.33	4.71	4.45	4.90
Y	59.0	54.0	57.9	88.3	60.5	90.9	114	107	85.4	113	116	85.4
La	42.0	45.1	59.2	77.6	54.6	102	129	129	79.7	137	128	101
Ce	90.7	99.0	120	158	128	234	238	230	143	243	235	189
Pr	9.91	11.3	14.5	19.3	13.6	25.3	31.6	30.4	18.1	33.4	31.0	25.7
Nd	37.8	42.6	55.4	90.9	53.9	121	145	150	91.8	161	151	118
Sm	8.97	10.1	13.1	17.4	12.8	22.4	28.7	27.1	15.8	28.5	26.9	22.8
Eu	3.07	3.33	3.26	4.38	3.08	5.06	6.33	6.90	4.70	6.89	6.67	5.64
Gd	8.94	10.2	12.5	17.3	13.0	21.9	27.5	27.0	17.2	29.2	28.3	23.5
Tb	1.37	1.53	1.85	2.58	1.98	3.19	4.23	3.83	2.47	3.97	3.91	3.49
Dy	7.84	8.56	9.92	14.4	11.0	17.3	21.4	20.4	13.5	22.8	23.1	19.0
Но	1.65	1.69	1.92	2.82	2.13	3.25	4.04	3.75	2.67	4.24	4.42	3.47
Er	4.75	4.75	5.14	7.79	5.95	9.06	11.1	12.4	7.75	13.5	14.0	9.53
Tm	0.66	0.64	0.67	1.03	0.78	1.19	1.41	1.33	0.95	1.52	1.59	1.27
Yb	3.99	3.87	4.00	6.06	4.80	7.22	8.66	7.76	5.53	8.89	9.27	7.35
Lu	0.56	0.54	0.55	0.84	0.65	0.97	1.16	1.06	0.75	1.24	1.29	1.01
ΣREE	222	243	302	421	306	574	662	656	411	696	665	530
Y*	1.31	1.13	1.06	1.10	1.00	0.97	0.98	0.98	1.14	0.92	0.91	0.84
$(Yb/La)_N$	1.28	1.16	0.92	1.06	1.19	0.96	0.91	0.82	0.94	0.88	0.98	0.99
$(Gd/La)_N$	1.74	1.86	1.74	1.83	1.96	1.76	1.74	1.72	1.77	1.74	1.80	1.91

 $[\]overline{\ \ }$ Примечание. Алгоритм расчетов аномалий Y* и индикаторных отношений (Yb/La) $_N$ и (Gd/La) $_N$ см. в разделе «Фактический материал и методы исследования».

¹ Образцы карбонатных руд с обильными костными останками, сложенными рекристаллизованным биоапатитом.

² Образцы икряных руд с карбонатно-баритовым цементом.

Таблица 2. Макро- (мас. %) и микрокомпонентный (г/т) состав фракций икряных руд различной размерности (Камыш-Бурунская мульда, карьер «Е»)

	различной размерности (Камыш-Бурунская мульда, карьер «Е») Фрак- ция SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O _{306щ} MnO MgO CaO K ₂ O P ₂ O ₅ BaO SO ₃ П.п.п. Cym- ма V As Sr Zr Th																	
	SiO,	TiO ₂	Al ₂ O ₃	Fe ₂ O _{306m}	MnO	MgO	CaO	K ₂ O	P_2O_5	BaO	SO ₃	П.п.п.		V	As	Sr	Zr	Th
ция		2		2 50011,				_					ма					
	1				ı	ı			KB-III-		1	ı	ı					ı
A	22.18	0.33	8.18	50.51	2.32	0.41	1.04	0.97	1.88	< 0.01	0.07	11.72	99.61	575	1002	260	95.9	16.5
В	24.23	0.32	8.00	49.34	1.64	0.32	1.05	0.96	1.92	< 0.01	0.09	11.47	99.35	501	889	223	82.5	19.2
С	26.69	0.41	7.11	49.10	1.04	0.37	1.18	0.87	1.69	< 0.01	0.13	10.98	99.57	553	903	225	75.5	11.0
D	11.10	0.18	5.66	65.27	0.64	0.18	1.12	0.37	2.45	< 0.01	< 0.03	12.49	99.45	713	1125	186	63.7	6.81
Е	12.68	0.22	4.91	64.72	0.61	0.59	0.94	0.55	2.32	0.07	< 0.03	12.31	99.92	672	1130	162	56.2	4.45
F	13.90	0.22	5.73	62.61	0.95	0.15	1.03	0.57	2.17	< 0.01	< 0.03	12.03	99.35	590	1113	160	47.2	2.79
G	10.37	0.20	3.82	66.79	1.16	0.04	1.15	0.44	2.35	0.22	0.05	12.52	99.10	547	1164	251	43.0	2.55
Н	10.26	0.13	3.46	67.89	1.67	0.13	1.14	0.43	1.98	< 0.01	< 0.03	12.44	99.53	539	1171	165	43.1	3.01
I	11.55	0.15	5.87	64.77	0.75	< 0.01	1.00	0.53	2.05		< 0.03	12.45	99.12	559	988	154	56.5	4.62
									KB-III-									ı
A^1	23.39	0.33	7.99	44.17	3.29	0.57	1.32	1.11	1.40	2.39	1.75	11.40	99.29	464	902	936	113	19.9
В	23.20	0.34	7.17	45.44	2.62	0.41	1.23	1.06	1.86	2.82	2.04	11.25	99.44	451	885	803	86.6	11.9
С	21.90	0.22	6.14	43.85	1.15	0.74	0.97	0.66	1.33	8.60	3.90	10.42	99.88	477	877	507	53.6	8.33
D	11.51	0.11	4.13	63.66	0.72	0.55	0.86	0.36	2.12	2.40	0.17	13.27	99.86	645	1202	250	52.9	6.16
Е	12.11	0.16	4.55	63.97	0.91	0.59	0.82	0.60	2.05	1.17	0.25	12.76	99.91	615	1205	204	51.2	4.18
F	14.60	0.22	4.61	61.57	1.16	0.28	0.69	0.54	2.24	0.99	0.14	12.42	99.46	564	1221	194	45.7	2.94
G	11.02	0.16	3.61	60.48	1.40	0.08	1.00	0.44	1.97	5.05	0.71	13.28	99.21	511	1207	367	39.4	2.42
Н	7.39	0.19	2.84	44.07	0.66	0.49	0.84	0.36	1.55	22.48	9.64	9.30	99.80	400	905	1074	31.5	
I	8.07	0.10	2.39	36.53	0.57	0.40	0.68	0.34	1.26	27.72	12.83	8.73	99.64	347	762	1790	29.2	2.17
									KB-V-	1								ı
A^2	23.67	0.36	7.17	43.98	6.56	0.48	1.18	1.09	1.88	0.43	0.22	12.21	99.32	551	1134	341	115	20.4
В	25.72	0.41	7.21	45.95	3.25	0.58	1.21	1.31	1.70	0.15	0.06	11.86	99.42	540	1109	296	134	22.7
С	25.58	0.25	6.45	49.62	1.60	0.59	1.03	0.86	1.80	0.02	0.05	11.41	99.27	676	1318	222	79.5	10.4
D	11.50	0.15	3.98	66.07	0.89	0.08	0.91	0.38	2.32	0.18	< 0.03	13.01	99.48	785	1614	178	61.1	7.28
Е	12.42	0.12	3.47	66.09	0.85	0.24	0.90	0.48	2.04	< 0.01	< 0.03	12.69	99.31	765	1614	174	69.2	4.81
F	13.59	0.20	4.80	63.31	1.24	0.43	0.87	0.57	2.19	< 0.01	< 0.03	12.37	99.58	675	1545	173	49.2	3.02
G	10.95	0.21	3.10	67.00	1.51	0.09	1.00	0.48	2.05	< 0.01	< 0.03	12.61	99.00	645	1620	164	41.2	2.56
Н	12.26	0.16	3.95	65.52	1.33	< 0.01	0.94	0.46	1.46	0.74	0.05	12.52	99.39	590	1530	927	40.0	2.61
I	16.03	0.20	4.07	61.39	1.35	0.25	0.97	0.52	2.32	< 0.01	< 0.03	12.15	99.24	760	1589	173	51.6	4.99
								•	KB-V-	3								
A	20.16	0.29	6.21	27.83	25.45	0.45	3.18	0.94	0.98	0.14	0.58	13.18	99.39	370	749	616	119	9.64
В	24.88	0.30	7.19	38.29	11.06	1.01	1.92	0.98	1.38	0.12	0.40	12.30	99.81	266	570	670	100	18.4
С	26.98	0.23	5.28	47.95	4.31	0.18	1.34	0.63	1.46	< 0.01	< 0.03	11.19	99.54	515	917	276	66.2	8.49
D	13.09	0.13	4.43	63.57	1.68	0.10	1.09	0.48	1.98	0.10	< 0.03	12.91	99.56	680	1226	225	64.8	7.11
Е	14.33		4.36	62.05	1.59	0.12	l	0.52	2.07	< 0.01	1	l	99.63		1249	229	53.0	
F	16.30	0.24	4.63	59.25	2.47	0.28	1.10	0.55	1.78	< 0.01			99.28	549	1187	246	50.5	
G	14.69	0.20	4.72	57.75	5.02	0.15	1.43	0.63	1.41	0.11	< 0.03	1	99.19	528	1154	293	49.8	
Н	13.90		4.45	55.32	6.13	0.73	2.85	0.50	2.19	0.45	0.08	13.07	99.89			508	52.3	
I	12.67	0.14	4.38	42.44	15.52	0.53	3.84	'	1.42		0.76	17.06	99.47	420	831	377	42.7	3.22
									KB-V-									ı
A	32.30			28.84	7.14	1.02	l	1.10	1.02	0.23	2.78	1.10	99.82			449	102	
В	39.34	0.36	5.83	32.60	3.10	0.74	3.18	0.80	0.83	0.18	2.24	0.80	99.86	337	663	317	77.7	
С	37.81	0.25	5.52	36.89	2.22	0.32	2.36	0.54	1.16	0.16	1.56	0.54	99.38	387	737	267	55.6	
D	14.63	0.17	3.95	61.68	1.62	0.41	1.35	0.44	1.81	< 0.01	0.03	0.44	99.10	602	1125	202	60.7	
Е	12.86	0.18	5.07	62.47	1.49	0.45	1.29	0.46	2.02	< 0.01	< 0.03	0.46	99.09	570	1141	189	53.2	
F	17.43	0.23	4.58	58.32	2.13	0.36	1.35	0.62	1.86	0.13	< 0.03	0.62	99.40	498	1079	206	48.6	
G	19.21	0.24	5.01	54.78	3.23	0.94	1.79	0.60	1.55	0.23	0.19	0.60	99.80	467	1052	247	47.0	
Н	16.03		5.95	56.94	3.29	1.03	1.58	0.56	1.95	0.17	0.06	0.56	99.81	456	994	268	51.9	
I	17.91	0.26	5.06	52.11	6.00	0.32	1.94	0.61	1.71	0.10	0.51	0.61	99.34	435	943	234	48.2	5.45

 $[\]Pi \, \text{римечание. Размер фракций (мм): } x \leq 0.074 \, \text{(A); } 0.074 \leq x \leq 0.1 \, \text{(B); } 0.01 \leq x \leq 0.25 \, \text{(C); } 0.25 \leq x \leq 0.50 \, \text{(D); } 0.5 \leq x \leq 0.50 \, \text{(D); } 0.$ $< x \le 1.0$ (E); $1 < x \le 3$ (F); $3 < x \le 5$ (G); $5 < x \le 10$ (H); x > 10 (I). 1 Содержание NaO = 0.21 мас. %.

 $^{^{2}}$ Содержание NaO = 0.10 мас. %. В остальных случаях содержание NaO < 0.05 мас. %.

Составы валовых проб и крупных фракций (D-I) икряных руд близки (см. табл. 2). Для них характерны линейные отрицательные корреляции между Fe_2O_3 и MnO (r=-0.66), а также положительные между Fe_2O_3 и P_2O_5 (r=0.76), Fe_2O_3 и V (r=0.82), Fe_2O_3 и As (r=0.71, n=36). Тонкие фракции (A—C) наряду с материалом слоистых силикатов концентрируют устойчивые минералы тяжелой фракции, вследствие этого они беднее Fe_2O_3 и P_2O_5 , но богаче SiO_2 , TiO_2 , Al_2O_3 , Zr, Y и Th (см. табл. 2, 3; рис. 5).

Распределение редкоземельных элементов в рудах

Концентрации Σ REE и Y в валовых пробах карбонатных и оолитовых руд и их составляющих приведены в таблицах 1, 3. Во всех валовых пробах керченских руд количество Σ REE превышает таковое в постархейском глинистом сланце (PAAS) в 2—4 раза (рис. 6). Карбонатные руды обладают минимальными содержаниями Σ REE от 222 до 421 г/т ($X_{\rm cp}=297$ г/т, n=4) и зачастую слабо обогащены HREE: типичные величины (Yb/La) $_{N}=1.06$ —1.28. Коричневые руды характеризуются умеренным содержанием Σ REE = 306—574 г/т при сопоставимой величине (Yb/La) $_{N}=1.16$ —1.28. Икряные руды отличаются максимальной концентрацией REE: в валовых пробах и грубых фракциях Σ REE составляет 385—769 г/т ($X_{\rm cp}=606$ г/т , n=36), возрастая в тонких фракциях до 910—3011 г/т ($X_{\rm cp}=1954$ г/т, n=15), что соответствует 8—16-кратному обогащению относительно PAAS [Taylor, McLennan, 1985].

Нормализованные на PAAS спектры распределения (REE+Y) $_N$ валовых проб икряных руд и их грубых фракций лишены контрастных аномалий (см. рис. 6). Большинство проб слабо обеднены HREE относительно LREE; величина (Yb/La) $_N$ составляет 0.77—1.29. При этом все упомянутые образцы икряных руд (Gd/La) $_N$ = 1.62—2.05), а также валовые пробы карбонатных (Gd/La) $_N$ = 1.74—1.86) и коричневых руд (Gd/La) $_N$ = 1.76—1.96) значимо обогащены MREE. Ранее эта же особенность была отмечена как типичная для коричневых руд и их фракций из разреза Аршинцево Камыш-Бурунской мульды [Sokol et al., 2020]. Спектры (REE+Y) $_N$ тонких фракций икряных руд обладают комплексом индивидуальных особенностей, а именно: 1) резким (~3-кратный) ростом абсолютных содержаний Σ REE в сравнении с грубыми фракциями и валовыми пробами; 2) резким обогащением LREE (Yb/La) $_N$ = 0.23—0.52) и MREE (Gd/La) $_N$ = 1.29—2.03); 3) умеренным обогащением HREE относительно PAAS (~5-кратное) (см. рис. 6, δ).

Еще одной характерной особенностью спектров распределения (REE+Y) $_N$ в рудах карьера «Е» является отсутствие отчетливой отрицательной Y* аномалии, присущей коричневым и карбонатным рудам разреза Аршинцево. В валовых пробах Fe^{3+} -(окси)гидроксидных руд и их грубых фракциях эта аномалия отсутствует (Y* = 0.85—1.09); в карбонатных и икряных рудах с карбонатно-баритовым цементом она присутствует как слабая положительная (Y* = 1.06—1.31); в большинстве тонких фракций икряных руд она проявлена как слабая отрицательная (Y*= 0.68—0.90).

Фосфаты REE и Y: локализация, морфология, химический состав

Фосфаты REE являются характерными акцессорными фазами во всех типах руд изученного разреза. Хотя содержания Σ REE сопоставимы как в валовых пробах (500—700 г/т), так и в тонких фракциях (1300—3000 г/т) икряных руд разных горизонтов, обильная минерализация фосфатов REE наиболее типична для горизонта KB-V (см. рис. 3, 4, 7; табл. 4). В тонких фракциях икряных руд обнаружено несколько морфологических типов фосфатов REE и Y. Окатанные зерна и обломки монолитных детритовых монацитов (до 30 мкм) единичны и не образуют сростков. Чаще всего они располагаются в карбонатном или ферросапонитовом цементе. В псевдооолитах монацит редок и, как правило, локализован во внутренних их частях (см. рис. 7, δ ; табл. 4). Поверхность зерен детритового монацита иногда корродирована, однако инкрустации ее более поздними водными фосфатами REE не обнаружено. Находки зерен детритового ксенотима (\leq 10 мкм) единичны (см. рис. 7, e; табл. 4). Он также представлен монолитными неокатанными обломками и преимущественно локализован в цементе. Аутигенные фосфаты Y не обнаружены.

Для детритового монацита типично следующее соотношение главных катионов: $Ce > La > Nd \gg Pr > Th > Sm$ и постоянное присутствие ThO_2 (0.6—8.6 мас. %). В единичных анализах обнаружены Gd_2O_3 (1.4—1.7 мас. %), Y_2O_3 (1.3 мас. %), UO_2 (1.0—1.4 мас. %). Его обобщенная формула — $(Ce_{0.45-0.63}La_{0.09-0.41}Nd_{0.05-0.28}Pr_{0.00-0.07}Th_{0.0-0.08}Y_{0.00-0.05}Sm_{0.00-0.04}Gd_{0.00-0.02}U_{0.00-0.01})PO_4$. Детритовый ксенотим характеризуется следующим соотношением катионов $Y >> Dy > Er > Gd \approx Yb$ и обобщенной формулой $(Y_{0.78-0.93}Dy_{0.04-0.07}Er_{0.00-0.04}Yb_{0.00-0.04}Gd_{0.00-0.04}Ho_{0.00-0.02}Sm_{0.00-0.01}Eu_{0.00-0.01}Tb_{0.00-0.01}Tm_{0.00-0.01})PO_4) (см. табл. 4).$

Наряду с единичными зернами детритовых монацита и ксенотима в тонких фракциях руд широко распространены микродисперсные фосфаты REE, преимущественно локализованные во внутренних частях псевдооолитов (см. рис. 3, 4, 7; табл. 4). Они тяготеют к слепым нерегулярным трещинам, нарушающим сплошность внутренних участков псевдооолитов, а также заполняют поры (см. рис. 3, δ , 4, δ — κ). Преобладают их хлопьевидные агрегаты, образующие плотную инкрустацию поверхности сколов псевдооолитов. Площадь их развития достигает тысяч мкм². Фосфаты REE этого морфологического типа

Таблица 3. Содержания REE+Y (г/т) во фракциях икряных руд различной размерности (Камыш-Бурунская мульда, карьер «Е»)

						(Ка	мыш	-Буруі	нская	муль	да, ка	рьер	«E»)						
Фрак- ция	Y	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Σ REE	Y*	$(Yb/La)_N$	(Gd/ La) _N
								C	Обр. К	B-III-	1								
A	189	394	779	119	453	81.6	17.4	87.3	8.98	40.7	6.97	17.1	1.95	10.8	1.43	2019	0.89	0.37	1.82
В	197	458	926	134	536	113	19.3	104	9.13	60.8	7.56	19.4	2.08	12.0	1.44	2403	0.71	0.35	1.86
C	199	418	816	122	478	83.2	18.1	91.8	9.50	54.5	7.35	18.3	2.07	11.3	1.47	2132	0.78	0.37	1.80
D	129	146	267	35.4	172	32.4	7.41	31.9	4.62	24.8	4.62	12.6	1.61	9.67	1.28	751	0.96	0.90	1.79
Е	110	111	196	26.1	130	23.9	5.67	24.7	3.72	20.7	3.90	12.8	1.43	8.76	1.18	570	0.97	1.07	1.82
F	96	107	199	24.5	120	21.1	5.03	22.2	3.27	18.0	3.41	10.6	1.25	7.66	1.04	544	0.98	0.97	1.70
G	101	113	216	25.5	126	22.3	5.38	23.0	3.37	18.7	3.53	11.1	1.26	7.62	1.04	578	0.99	0.91	1.67
Н	117	134	263	30.5	152	27.2	6.37	28.4	4.02	21.8	4.11	13.0	1.46	8.71	1.17	696	0.98	0.88	1.74
Ι	103	147	300	33.8	171	29.3	7.18	29.5	'	22.1		10.8	1.37	8.42	1.14	769	0.87	0.78	1.65
Обр. КВ-III-2 А 226 501 1045 151 602 102 26.0 120 14.4 64.6 7.99 22.6 2.04 11.5 1.44 2672 0.77 0.31 1.96															یہ ا				
B C	202 159	302	909	130	524	89.4 61.0	23.2	105	12.7	57.3 33.8	7.21 5.78	19.0 15.7	1.87	10.7 9.05	1.32	2333 1557	0.77	0.33	1.95 1.57
D	114	123	219	70.5	356 143	25.7	25.6 8.79	58.0	7.44 3.94	21.5	4.03	12.4	1.65	8.45	1.20	627	0.90	0.41 0.93	1.79
E	109	109	190	25.4	127	22.4	7.21	24.5	3.66	20.4	3.86	12.4	1.45	8.71	1.19	557	0.98	1.08	1.84
F	102	120	214	26.6	135	23.4	7.10	24.3	3.50	18.9	3.54	11.4	1.31	7.93	1.07	598	0.99	0.90	1.66
G	97.7	112	205	25.1	127	21.4	10.5	23.1	3.27	17.8	3.37	11.0	1.20	7.13	0.98	569	1.01	0.86	1.69
Н	86.7	93.5	166	22.1	112	19.1	12.2	20.1	2.92	15.7	3.01	9.45	1.07	6.26	0.87	484	1.00	0.91	1.76
I	69.9	69.0	136	17.2	88.6	15.7	10.1	16.5	2.39	12.9	2.44	7.17	0.87	5.27	0.72	385	0.99	1.03	1.96
	Обр. КВ-V-1																		
A	171	395	818	121	486	104	24.0	96.4	8.48	54.7	6.68	17.1	1.84	10.7	1.28	2145	0.69	0.37	2.00
В	201	493	1006	149	601	129	29.0	117	10.2	64.9	7.83	19.6	2.01	11.9	1.40	2642	0.68	0.33	1.95
C	157	290	563	71.8	351	71.5	14.3	71.7	6.96	35.9	6.20	18.0	1.82	10.5	1.35	1514	0.83	0.49	2.03
D	117	123	228	30.5	149	27.6	6.94	29.2	4.17	24.7	4.64	14.7	1.67	9.81	1.34	655	0.87	1.08	1.95
E	106	112	195	27.5	134	24.4	5.88	25.5	3.71	21.7	4.22	13.0	1.55	9.12	1.28	579	0.88	1.10	1.87
F	98.1	127	224	30.4	146	25.2	6.03	25.9	3.58	20.1	3.82	12.2	1.37	7.97	1.14	635	0.89	0.85	1.67
G	96.8	130	231	30.6	147	24.8	5.90	25.7	3.42	19.5	3.72	11.8	1.32	7.60	1.06	643	0.90	0.79	1.62
H I	97.6 107	127 132	210	30.1	144	24.5	8.09	25.2	3.32	19.3	3.60	10.9	1.23	7.23	0.97	615	0.93	0.77	1.63 1.77
1	107	132	234	32.7	136	20.2	0.83	28.5				11.9	1.32	0.93	1.24	0/4	0.00	0.92	1.//
	1 1 1 2	274	(70	100	126	015	1110		Обр. К			152	1.00	0.44	1 20	1832	امما	0.24	1.07
A B	143 190	374 634	676 1108	108 180	426 711	84.5 136	14.9	76.0 119	9.34	1	5.45 7.14		1.60	10.6	1.20 1.28	3011	0.84	0.34 0.23	1.67 1.54
C	139	296	501	69.3	338	54.3	12.1	50.2	5.89	30.5	5.36	16.4	1.66	9.61	1.28	1392	0.71	0.23	1.39
D	115	132	220	32.1	160	28.6	6.92	29.3	4.03	23.9	4.46	12.1	1.62	9.48	1.30	666	0.89	0.97	1.82
Е	104	120	204	29.2	143	25.3	6.17	26.2	3.67	21.7	4.03	10.9	1.47	8.79	1.24	606	0.89	0.99	1.79
F	100	128	232	29.6	148	25.6	6.22	26.4	3.55	20.8	3.87	10.3	1.38	8.07	1.10	645	0.89	0.85	1.69
G	107	130	252	30.3	152	26.5	6.54	27.3	3.72	21.6	4.05	10.9	1.43	8.44	1.16	676	0.91	0.88	1.72
Н	118	132	240	30.7	154	27.0	6.94	28.3	3.85	23.0	4.31	11.9	1.53	9.34	1.24	674	0.94	0.96	1.76
I	153	113	206	26.7	138	25.1	6.52	28.3	4.01	25.4	4.91	14.0	1.79	10.8	1.41	606	1.09	1.29	2.05
								•	Обр. Ь	KB-V-4	Į.								
A	110	339	636	87.8	381	61.9	14.2	53.4	6.50	26.3	4.62	11.1	1.26	6.80	0.94	1629	0.79	0.27	1.29
В	98.2	229	416	58.5	267		10.6	41.7	1	23.7	l					1121	0.81	0.40	1.49
С	97.0	186	329	47.1			9.04	35.8	1	21.7	1		1.19			910	0.85	0.52	1.58
D	94.7	106	179	27.2	130	24.2	6.25	25.2	3.76	20.8	3.80	10.8	1.35	8.46	1.11	549	0.85	1.08	1.94

Примечание. Размер фракций (мм): $x \le 0.074$ (A); $0.074 < x \le 0.1$ (B); $0.01 < x \le 0.25$ (C); $0.25 < x \le 0.5$ (D); $0.5 < x \le 1$ (E); $1 < x \le 3$ (F); $3 < x \le 5$ (G); $5 < x \le 10$ (H); x > 10 (I). Алгоритм расчетов аномалий Y* и индикаторных отношений (Yb/La)_N и (Gd/La)_N см. в разделе «Фактический материал и методы исследования».

3.76

20.5 3.83 11.2

1.39

8.66

1.12

567

0.90

1.08

1.94

формируют «сыпь» наноразмерных частиц, главным образом на подложке из Fe^{3+} -(окси)гидроксидов, среди которых нерегулярно распространены сгустки размером до 10 мкм в поперечнике (см. рис. 7, a—z; табл. 4).

Субмикронные размеры индивидов этих фаз не позволяют получить их кондиционные рентгеноспектральные анализы, избежав захвата материала матрицы (см. табл. 4). По данным усреднения 176 рентгеноспектральных микроанализов в матрице, содержащей REE фосфаты, преобладает Fe_2O_3 (59.0 мас. %), второстепенными компонентами являются (мас. %): $SiO_2 = 8.5$, $Al_2O_3 = 3.4$, $P_2O_5 = 2.3$ и MnO = 2.0; примесными элементами — MgO и CaO = 1.0 мас. %. Содержание серы в таких матрицах не превышает предела ее обнаружения (<0.30 мас. % SO_3). Минимальные суммарные содержания оксидов Ce, Nd и La составляют ~ 3 мас. % на площадях с редкой «сыпью» REE фосфатов и достигают <0.30 мас. % на участках, <0.30 густки.

В подавляющем большинстве анализов плотных скоплений REE фосфатов присутствуют значительные количества Fe_2O_3 , SiO_2 и Al_2O_3 . Кондиционные анализы единичны (см. табл. 4). Атомные отношения Σ REE и P в этих фазах близки к 1:1, а постоянный дефицит суммы указывает на присутствие воды. Эти особенности, ранее отмеченные как характерные для аутигенных REE фосфатов морских

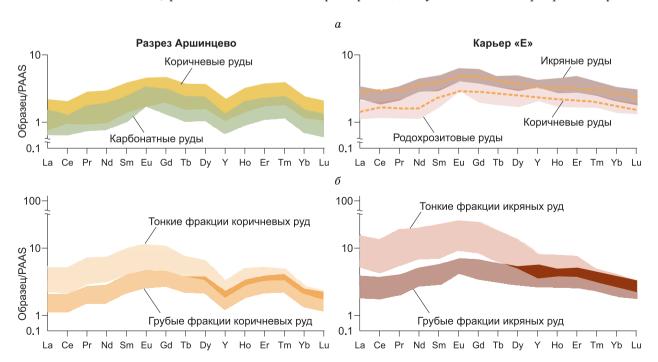


Рис. 6. PAAS нормализованные [Taylor, McLennan, 1985] (REE+Y) $_N$ спектры осадочных железных руд Камыш-Бурунской мульды, разрез Аршинцево и карьер «Е».

a — (REE + Y) $_N$ спектры валовых проб руд; δ — (REE + Y) $_N$ спектры тонких (≤ 0.25 мм) и грубых (> 0.25 мм) фракций, извлеченных из рыхлых оолитовых руд.

99.7

108

I

193

27.3

133

24.1

6.34

25.6

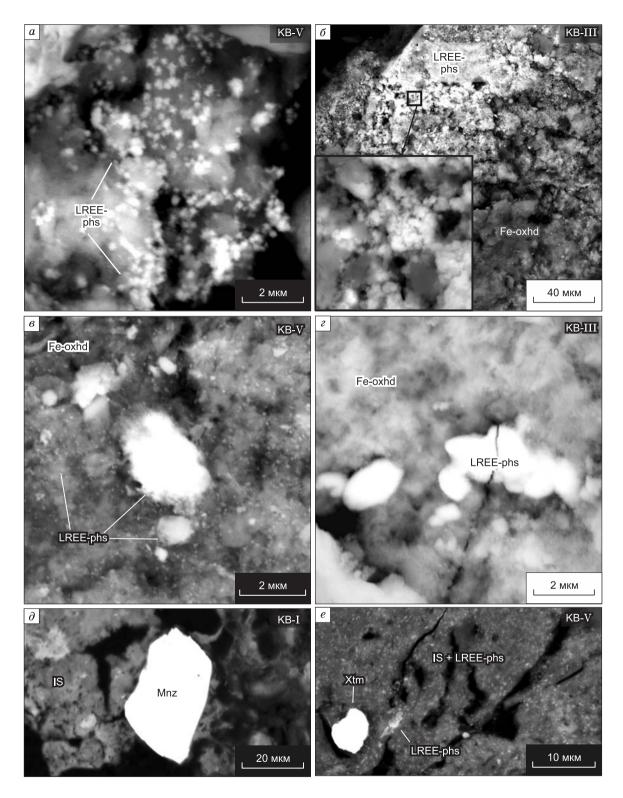


Рис. 7. Морфология аутигенных фосфатов LREE, а также детритовых монацита и ксенотима из икряных (a—e, o, e) и коричневых (e) руд Камыш-Бурунской мульды, карьер «E».

РЭМ-фото в отраженных электронах. Мпг — монацит; Хtm — ксенотим. Остальные усл. обозн. см. на рис. 3.

 a, δ — сгустки мельчайших хлопьевидных частиц аутигенных фосфатов рабдофанового типа, покрывающих сколы псевдоолитов; ϵ — сгусток и «сыпь» наноразмерных частиц аутигенных фосфатов рабдофанового типа на подложке из Fe^{3+} -(окси) гидроксидов; ϵ — эллиптические зерна фазы рабдофан-тристрамит на поверхности псевдооолита; δ — детритовый монацит в ферросапонитовом цементе; ϵ — корродированное зерно детритового ксенотима в ферросапонитовом цементе, насыщенном субмикронными частицами аутигенных фосфатов LREE.

Таблица 4. Состав аутигенных и детритовых фосфатов REE и Y из керченских железных руд (Камыш-Бурунская мульда, карьер «Е»)

РЭМ-фото в отраженных электронах								Сомпон	нент, м	ac. %						
			Α.	VTHEA		hoed	hor I	DFF (haza T	ma n	обло	фан-три	iernas	(HT)		
	Точка				П		Ce ₂ O ₃		- 			Sm ₂ O ₃	Y ₂ O ₃	T .	SO ₃	Сумма
LREE-phs		3.87	+	+	-		$\frac{100_{2}0_{3}}{20.77}$	11.48	2.24	+-	- "	1.21	<0.3	+	+	77.86
	1	3.83			- 1		20.77 14.47	7.75	1.78			<0.3	<0.3	23.7		90.34
	*	3.70					14.25	7.10	1.47	6.		<0.3	<0.3	22.2		84.69
	*	2.95	0.60) 13			13.84	9.07	2.25			< 0.3	< 0.3	23.6		82.07
Fe-oxhd	*	10.1	2 0.94	1 12	.65	5.42	13.35	8.35	2.07	7.4	42	< 0.3	< 0.3	22.20	1.20	84.72
5 мкм	*	1.16					12.83	7.62	2.02	7.8		< 0.3	< 0.3	20.1		80.72
	*	3.44					12.52	6.07	2.07	6.2		1.25	<0.3	19.0		
	*	2.20					12.16 11.71	7.83 4.39	1.91	7.4 5.8	-	<0.3 <0.3	<0.3	19.4		80.60 74.35
	*	1.32	-				11.71	7.45	1.60			<0.3	<0.3	18.7		83.26
	*	2.01					9.36	7.37	1.59			<0.3	0.67	18.3		
		ı	ı	'	1	'	'		' Е (фа:	1	- 1	анового	типа)	1	1	1
	Точка	SiC	O_2 Al_2	O_3 F	eO	MnO	CaO	Ce ₂ C	$a_3 La_2$	O_3 P_1	r_2O_3	Nd ₂ O ₃	P	2O ₅	SO ₃	Сумма
LREE-phs	2	<0.	3 <0	.3 <	0.3	<0.3	0.53	34.50	6 16.	97 3	.48	9.94	30	0.20	<0.3	95.68
	*	1.1	8 0.4	3	.76	< 0.3	0.41	30.13	3 14.:	55 2	.94	10.65	10.65 29		< 0.3	93.20
	*	<0.3 <0.		.3 <0.3		< 0.3	1.04			.62 <0.3				0.15	<0.3	84.88
2	*	6.4		1		6.59	4.58	1			.36	7.55		3.95	<0.3	88.40
为一个人的人的人	*	<0.	3 <0	.3 15	5.44	< 0.3	7.29	10.13	3 5.4	4 <	0.3	6.80	22	2.48	<0.3	67.78
2 мкм																
	Детритовый ксенотим															
	Точ-						Τ	<u> </u>					1			
Xtm	ка	SiO ₂	Al ₂ O ₃	FeO	MnO	CaO	Gd ₂	O_3 Dy	₂ O ₃ H	0 ₂ O ₃	Er ₂ 0	O ₃ Yb ₂ O	₃ Y ₂	O ₃	P ₂ O ₅	Сумма
3	3	1.43	< 0.3	< 0.3	2.01	<0.3	3.4	8 5.	66	.41	3.7	6 3.31	32.	.08	35.72	88.86
Rds	*	1.43	< 0.3	1.84	< 0.3	< 0.3	4.2	0 7.	13 1	.60	4.5	4 2.54	31.	.62	35.08	89.98
7 мкм	*	2.91	< 0.3	0.75	1.59	0.87				.08	3.9		-		31.44	84.59
	*	3.08	< 0.3	6.81	< 0.3	0.27				0.3	3.4				31.19	82.95
	*	3.92 4.41	0.94	9.88	<0.3		1			.47	3.3	3 2.22 3 <0.3			30.93	90.31
		4.41	\0.3	3.03	2.01	1.02	1	.э ч . трито	'	,		.5 ~0.5	24.	41	27.70	09.20
Security Security		g:0	41.0	T _E 0		0 1						010	TI O	HO	D.O.	
No. of the last of	Точка	SiO ₂	Al ₂ O ₃	FeO	Ce ₂	O ₃ L	a ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂	O ₃	Gd ₂ O ₃	ThO ₂	UO ₂	P ₂ O ₅	Сумма
Mnz	4	0.56	0.23	1.43				2.90	10.17	2.2	7	1.65	8.55	0.95	29.51	94.03
4	*	2.27	1.00	3.40			- 1	2.74	10.15	1.3		<0.3	0.68	<0.3	29.83	92.31
15 мкм.	*	1.09	0.66	2.87				3.03	11.10	2.1		<0.3	2.21	<0.3	29.86	94.27
	*	3.92	1.93 0.38	4.35 <0.3		- 1	5.62 5.89	3.09 < 0.3	9.89 9.10	1.5		<0.3 <0.3	0.66 6.14	<0.3	29.95 29.26	96.28 92.02
		1.07	ł			- 1	- 1	1						<0.3		89.64
	*	< 0.3	< 0.3	<0.3	1 31.	16 I I	3.42 [3.78	11.13	<0.	.3 1	< 0.3	1.12	~U.J	29.03	02.04
	*	<0.3 0.60	<0.3	<0.3			3.42 4.99	3.78 < 0.3	11.13 8.44	<0. <0.		<0.3 <0.3	1.12 1.50	<0.3	29.03 29.08	89.40

Примечание. Si, Al, Fe, Mn проявляются вследствие захвата пучком материала матрицы.

Fe-oxhd — Fe^{3+} -(окси)гидроксиды; IS — железистый иллит-смектит (ферросапонит); LREE-phs — аутигенный фосфат LREE; Mnz — монацит; Rds — родохрозит; Xtm — ксенотим.

^{*} Составы минералов из других образцов.

песчаников Австралийского осадочного бассейна [Rasmussen, 1996] и керченских Fe руд из разреза Аршинцево [Sokol et al., 2020], позволяют отнести REE фосфаты из икряных руд к разряду соединений рабдофанового типа (LREE(PO_4)· nH_2O).

Во всех аутигенных фосфатах концентрации Th и U ниже предела их обнаружения, при этом они содержат 0.4—7.8 мас. % CaO и характеризуются следующим соотношением главных катионов: Ce > La \approx Nd \approx Ca > Pr > Sm. Особенности состава и морфологии позволяют выделить два типа аутигенных фосфатов. Первый из них имеет субмикронные размеры и хлопьевидную форму выделений (см. рис. 7, a—e, e; табл. 4). Этот тип фосфатов REE отличает отсутствие серы и умеренное содержание Ca ($X_{\rm cp} = 2.8$ мас. % CaO, n = 5) (см. табл. 4). Его состав ($Ce_{0.26-0.56}Nd_{0.13-0.16}La_{0.12-0.23}Ca_{0.02-0.47}Pr_{0.00-0.05}Gd_{0.00-0.02}Sm_{0.00-0.02})PO_4·nH_2O$ позволяет предположить существование ограниченных твердых растворов между рабдофаноподобной фазой ($Ce(PO_4)\cdot nH_2O$) и броккитом ((Ca,Ce,Th)(PO_4)· H_2O).

Аутигенные фосфаты второго типа встречаются реже, заполняют трещины в оолитах и псевдооолитах и отличаются относительно крупными размерами (до 2 мкм) и веретенообразной или округлой формой (см. рис. 4, 7, ε). Они содержат серу (0.4—3.0 мас. % SO_3 ; $X_{cp}=1.6$ мас. %) и повышенные количества СаО ($X_{cp}=6.1$ мас. %, n=20). Отдельные индивиды содержат У (0.6—1.1 мас. % Y_2O_3) (см. табл. 4). Обобщенная формула ($Ce_{0.26-0.42}Ca_{0.22-0.43}La_{0.09-0.20}Nd_{0.10-0.15}Pr_{0.03-0.04}Y_{0.00-0.05}Sm_{0.00-0.03})(P_{0.88-0.98}S_{0.02-0.12})O_4\cdot nH_2O$ позволяет отнести эти соединения к твердым растворам ряда $REE(PO_4)\cdot nH_2O$ —($Ca_2U_2Fe^{3+}$)(($PO_4U_2Fe^{3+}$)(($PO_4U_2Fe^{3+}$)(($PO_4U_2Fe^{3+}$))($PO_4U_2Fe^{3+}$)(($PO_4U_2Fe^{3+}$)(($PO_4U_2Fe^{3+}$)(($PO_4U_3Fe^{3+}$)($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3Fe^{3+}$)(($PO_4U_3U_3Fe^{3+}$)(

ОБСУЖЛЕНИЕ

Фазы-концентраторы REE и Y в икряных рудах

Распределение REE и Y в Fe-Mn осадках и осадочных железных рудах широко используется для реконструкции химического состава вод палеоокеана, а также условий отложения и диагенеза самих осадков [Ваu et al., 1995, 2014; Ваu, Koschinsky, 2009; Кіm et al., 2012; Surya Prakash et al., 2012; Chen et al., 2015; Yang et al., 2017]. Экспериментальные данные [Вугпе, Кіm, 1990; De Carlo et al., 1997; Ohta, Kawabe, 2001; Quinn et al., 2006] и природные наблюдения [Ваu, Koschinsky, 2009] согласованно свидетельствуют, что соосаждение REE, Y и Fe³⁺(Mn)-(окси)гидроксидов сопровождается значительным фракционированием REE и Y между жидкостями (морская вода, поровые воды) и твердыми фазами [Дубинин, 2004; Ваu et al., 2014; Chen et al., 2015; Yang et al., 2017]. Для керченских железных руд анализ применимости дискриминационных диаграмм для выявления фаз-носителей REE и Y и реконструкции обстановок формирования был ранее выполнен на примере рудной пачки разреза Аршинцево [Sokol et al., 2020]. В данной работе мы оценили вклады отдельных компонентов, включая минеральные составляющие, в ΣREE бюджет икряных руд, образованных в волноприбойной (пляжной) зоне Камыш-Бурунской мульды. Исходя из особенностей (REE+Y)_N спектров, мы также выполнили их сопоставление с рудами разреза Аршинцево, сформированными в устьевой части мульды, открытой в направлении моря (см. рис. 1).

В разрезе карьера «Е» карбонатные руды аккумулируют минимальные количества REE (ΣREE — 222—421 г/т; ~2-кратное превышение относительно PAAS по ΣLREE и ΣHREE и 3-кратное по ΣMREE). Они несколько богаче ΣREE, чем сидеритовые руды разреза Аршинцево, и лишены присущих последним отрицательных Се* и Y* аномалий (см. рис. 6; табл. 1). Исчезновение Y* аномалии является закономерным следствием высоких содержаний Мп в этих породах и наличия в осадке гидроксидов Мп, обладающих отрицательным зарядом поверхности [Ohta, Kawabe, 2001].

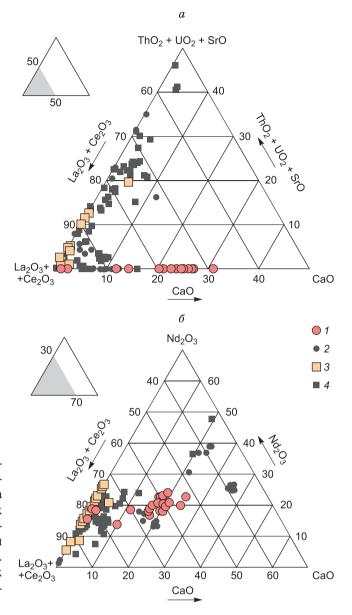
Природу отрицательной Y^* аномалии в железистых морских осадках связывают с различной стехиометрией карбонатных комплексов REE^{3+} и Y^{3+} . Если для лантаноидов в щелочных растворах (к категории которых принадлежит и морская вода с pH=7.9) характерны отрицательно заряженные бикарбонатные комплексы $Ln(CO_3)_2^-$, то для Y — положительно заряженные монокарбонатные — $Y(CO_3)^+$ [Bau, Koschinsky, 2009]. Как следствие, гидроксиды Fe^{3+} , поверхность которых заряжена положительно, избирательно сорбируют из раствора комплексы $Ln(CO_3)_2^-$, создавая тем самым отрицательную Y^* аномалию в твердом веществе-сорбенте и обогащая иттрием морскую воду [Bau, Koschinsky, 2009]. Гидроксиды Mn, напротив, избирательно сорбируют комплексы $Y(CO_3)^+$, вследствие чего в Fe-Mn осадках отрицательная Y^* аномалия может исчезнуть целиком. Отсутствие Ce^* аномалии указывает на то, что формирование карбонатных горизонтов в береговой полосе Камыш-Бурунской мульды (карьер «E») происходило при меньшей степени аноксии, чем в приустьевой ее части (Apmunue).

Коричневые руды сопоставляемых разрезов подобны как по содержаниям REE и Y, так и по конфигурации (REE+Y)_N спектров (см. рис. 6; табл. 1). Главной формой аккумуляции REE в этом типе руд представляется сорбированная, что доказывается опережающим накоплением MREE [Surya Prakash et al., 2012; Chen et al., 2015; Yang et al., 2017; Sokol et al., 2020]. Средние содержания Σ REE = 603 г/т в

валовых пробах икряных руд не существенно превышают таковые в коричневых рудах. Сохраняется и конфигурация (REE+Y) $_N$ спектров — они достаточно плоские с небольшим обогащением MREE (Gd/La) $_N=1.78$). Их особенностью является обогащение La относительно коричневых руд ($X_{\rm cp}=117~{\rm r/r}$, n=6 и $X_{\rm cp}=74.9~{\rm r/r}$, n=11 соответственно). Сохраняя конфигурацию (REE+Y) $_N$ спектров, грубые фракции икряных руд в среднем богаче этими элементами (Σ REE = 385—770 г/т; $X_{\rm cp}=607$, n=30) в сравнении с соответствующими фракциями коричневых руд (Σ REE — 250—703 г/т; $X_{\rm cp}=404$, n=18). На этом фоне тонкие фракции (Σ 0.25 мм) икряных руд отличаются аномальным обогащением REE, главным образом за счет опережающего роста содержаний La, Pr, Nd, Sm и MREE (Σ REE = 910—3011 г/т, $X_{\rm cp}=1957~{\rm r/r}$; (Gd/La $_N$) = 1.29—2.03; $X_{\rm cp}=1.73$, n=15). Количества HREE в них не отличаются существенно от таковых в грубых фракциях и валовых пробах (см. рис. 6; табл. 3). Резкое обогащение тонких фракций вышеперечисленными редкоземельными элементами обусловлено накоплением в них аутигенных фосфатов LREE (см. рис. 4, 7).

Аутигенные фосфаты REE — главные концентраторы редкоземельных элементов в икряных рудах

Фосфаты REE, главным образом аутигенные фосфаты LREE, широко распространены в керченских икряных рудах. Среди них преобладают гидратированные фазы рабдофанового типа ($Ce(PO_4) \cdot nH_2O$) (см. рис. 7; табл. 4), реальный состав которых отклоняется от теоретического в сторону обогащения La, Pr, Nd. В отличие от детритового монацита эти фазы содержат значительные количества Ca (до 0.47 ф. ед.) и Nd (до 0.16 ф. ед.) и лишены Th (см. табл. 4). Как следствие, количество Се в их составе снижается до 0.56 ф. ед.


Сопоставление составов рабдофаноподобных фаз из керченских руд с рабдофанами из иных объектов, где REE минерализация также имеет аутигенную или гипергенную природу [Bowles, Morgan, 1984; Berger et al., 2008, 2014; Takai, Uevara, 2012; Лазарева и др., 2015; Liu et al., 2016; Andersen et al., 2017; Новоселов и др., 2018], выявило их близкое подобие (рис. 8). Это заставляет искать общие причины обогащения этих фаз La, Pr, Nd и обеднения их Се и Th. Богатые Се рабдофаны были обнаружены только в палеопочвах, развитых по архейским (около 2.5 млрд лет) гранитам (шахта Пронто, Канада) [Murakami et al., 2001]. Их образование связывают с бескислородной атмосферой позднего архея—протерозоя [Murakami et al., 2001]. В фанерозое, когда атмосфера уже содержала не менее 12 % кислорода [Berner, 2006], в профилях выветривания преобладающими стали обедненные Се рабдофаноподобные фазы [Berger et al., 2014; Liu et al., 2016] (см. рис. 8). Фракционирование Се, имеющего переменную валентность (+3 и +4), в отличие от прочих LREE+3, обладающих постоянной валентностью, обеспечивает процесс окисления Се+3 и его связывание в церианит (Се+4О2), обладающего низкой растворимостью [Braun et al., 1990, 1993]. Этот процесс имеет следствием обогащение церием верхних горизонтов профиля выветривания и формирование в нижней части профиля REE фосфатов (в частности, рабдофана), обогащенных La, Nd и Pr [Berger et al., 2014; Liu et al., 2016]. Однако в латеритных профилях, сформированных в режиме затрудненного доступа кислорода, рабдофаны сохраняют высокие содержания Се. Таким образом, состав рабдофана может служить индикатором интенсивности окислительных процессов [Liu et al., 2016].

Анализ анатомии сотен псевдооолитов и визуализация методом РЭМ характера распределения в них фосфатов REE дает основание связать их массовое образование с единым кратковременным эпизодом формирования икряных руд. Зачастую рабдофаноподобные фазы приурочены к слепым трещинам, секущим центральные зоны псевдооолитов или ядра оолитов и не имеющим выхода на поверхность (см. рис. 3, 4). В оболочках, преимущественно сложенных Fe^{3+} -(окси)гидроксидами, редкоземельные фосфаты изредка заполняют единичные мелкие поры. В наружных оболочках, богатых гидроксидами Мп, аутигенные минералы REE обнаружены не были. Отсутствуют они и в карбонатном цементе. Согласно [Liu et al., 2016], для кристаллизации рабдофанов благоприятны слабоокислительные близнейтральные среды; для роста фторкарбонатов REE (бастнезита, LREE(CO_3)F и паризита, $CaLREE_3(CO_3)_3F_2$) — слабовосстановительные щелочные, а для образования церианита (CeO_2) — окислительные щелочные. Отсутствие в изученных нами разрезах керченских руд фторкарбонатов REE, вероятнее всего, является следствием чрезвычайно низких содержаний F в среде кристаллизации, и потому должно с осторожностью использоваться при интерпретации кислотно-щелочного режима. Анализ онтогенеза минеральных агрегатов показал, что образованию рудных песков и гравелитов, именуемых икряными рудами, предшествовала экспозиция в зону выветривания возникших ранее горизонтов Fe³⁺-(окси)гидроксидных руд, их дезинтеграция и перемыв в волноприбойной зоне. На это указывает хорошая сортированность материала, его очистка от силикатной составляющей и слабая окатанность [Малаховский, 1956; Шнюков, 1965; Голубовская, 1999]. Образование рабдофановой минерализации произошло в этот временной

Рис. 8. Состав аутигенных фосфатов LREE и детритовых монацитов из осадочных железных руд Камыш-Бурунской мульды в сравнении с LREE фосфатами из месторождений различных генетических типов в координатах ($La_2O_3 + Ce_2O_3$)—($ThO_2 + UO_2 + SrO$)— CaO (a) и ($La_2O_3 + Ce_2O_3$)—Nd $_2O_3$ —CaO (б) (мас. %).

1 — аутигенные фосфаты LREE, принадлежащие к твердым растворам ряда $REE(PO_4) \cdot nH_2O$ —(Ca, U, Fe^{3+})((PO_4), (SO_4))·2H₂O (рабдофан и тристрамит) и $Ce(PO_4) \cdot nH_2O$ — (Ca, Ce, Th)(PO₄)·H₂O (рабдофаноподобная фаза и броккит) из осадочных железных руд Камыш-Бурунской мульды (карьер «Е»); 2 — рабдофаны из карбонатитов [Лазарева и др., 2015; Andersen et al., 2017], щелочных комплексов [Berger et al., 2008; Takai, Uevara, 2012], гранитных пегматитов [Bowles, Morgan, 1984], бокситов [Liu et al., 2016]; 3 — детритовые монациты из осадочных железных руд Камыш-Бурунской мульды (карьер «Е»); 4 — монациты из карбонатитов [Lottermoser, 1990; Le Bas et al., 1992; Kravchenko, Pokrovsky, 1995; Xu et al., 2008; Лазарева и др., 2015; Lapin et al., 2016; Andersen et al., 2017], щелочных комплексов [Berger et al., 2008; Grammatikopoulos et al., 2013], гидротермальных месторождений [Andreoli et al., 1994], россыпей [Jaireth et al., 2014; Singh, 2020] и осадочных железных руд [Новоселов и др., 2018].

интервал до момента незначительного повышения уровня водоема и поступления новых порций богатых Fe вод в опресненный лиман. На этапе образования концентрически-зональных оболочек из Fe³⁺-(окси)гидроксидов и Fe смектитов условия уже не были благоприятны для осаждения фосфатов или иных минералов REE. На завершающем этапе образования пляжных фаций формируются Мn каймы обрастания, которые тоже не содержат REE фаз.

Керченские железные руды — потенциальный тип нетрадиционного редкоземельного сырья

По геохимии и минералогии REE керченские руды подобны наиболее богатым REE осадочным железным рудам Бакчарского месторождения [Rudmin et al., 2020a,b] (рис. 9). От фанерозойских аналогов из других регионов мира керченские руды отличаются низкими содержаниями Si, Al, Са и значимым обогащением P, Mn и MREE. Их REE бюджет главным образом был сформирован на стадии раннего диагенеза осадка при минимальном вкладе терригенного источника [Sokol et al., 2020]. Сопоставление уровней аккумуляции REE в икряных рудах Камыш-Бурунской мульды и в осадочных железных рудах из десяти других месторождений мира показывает, что наряду с рудами Бакчара (Россия) и Асуана (Египет), они входят в тройку наиболее богатых по суммарному содержанию REE. Восемь из десяти сопоставляемых объектов характеризуются однотипными спектрами распределения REE и отчетливым обогащением MREE (см. рис. 9), что указывает на преимущественно сорбционный механизм аккумуляции REE. Обогащение HREE свойственно только бедным рудам из современных торфяных болот (Карелия, Россия) и богатым морским рудам ордовикского возраста (Сен-Обен-де-Шато, Франция). Геохимическая специфика болотных вод [Фелицын, Богомолов, 2016] и присущий им спектр (REE+Y)_N позволяют предполагать связь ресурса REE с фосфатами Fe [Sokol et al., 2020]. Во втором случае обогащение REE, вероятно, связано с позднейшими гидротермальными изменениями первичного железистого осадка [Gloaguen et al., 2007]. Анализ литературных данных показал, что для аккумуля-

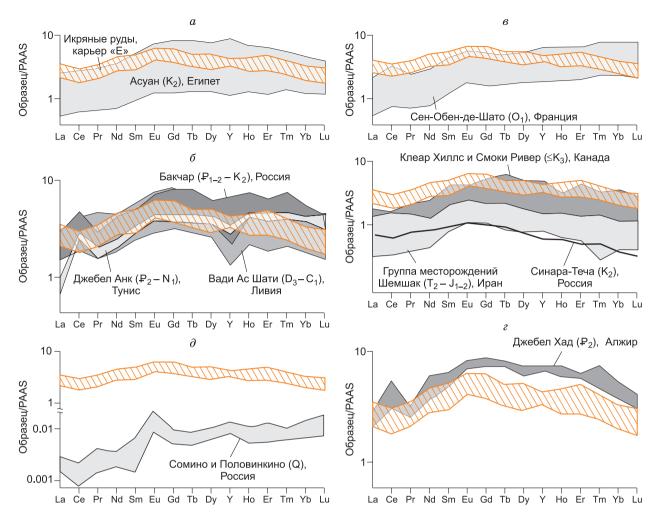


Рис. 9. PAAS нормализованные [Taylor, McLennan, 1985] (REE + Y) $_N$ спектры валовых проб икряных руд Камыш-Бурунской мульды в сравнении с (REE + Y) $_N$ спектрами валовых проб фанерозойских оолитовых руд различных месторождений мира.

Сравнение (REE+Y) $_N$ спектров керченских руд со спектрами (REE+Y) $_N$ валовых проб руд: a — морских (без указания обстановки) [Baioumy et al., 2017; Afify et al., 2018]; δ — морских мелководных [Garnit, Bouhlel, 2017; Shaltami et al., 2017; Rudmin et al., 2019]; ϵ — морских прибрежных [Gloaguen et al., 2007; Kafle, 2011; Новоселов и др., 2018; Rahiminejad, Zand-Moghadam, 2018]; ϵ — дельтовых [Diab et al., 2020]; δ — торфяных болотных [Фелицын, Богомолов, 2016].

ции REE в осадочных железных рудах наиболее благоприятны прибрежно-морские седиментационные обстановки, включающие территории мелководий, лиманов и речных дельт (см. рис. 9).

Несмотря на достаточно высокие суммарные концентрации REE, ни одно из месторождений осадочных железных руд в настоящее время не разрабатывается как комплексное. Прецедент коммерчески рентабельной добычи редкоземельных элементов из кор выветривания, где REE находятся в сорбированной форме, тем не менее существует. В КНР их добывают из каолиновых кор выветривания, преимущественно развитых по гранитам (ΣREE_{cp} = 1023, *n* = 32; ΣREE_{max} = 3900 г/т) [Wu et al., 1996; Bao, Zhao, 2008; Li et al., 2017]). На долю месторождений этого типа приходится около 35 % общего объема производства REE в Китае [Yang et al., 2013]. Несмотря на малые запасы ΣREE (<0.01—0.02 Мт), в сравнении с традиционными месторождениями-гигантами, генетически связанными со щелочным магматизмом (например, месторождение Томтор ~43 Мт [Kravchenko, Pokrovsky, 1995]), месторождения кор выветривания содержат высокие концентрации промышленно востребованных элементов — Nd, Pr, Gd, Eu, Er, Dy, Tb [Bao, Zhao, 2008; Chakhmouradian, Wall, 2012; Chakhmouradian, Zaitsev, 2012; Wall, 2014; Smith et al., 2016; Li et al., 2017]. Современная стратегия добычи REE сырья ориентирована именно на такие малые объекты, где сосредоточены значительные запасы отдельных промышленно значимых элементов при низких содержаниях U и Th.

При добыче REE из традиционных магматогенных источников большая часть запасов приходится на долю на Се и La и идет в отвалы как невостребованная промышленностью, а концентрации в них U и Th неизменно высоки [Chakhmouradian, Wall, 2012; Wall, 2014]. Как следствие, в редкоземельной индустрии существует так называемая «проблема баланса» [Binnemans, Jones, 2015]. В процессах извлечения концентратов из руд магматогенного происхождения и в ходе их переработки в продуктах и отходах прогрессивно накапливаются Th и U. Затраты на обеспечение радиационной безопасности на всех этапах технологического процесса существенно удорожают стоимость финального продукта, а отвалы содержат породы с высоким уровнем активности [Wall, 2014; Binnemans, Jones, 2015].

Таким образом, главными предпосылками устойчивого интереса к нетрадиционным типам редкоземельного сырья являются: необходимость удешевления производственных процессов и снижения нагрузки на окружающую среду при их добыче и переработке, а также решение «проблемы баланса». Новые типы месторождений должны удовлетворять следующим требованиям: 1) доступность, 2) простота добычи и переработки, 3) минимальные содержания токсичных и радиоактивных элементов, 4) высокая доля промышленно востребованных Nd, Pr, MREE и HREE при малом количестве «избыточных» элементов (La, Ce). На сегодня наиболее перспективными представляются руды осадочного генезиса: фосфориты, глубоководные морские илы, оолитовые железные руды и бокситы [Вао, Zao, 2008; Kato et al., 2011; Chakhmouradian, Wall, 2012; Emsbo et al., 2015; Rudmin et al., 2020b; Sokol et al., 2020].

Преимуществами осадочных железных руд как нетрадиционного ресурса REE являются их огромные запасы, простота геологического строения отдельных пластов, тел и целых месторождений, возможность разрабатывать большинство из них открытым способом, дисперсное состояние оолитовых руд на многих объектах. Немаловажным также являются низкие содержания в них Th и U, что резко снижает экологические риски при извлечении REE концентратов. В отличие от южно-китайских месторождений REE (со значимым HREE обогащением), керченские оолитовые железные руды обладают отчетливым LREE и MREE обогащением (см. рис. 9). Основной вклад в их Σ REE бюджет вносят два компонента: 1) рабдофаноподобные аутигенные водные фосфаты LREE и 2) сорбированные на Σ гокси)гидроксидах формы REE (с преобладанием MREE). Тонкие фракции керченских икряных руд (Σ обогащены Σ котором сосредоточены фосфаты LREE. Эти фракции могут быть выделены из основной массы руды на стадии ее измельчения и механической сепарации. Дальнейшее извлечение REE потенциально возможно на базе уже известных технологий химического и бактериального выщелачивания фосфора из осадочных пород и руд [Wang et al., 2010; Emsbo et al., 2015].

ЗАКЛЮЧЕНИЕ

Особенности фракционирования и накопления REE керченскими рудами характеризует их как коммерчески привлекательный тип нетрадиционного редкоземельного сырья. Тонкие фракции оолитовых руд (коричневых и икряных) содержат богатую минерализацию аутигенных фосфатов LREE. Содержание в них Σ REE ($X_{\rm cp}=1954~{\rm r/r}; X_{\rm max}=3011~{\rm r/r}$) сопоставимо с таковым в промышленных месторождениях кор выветривания KHP ($X_{\rm cp}=\sim\!2000~{\rm r/r}$). Доля икряных руд в общем сырьевом балансе Камыш-Бурунской мульды составляет $\sim\!20$ %. Одновременное накопление в керченских железных рудах трех востребованных промышленностью элементов — Pr, Nd и Sm — минимизирует затраты на их селективное извлечение, а низкие концентрации Th и U резко понижают класс радиологической опасности. Есть веские основания полагать, что аномальные уровни накопления MREE и LREE также присущи и тонкодисперсным отходам обогащения этих руд, которые на протяжении XX в. складировались в хвостохранилищах вблизи г. Керчь. Извлечение REE концентратов из керченских хвостохранилищ способно снизить зависимость России от импорта REE концентратов (сегодня это 2 % производства при 10.8 % мировых запасов).

Авторы благодарят О.А. Козьменко (ИГМ СО РАН) за помощь и консультации, сотрудников Аналитического центра ИГМ СО РАН к.г.-м.н. Н.С. Карманова и М.В. Хлестова, а также сотрудников ЮУ ФНЦ МиГ УрО РАН д.г.-м.н. В.Н. Удачина и к.г.-м.н. К.А. Филиппову за аналитическое сопровождение работ. Авторы выражают свою искреннюю благодарность академику Е.Ф. Шнюкову (Отделение морской геологии и осадочного рудообразования НАН Украины, Киев) за сотрудничество. Авторы глубоко признательны д.г.-м.н. Е.В. Белогуб (ЮУ ФНЦ МиГ УрО РАН), анонимному рецензенту, а также члену редколлегии журнала «Геология и геофизика» д.г.-м.н. Ю.А. Калинину (ИГМ СО РАН) за ценные предложения по модернизации рукописи.

Исследование выполнено за счет гранта Российского научного фонда (проект № 17-17-01056П).

ЛИТЕРАТУРА

- Геологический словарь. Т. 2. / Ред. О.В. Петров. СПб, Изд-во ВСЕГЕИ, 2011, 476 с.
- **Голубовская Е.В.** К проблеме происхождения прибрежных фаций «икряных» руд керченских железорудных месторождений // Литология и полезные ископаемые, 1997, № 6, с. 661—667.
- **Голубовская Е.В.** О происхождении «коричневых» руд керченских железорудных месторождений // Литология и полезные ископаемые, 1999, № 3, с. 244—251.
- **Голубовская Е.В.** Фациальные и геохимические особенности железорудного комплекса Керченских месторождений // Литология и полезные ископаемые, 2001, № 3, с. 259—273.
- **Дубинин А.В.** Геохимия редкоземельных элементов в океане // Литология и полезные ископаемые, 2004, № 4, с. 339—349.
- **Лазарева Е.В., Жмодик С.М., Добрецов Н.Л., Толстов А.В., Щербов Б.Л., Карманов Н.С., Герасимов Е.Ю., Брянская А.В.** Главные рудообразующие минералы аномально богатых руд месторождения Томтор (Арктическая Сибирь) // Геология и геофизика, 2015, т. 56 (6), с. 1080—1115.
- **Лимонов А.Ф.** Черное море. Палеогеографические реконструкции. Плиоцен // Атлас палеогеографических карт. Шельфы Евразии в мезозое и кайнозое. Т. 1. М-б: 1:7500 000 и 1:5000 000 / Ред. М.Н. Алексеев. М., ГИН АН СССР, 1992, 104 с.
- **Малаховский В.Ф.** Геология и геохимия керченских железных руд и их важнейших компонентов. Киев, Изд-во АН УССР, 1956, 193 с.
- **Новоселов К.А., Белогуб Е.В., Котляров В.А., Филиппова К.А., Садыков С.А.** Минералогические и геохимические особенности оолитовых железняков Синаро-Теченского месторождения (Курганская обл., Россия) // Геология рудных месторождений, 2018, т. 60, № 3, с. 301—314.
- Попов С.В., Антипов М.П., Застрожнов А.С., Курин Е.Е., Пинчук Т.Н. Колебания уровня моря на северном шельфе Восточного Паратетиса в олигоцене—неогене // Стратиграфия. Геологическая корреляция, 2010, т. 18, № 2, с. 99—124.
- **Фелицын С.Б., Богомолов Е.С.** Редкоземельные элементы, Rb-Sr и Sm-Nd систематики в торфяно-болотных железных рудах и мхах северо-запада Восточно-Европейской платформы // Литология и полезные ископаемые, 2016, № 2, с. 118—128.
- **Холодов В.Н., Голубовская Е.В., Недумов Р.И.** О происхождении и перспективах развития Киммерийского железорудного бассейна Украины и России // Литология и полезные ископаемые, 2014, № 5, с. 383—405.
- **Ципурский С.И., Голубовская Е.В.** Смектиты «табачных» руд керченских месторождений // Литология и полезные ископаемые, 1989, № 2, с. 58—73.
- **Шнюков Е.Ф.** Генезис киммерийских железных руд Азово-Черноморской рудной провинции. Киев, Наук. думка, 1965, 194 с.
 - Шнюков Е.Ф., Орловский Г.Н. Оолиты. Киев, НАН Украины, 2008, 216 с.
- Afify A.M., Sanz-Montero M.E., Calvo J.P., Wanas H.A. Diagenetic origin of ironstone crusts in the lower Cenomanian Bahariya formation, Bahariya depression, Western Desert, Egypt // J. African Earth Sci., 2015, v.101, p. 333—349.
- **Afify A.M., Sanz-Montero M.E., Calvo J.P.** Differentiation of ironstone types by using rare earth elements and yttrium geochemistry a case study from the Bahariya region, Egypt // Ore Geol. Rev., 2018, v. 96, p. 247—261.
- Andersen A.K., Clark J.G., Larson P.B., Donovan, J.J. REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA // Ore Geol. Rev., 2017, v. 89, p. 780—807.
- Andreoli M.A.G., Smith C.B., Watkeys M., Moore J.M., Ashwal L.D., Hart R.J. The geology of the Steenkampskraal monazite deposit, South Africa; implications for REE-Th-Cu mineralization in charnockite-granulite terranes // Econ. Geol., 1994, v. 89 (5), p. 994—1016.
- **Baioumy H.M., Ahmed A.H., Khedr M.Z.** A mixed hydrogenous and hydrothermal origin of the Bahariya iron ores, Egypt: evidences from the trace and rare earth element geochemistry // J. Geochem. Explor., 2014, v. 146, p. 149—162.
- **Baioumy H., Omran M., Fabritius T.** Mineralogy, geochemistry and the origin of high-phosphorus oolitic iron ores of Aswan, Egypt // Ore Geol. Rev., 2017, v. 80, p. 185—199.
- **Balaram V.** Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact // Geosci. Front., 2019, v. 10 (4), p. 1285—1303.
- **Bao Z., Zhao Z.** Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China // Ore Geol. Rev., 2008, v. 33 (3—4), p. 519—535.
- **Bau M., Dulski P., Möller P.** Yttrium and holmium in South Pacific seawater: vertical distribution and possible fractionation mechanisms // Chemie der Erde, 1995, v. 55 (1), p. 1—15.

- **Bau M., Koschinsky A.** Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts // Geochem. J., 2009, v. 43 (1), p. 37—47.
- **Bau M., Schmidt K., Koschinsky A., Hein J., Kuhn T., Usui A.** Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium // Chem. Geol., 2014, v. 381, p. 1—9.
- **Berger A., Gnos E., Janots E., Fernandez A., Giese J.** Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes // Chem. Geol., 2008, v. 254 (3—4), p. 238—248.
- Berger A., Janots E., Gnos E., Frei R., Bernier F. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar // Appl. Geochem., 2014, v. 41, p. 218—228.
- **Berner R.A.** GEOCARBSULF: a combined model for Phanerozoic atmospheric O_2 and CO_2 // Geochim. Cosmochim. Acta, 2006, v. 70 (23), p. 5653—5664.
- **Binnemans K., Jones P.T.** Rare earths and the balance problem // J. Sustainable Metall., 2015, v. 1 (1), p. 29—38.
- **Bolhar R., Kamber B.S., Moorbath S., Fedo C.M., Whitehouse M.J.** Characterisation of early Archaean chemical sediments by trace element signatures // Earth Planet. Sci. Lett., 2004, v. 222, p. 43—60.
- **Bowles J.F.W., Morgan D.J.** The composition of rhabdophane // Mineral. Mag., 1984, v. 48 (346), p. 146—148.
- Braun J.J., Pagel M., Muller J.P., Bilong P., Michard A., Guillet B. Cerium anomalies in lateritic profiles // Geochim. Cosmochim. Acta, 1990, v. 54, p. 781—795.
- **Braun J.J., Pagel M., Herbilln A., Rosin C.** Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study // Geochim. Cosmochim. Acta, 1993, v. 57 (18), p. 4419—4434.
- **Byrne R.H., Kim K.H.** Rare earth element scavenging in seawater // Geochim. Cosmochim. Acta, 1990, v. 54 (10), p. 2645—2656.
- **Chakhmouradian A.R., Zaitsev A.N.** Rare earth mineralization in igneous rocks: sources and processes // Elements, 2012, v. 8 (5), p. 347—353.
- **Chakhmouradian A.R., Wall F.** Rare earth elements: minerals, mines, magnets (and more) // Elements, 2012, v. 8 (5), p. 333—340.
- Chen J., Algeo T.J., Zhao L., Chen Z.-Q., Cao L., Zhang L., Li Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China // Earth Sci. Rev., 2015, v. 149, p. 181—202.
- **Chukanov N.V.** Minerals of the Kerch iron-ore basin in Eastern Crimea. Moscow, Mineralogical Almanac Association Ecost, 2005, 112 p.
- **De Carlo E.H., Wen X.-Y., Irving M.** The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles // Aquat. Geochem., 1997, v. 3, p. 357—389.
- **Diab H., Chouabbi A., Fru E.C., Nacer J.E., Krekeler M.** Mechanism of formation, mineralogy and geochemistry of the ooidal ironstone of Djebel Had, northeast Algeria // J. African Earth Sci., 2020, v. 162, 103736.
- Emsbo P., McLaughlin P.I., Breit G.N., du Bray E.A., Koenig A.E. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? // Gondwana Res., 2015, v. 27, p. 776—785.
- **Garnit H., Bouhlel S.** Petrography, mineralogy and geochemistry of the Late Eocene oolitic ironstones of the Jebel Ank, Southern Tunisian Atlas // Ore Geol. Rev., 2017, v. 84, p. 134—153.
- Gloaguen E., Branquet Y., Boulvais P., Moëlo Y., Chauvel J.J., Chiappero P.J., Marcoux E. Palaeozoic oolitic ironstone of the French Armorican Massif: a chemical and structural trap for orogenic base metal-As-Sb-Au mineralisation during Hercynian strike-slip deformation // Mineral. Deposita, 2007, v. 42 (4), p. 399—422.
- **Grammatikopoulos T., Mercer W., Gunning C.** Mineralogical characterisation using QEMSCAN of the Nechalacho heavy rare earth metal deposit, Northwest Territories, Canada // Can. Metall. Q., 2013, v. 52 (3), p. 265—277.
 - **Hatch G.P.** Dynamics in the global market for rare earths // Elements, 2012, v. 8 (5), p. 341—346.
- **Hu D.** China's governance of exhaustible natural resources under the WTO era: taking its REE governance as a case // Energy Procedia, 2012, v. 16, p. 656—660.
- **Jaireth S., Hoatson D.M., Miezitis Y.** Geological setting and resources of the major rare-earth-element deposits in Australia // Ore Geol. Rev., 2014, v. 62, p. 72—128.
- **Jordens A., Cheng Y.P., Waters K.E.** A review of the beneficiation of rare earth element bearing minerals // Miner. Eng., 2013, v. 41, p. 97—114.

- **Kafle B.** Stratigraphy, petrography and geochemistry of the Bad Heart Formation, Northwestern Alberta (Ms thesis). Edmonton, University of Alberta, 2011, 150 p.
- Kato Y., Fujinaga K., Nakamura K., Takaya Y., Kitamura K., Ohta J., Toda R., Nakashima T., Iwamori H. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements // Nat. Geosci., 2011, v. 4 (8), p. 535—539.
- **Kim J.H., Torres M.E., Haley B.A., Kastner M., Pohlman J.W., Riedel M., Lee Y.J.** The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin // Chem. Geol., 2012, v. 291, p. 152—165.
- **Kravchenko S.M., Pokrovsky B.G.** The Tomtor alkaline ultrabasic massif and related REE-Nb deposits, northern Siberia // Econ. Geol., 1995, v. 90 (3), p. 676—689.
- **Lapin A.V., Tolstov A.V., Kulikova I.M.** Distribution of REE, Y, Sc, and Th in the unique complex rare-metal ores of the Tomtor deposit // Geochem. Int., 2016, v. 54 (12), p. 1061—1078.
- Le Bas M. J., Kellere J., Kejie T., Wall F., William C.T., Peishan Z. Carbonatite dykes at Bayan Obo, Inner Mongolia, China // Mineral. Petrol., 1992, v. 46 (3), p. 195—228.
- **Li Y.H.M., Zhao W.W., Zhou M.F.** Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model // J. Asian Earth Sci., 2017, v. 148, p. 65—95.
- Liu X., Wang Q., Zhang Y., Li Y. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions // Ore Geol. Rev., 2016, v. 75, p. 100—115.
- **Lottermoser B.G.** Rare-earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia // Lithos, 1990, v. 24 (2), p. 151—167.
- Murakami T., Utsunomiya S., Imazu Y., Prasad N. Direct evidence of late Archean to early Proterozoic anoxic atmosphere from a product of 2.5 Ga old weathering // Earth Planet. Sci. Lett., 2001, v. 184 (2), p. 523—528.
- **Ohta A., Kawabe I.** REE(III) adsorption onto Mn dioxide (δ -MnO₂) and Fe oxyhydroxide: Ce(III) oxidation by δ -MnO₂ // Geochim. Cosmochim. Acta, 2001, v. 65, p. 695—703.
- **Popov S.V., Rögl F., Rozanov A.Y., Steininger F.F., Shcherba I.G., Kováč M.** Lithological-paleogeographic maps of Paratethys, 10 maps Late Eocene to Pliocene. Scale: 1:5000000 / Ed. S.V. Popov. Stuttgart, E. Schweizerbrat'sche Verlagsbuchhandlung, 2004, 73 p.
- Quinn K.A., Byrne R.H., Schijf J. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of solution complexation with carbonate // Geochim. Cosmochim. Acta, 2006, v. 70 (16), p. 4151—4165.
- **Rahiminejad A.H., Zand-Moghadam H.** Synsedimentary formation of ooidal ironstone: an example from the Jurassic deposits of SE central Iran // Ore Geol. Rev., 2018, v. 95, p. 238—257.
- **Rasmussen B.** Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones; a major sink for oceanic phosphorus // Am. J. Sci., 1996, v. 296 (6), p. 601—632.
- Rudmin M., Mazurov A., Banerjee S. Origin of ooidal ironstones in relation to warming events: Cretaceous-Eocene Bakchar deposit, South-East Western Siberia // Mar. Pet. Geol., 2019, v. 100, p. 309—325.
- Rudmin M., Banerjee S., Abdullayev E., Ruban A., Filimonenko E., Lyapina E., Kashapov R., Mazurov A. Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: assessment of formation processes and relationship with regional and global earth processes // J. Palaeogeogr., 2020a, v. 9, p. 1—21.
- Rudmin M., Reva I., Sokol E., Abdullayev E., Ruban A., Kudryavtsev A., Tolkachev O., Mazurov A. Minerals of rare earth elements in high-phosphorus ooidal ironstones of the Western Siberia and Turgai Depression // Minerals, 2020b, v. 10 (1), p. 11.
- **Salama W., El Aref M., Gaupp R.** Mineralogical and geochemical investigations of the middle Eocene ironstones, El Bahariya depression, Western Desert, Egypt // Gondwana Res., 2012, v. 22 (2), p. 717—736.
- **Seredin V.V., Dai S.** Coal deposits as potential alternative sources for lanthanides and yttrium // Int. J. Coal Geol., 2012, v. 94, p. 67—93.
- Shaltami O.R., Fiannacca P., Fares F.F., Oshebi F.M.E., Siasia G.D., Errishi H. Geochemistry of iron ore at Wadi As Shati, SW Libya: implications on origin, depositional environment, paleooxygenation, paleoclimate and age // Proceeding Book of 14th Biennial Meeting, SGA. Quebec, 2017, p. 37—50.
- Smith M.P., Moore K., Kavecsánszki D., Finch, A.A., Kynicky J., Wall F. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements // Geosci. Front., 2016, v. 7 (3), p. 315—334.
 - Singh Y. Rare earth element resources: Indian context. Cham., Switzerland, Springer, 2020, 410 p.

- Sokol E.V., Kokh S.N., Kozmenko O.A., Nekipelova A.V., Rudmin M., Khvorov P.V., Artemyev D.A. Geochemistry and mineralogy of rare earth elements in high-phosphorus ooidal ironstones: a case study of the Kamysh-Burun deposit (Azov-Black Sea iron Province) // Ore Geol. Rev., 2020, 103827.
- Surya Prakash S.L., Ray D., Paropkari A.L., Mudholkar A.V., Satyanaraynan M., Sreenivas B., Chandrasekharam D., Kota Dalayya Raju Kamesh Sujata Kaisary K.A., Balaram Gurav V Tripti. Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: comparative study between hydrogenous and hydrothermal deposits // Chem. Geol., 2012, v. 312—313, p. 127—137.
- **Takai Y., Uehara S.** Rhabdophane-(Y), YPO₄·H₂O, a new mineral in alkali olivine basalt from Hinodematsu, Genkai-cho, Saga Prefecture, Japan // J. Mineral. Petrol. Sci., 2012, v. 107 (2), p. 110—113.
- **Taylor S.R., McLennan S.M.** The continental crust: its evolution and composition. London, Blackwell, 1985, 312 p.
- **Wall F.** Rare earth element // Critical metals handbook / Ed. G. Gun. New York, John Willey & Sons, 2014, p. 312—339.
- Wang J., Shen S., Kang J., Li, H., Guo Z. Effect of ore solid concentration on the bioleaching of phosphorus from high-phosphorus iron ores using indigenous sulfur-oxidizing bacteria from municipal wastewater // Process Biochem., 2010, v. 45, p. 1624—1631.
- Wu C., Yuan Z., Bai G. Rare earth deposits in China // Rare earth minerals chemistry, origin and ore deposits / Eds. A.P. Jones, F. Wall, C.T. Williams. New York, Chapman & Hall, 1996, p. 281—310.
- **Wübbeke J.** Rare earth elements in China: Policies and narratives of reinventing an industry // Resour. Policy, 2013, v. 38 (3), p. 384—394.
- Yang X.J., Lin A., Li X. L., Wu Y., Zhou W., Chen Z. China's ion-adsorption rare earth resources, mining consequences and preservation // Environ. Dev., 2013, v. 8, p. 131—136.
- Yang J., Torres M., McManus J., Algeo T.J., Hakala J.A., Verba C. Controls on rare earth element distributions in ancient organic-rich sedimentary sequences: role of post-depositional diagenesis of phosphorus phases // Chem. Geol., 2017, v. 466, p. 533—544.
- Xu C., Campbell I.H., Kynicky J., Allen C.M., Chen Y., Huang Z., Qi L. Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China // Lithos, 2008, v. 106 (1—2), p. 12—24.

Поступила в редакцию 6 марта 2021 г., принята в печать 26 мая 2021 г.