УДК 621.391.63; 535.361

Моделирование процесса передачи информации по атмосферным каналам распространения рассеянного лазерного излучения

М.В. Тарасенков¹, В.В. Белов^{1,2}, Е.С. Познахарев^{1,2}*

¹Институт оптики атмосферы им. В.Е. Зуева СО РАН 634055, г. Томск, пл. Академика Зуева, 1 ²Национальный исследовательский Томский государственный университет 634050, г. Томск, пр. Ленина, 36

Поступила в редакцию 22.03.2017 г.

Рассматриваются результаты моделирования импульсной реакции канала атмосферной оптической связи на рассеянном излучении для длин волн 0,3; 0,5 и 0,9 мкм. Проведенный анализ показывает, что на базовых расстояниях 2–3 км и менее между источником и приемной системой максимальная мощность принимаемого информационного сигнала достигается при $\lambda = 0,3$ мкм, на бо́льших базовых расстояниях и при низкой мутности атмосферы – при $\lambda = 0,5$ мкм. Наибольшая максимальная мощность наблюдается при $\lambda = 0,5$ мкм при высокой мутности атмосферы и базовых расстояниях 3–10 км. Однако если базовые расстояния больше 10 км, максимум мощности информационного сигнала достигается при $\lambda = 0,9$ мкм. Для частного примера лазерного источника и приемной системы, используя результаты расчетов импульсной реакции атмосферного канала связи при $\lambda = 0,5$ мкм, оценены предельное базовое расстояние между источником и приемником и приемной систем импульсов, которая не фильтруется каналом связи.

Ключевые слова: атмосфера, рассеянное лазерное излучение, бистатическая оптическая связь, видимый, УФ- и ближний ИК-диапазоны длин волн, предельные базовые расстояния, предельная частота передачи импульсов; atmosphere, scattered laser radiation, bistatic optical communication, visible, UV, and near-IR wavelength regions, limiting base distances, limiting pulse repetition frequency.

Введение

Оптико-электронные аппаратурно-программные средства передачи больших объемов информации с высокой скоростью активно изучаются в различных областях науки. Опубликованы результаты многочисленных исследований, касающихся, например, систем атмосферной оптической связи в пределах прямой видимости [1-3]. Существуют коммерческие варианты их аппаратурной реализации [2]. Среди основных результатов их испытаний в реальных условиях - сверхвысокоскоростная передача информации на достаточно короткие расстояния. Главным недостатком подобных систем является возможное прерывание сигнала, вызванное появлением препятствия на пути светового пучка или турбулентностью в среде распространения оптического излучения.

В значительной степени этого недостатка лишены системы бистатической (загоризонтной) связи на рассеянном излучении. В зарубежной литературе такие системы называют системами NLOS (Non Line-Of-Sight). Работ, посвященных исследованию процесса передачи и приема информации, основанного на эффекте рассеяния излучения в дисперсных средах, значительно меньше, чем тех, в которых анализируется перенос информации по открытым оптическим каналам, сформированным в пределах прямой видимости. Стоит упомянуть, например, работы [4-15], из которых следует, что NLOSсистемы достаточно активно развиваются в двух направлениях. Первое направление - это многоадресная передача информации на короткие дистанции [7–10]. Известны теоретические и экспериментальные результаты, соответствующие небольшим базовым расстояниям (десятки метров) и большим углам расходимости источника и поля зрения приемной системы [8]. Второе направление - оптикоэлектронные системы многоадресной передачи информации на большие дистанции [11-15], для которых характерны относительно малые расходимость излучения источника и угол поля зрения приемной системы.

В рамках второго направления развития бистатических оптико-электронных систем связи в работах ИОА СО РАН [11–15] экспериментально оценены возможность реализации и качество атмосферной оптической связи на рассеянном лазерном излучении для передачи информации на значительные расстояния. Результаты были получены для

^{*} Михаил Викторович Тарасенков (tmv@iao.ru); Владимир Васильевич Белов (belov@iao.ru); Егор Сергеевич Познахарев.

[©] Тарасенков М.В., Белов В.В., Познахарев Е.С., 2017

длины волны излучения 0,5106 мкм. Первые исследования были начаты с базовых расстояний 3 км; последние эксперименты показывают, что имеющееся оборудование позволяет передавать и принимать информацию на расстояния до 70 км при безоблачных условиях на линии связи. Под линией связи понимаем линию, соединяющую источник излучения и приемник через точку пересечения их оптических осей. Учитывая, что оптических состояний реальной атмосферы практически бесконечное множество и что средств оперативного контроля оптических характеристик такого канала связи в полном объеме не существует, установить экспериментально закономерности влияния атмосферы на дальность действия и качество связи не представляется возможным.

Эта проблема может быть решена с помощью математического моделирования процесса передачи информации по каналам распространения рассеянного оптического (в рассматриваемом случае лазерного) излучения. С этой целью нами предложен и рассмотрен в работах [16, 17] алгоритм метода Монте-Карло модифицированной двойной локальной оценки для решения нестационарного уравнения переноса излучения (УПИ). В настоящей работе, используя этот алгоритм, выполнен анализ характеристик атмосферной оптической связи на рассеянном излучении для набора оптических условий в атмосфере и оценены дальность действия и скорость передачи информации для нескольких длин волн излучения лазера. Кроме того, определены геометрические параметры схем формирования открытых бистатических атмосферных каналов связи, наиболее эффективных с точки зрения дальности и скорости передачи данных.

Постановка задачи

Рассмотрим геометрическую схему бистатической оптической связи на рис. 1.

Для упрощения задачи рассмотрим случай, когда плоскость SID (см. рис. 1) перпендикулярна земной поверхности. На земле располагается $\delta(t)$ -импульсный источник лазерного излучения с угловой расходимостью v_0 , положение оси которого задано углом θ_0 . На базовом расстоянии от источника Y_N размещается приемник с углом поля зрения v_d , ось которого ориентирована в направлении, заданном углом θ_d .

В рамках теории линейных систем [18] отклик линейной системы (в нашем случае канал связи является линейным в силу линейности нестационарного УПИ относительно интенсивности излучения) на входной $\delta(t)$ -импульс позволяет восстановить ее реакцию на любой входной сигнал $P_0(t)$, используя интеграл свертки

$$P(t) = S_0 \int_0^\infty P_0(t')h(t-t')dt' = S_0 p(t), \qquad (1)$$

где h(t) — импульсная реакция канала; S_0 — площадь приемной апертуры; p(t) — мощность принимаемого излучения, отнесенная к единице площади приемной апертуры.

Функция h(t) моделировалась на следующих временных интервалах. Задавалась максимальная длина траектории блуждания фотона в среде за вычетом базового расстояния l_{max} , и интересующий нас интервал времени формирования импульсной реакции [0; t_{max}] ($t_{\text{max}} = l_{\text{max}}/c$, где c — скорость света) делился на N_1 , N_2 , N_3 одинаковых временных интервалов, соответствующих ближней, центральной и дальней временной зоне формирования h(t) (см. рис. 1).

Результаты расчетов

Используя программу, в которой реализован наш алгоритм [16, 17], было выполнено моделирование импульсной реакции методом Монте-Карло для следующих условий: $\lambda = 0,3$; 0,5; 0,9 мкм; метеорологическая дальность видимости $S_M = 10$ и 50 км; $\theta_0 = \theta_d = 85^\circ$, $v_0 = 0,0034^\circ$, $v_d = 2^\circ$; $Y_N = 0,5-200$ км; $N_1 = 5$, $N_2 = 30$, $N_3 = 15$; $l_{max} = 2$ км. Оптические параметры безоблачной аэрозольно-молекулярной атмосферы задавались генератором оптических моделей на основе LOWTRAN-7 [19]. Используемые в расчетах оптические параметры атмосферы в приземном слое приведены в табл. 1.

Таблица 1

Оптические параметры приземного (0–1 км) слоя
атмосферы, используемые в расчетах (σ _{t,a} , σ _{s,a} –
коэффициенты аэрозольного ослабления и рассеяния;
σ _{t,m} , σ _{s,m} – коэффициенты молекулярного ослабления
и рассеяния соответственно)

1				,		
λ, мкм	S_M , км	$\sigma_{t,a}, \ \kappa \text{m}^{-1}$	$\sigma_{s,a}, \ \text{KM}^{-1}$	$\sigma_{t,m}, \ \kappa \text{m}^{-1}$	$\sigma_{s,m}, \; \text{KM}^{-1}$	
0,3	10	0,6610	0,6200	0,16500	0,1400	
0,3	50	0,1130	0,1060	0,16500	0,1400	
0,5	10	0,4330	0,4100	0,01660	0,0165	
0,5	50	0,0744	0,0700	0,01660	0,0165	
0,9	10	0,2150	0,1960	0,13694	0,0015	
0.9	50	0.0367	0.0334	0.13694	0.0015	

Тарасенков М.В., Белов В.В., Познахарев Е.С.

Результаты расчетов максимумов h(t) иллюстрирует рис. 2; вид функции h(t) при $Y_N = 0,5$ и 30 км показан на рис. 3. Средняя по временным интервалам погрешность расчетов при $S_M = 50$ км лежит в пределах 0,15–1,50% для всех рассмотренных вариантов, при $S_M = 10$ км — в пределах 0,35–4%, за исключением случаев $\lambda = 0,3$ мкм, $Y_N \ge 30$ км и $\lambda = 0,9$ мкм, $Y_N \ge 50$ км, где погрешность составляет 7,5–10%.

Рис. 2. Максимумы импульсной реакции $h_{\max}(t)$ при различных базовых расстояниях Y_N : $S_M = 10$ км (*a*); $S_M = 50$ км (*б*). Кривая *t* соответствует $\lambda = 0,3$ мкм; $2 - \lambda = 0,5$ мкм; $3 - \lambda = 0,9$ мкм

Рассмотрим влияние варьируемых параметров в численных экспериментах на максимальное значение импульсной реакции $h_{\rm max}$. На коротких базовых расстояниях ($Y_N < 2-3$ км) наибольшего значения $h_{\rm max}$ достигает при $\lambda = 0,3$ мкм. С увеличением базовых расстояний наблюдается быстрое уменьшение $h_{\rm max}$ при $\lambda = 0,3$ мкм, особенно для более высокой мутности среды ($S_M = 10$ км). Для низкой мутности среды ($S_M = 50$ км) и $Y_N > 2$ км максимальное значение импульсной реакции достигается

при $\lambda = 0,5$ мкм. Для значительной мутности среды ($S_M = 10$ км) и $Y_N = 3-10$ км h_{max} максимальна при $\lambda = 0,5$ мкм, но на бо́льших Y_N наибольшее значение h_{max} наблюдается при $\lambda = 0,9$ мкм.

Рис. 3. Импульсные реакции h(t) при фиксированных значениях λ и S_M при $Y_N = 0,5$ (*a*), 30 км (*б*). Кривая 1 соответствует $\lambda = 0,3$ мкм, $S_M = 10$ км; $2 - \lambda = 0,3$ мкм, $S_M = 50$ км; $3 - \lambda = 0,5$ мкм, $S_M = 10$ км; $4 - \lambda = 0,5$ мкм, $S_M = 50$ км; $5 - \lambda = 0,9$ мкм, $S_M = 10$ км; $6 - \lambda = 0,9$ мкм, $S_M = 50$ км

Для примера оценим предельное базовое расстояние Y_{N^*} и максимальную частоту следования импульсов v_{max} без фильтрации атмосферным каналом для следующей модели системы связи. Источник излучения — лазер с длиной волны излучения 0,5 мкм. Частота излучаемых импульсов 11 кГц. Форма импульсов прямоугольная, длительность 30 нс, мощность $P_0 = 18182$ Вт. Приемная оптическая система идеальна, в качестве усилительного элемента приемника используется ФЭУ-17а, описанный в работах [20–25]. Для заданных выше характеристик импульса были рассчитаны, используя (1), мощности p(t) принимаемого излучения на единицу площади апертуры приемной системы при $S_M = 10$ и 50 км. Качество канала связи принято характеризовать отношением [2, 7]:

$$\eta = 10 \lg(P_0/P) = 10 \lg\left(\frac{P_0}{pS_0}\right),$$
 (2)

где P_0 — мощность источника; P — мощность принимаемого излучения; p — мощность принимаемого излучения на единицу площади апертуры приемной системы.

В нашей работе величина η рассчитывается для максимумов значений p(t) и площади апертуры приемной системы $S_0 = 0.01 \text{ m}^2$. В качестве предельной возьмем мощность, при которой отношение сигнал-шум $\rho = 1$. Согласно [22–24]:

$$\rho = \frac{F\Sigma_{\kappa}M}{\sqrt{2e\Delta f \left[M^2 I_{\kappa}(1+B) + \frac{2kT}{eR_{\rm H}}\left(1+\frac{R_{\rm g}}{R_{\rm H}}\right)\right]}}.$$
 (3)

Здесь F — среднее значение измеряемого светового потока (лм); $M = \frac{\Sigma_a}{\Sigma_\kappa}$ — коэффициент усиления ФЭУ (безразмерный), Σ_a — анодная чувствительность ность (А/лм), Σ_κ — интегральная чувствительность фотокатода (А/лм); e — заряд электрона (Кл); $\Delta f = \frac{1}{2R_{\rm H}C_a}$ — полоса частот (Гц); $R_{\rm H}$ — сопротивление нагрузки (Ом); C_a — емкость между выводом анода и последним каскадом (Ф); $I_{\kappa} = \Sigma_{\kappa}F + I_{\rm T\kappa} + \Sigma_{\kappa}F_{\phi}$ среднее значение эмиссионного тока с фотокатода (А), $I_{\rm T\kappa} = j_TQ$ — ток термоэмиссии фотокатода (А), j_T — плотность термотока (А/см²), Q — площадь фотокатода (см²), F_{ϕ} — фоновая засветка (лм); (1 + B) — фактор шума (безразмерный); k — постоянная Больцмана (Дж/К); T — температура ФЭУ (К); $R_{\rm p}$ — эквивалентное шумовое сопротивление (Ом). В расчетах использовались следующие значе-

ния параметров в (3) [12, 20–25]: $\Sigma_{\rm K} = 40$ мкА/лм, $\Sigma_{\rm a} = 10$ А/лм [21. С. 134]; $R_{\rm H} = 10^8$ Ом, $C_a = 10^{-11}$ Ф, 1 + B = 2,5 [24. С. 274]; T = 256 К [12]; $R_{\rm g} = 3,5 \times 10^6$ Ом [21. С. 161]; $j_{\rm T} = 10^{-15}$ А/см² [22. С. 109]; Q = 0.8 см² [20. С. 46]; $F_{\rm p} = 0$ лм.

Для вышеперечисленных характеристик $\Phi \ni Y$ при $F \approx F_* = 2 \cdot 10^{-11}$ лм отношение сигнал-шум

$$\rho \approx \frac{10F}{\sqrt{10^{-9}F + 2 \cdot 10^{-20}}} \approx 1.$$
(4)

Чтобы перевести Вт в лм, воспользуемся формулой из [25. С. 23]:

$$F = c_{\mathcal{V}}(\lambda)P,\tag{5}$$

где c = 683 лм/Вт; v = 0,323 при $\lambda = 0,5$ мкм [25. С. 9]. Отсюда получаем, что $\rho \approx 1$ при $P \approx P_* = 9,07 \cdot 10^{-14}$ Вт. Подставляя мощность источника P_0 и предельную чувствительность приемника P_* в (2), получим предельную чувствительность $\eta_* \approx 173$ дБ.

Результаты расчетов п для максимумов p(t) на базовых расстояниях $Y_N = 0,5-200$ км при $S_M = 10$ и 50 км приведены на рис. 4, *a*. Они показывают, что при используемых в расчетах характеристиках излучения и приемника и $\lambda = 0,5$ мкм $Y_{N^*} \approx 40$ км для $S_M = 10$ км и $Y_{N^*} \approx 200$ км для $S_M = 50$ км, если не учитывать солнечный фон. При базах $Y_N < 5$ км максимум мощности принимаемого излучения выше для $S_M = 10$ км, а при $Y_N > 5$ км – для $S_M = 50$ км.

Рис. 4. Зависимости η (*a*) и v_{max} (*б*) от Y_N

Оценим предельное количество импульсов длительностью 30 нс в единицу времени v_{max} , которые пропускаются каналом связи без фильтрации, при мощности источника $P_0 = 18182$ Вт, площади апертуры $S_0 = 0,01 \text{ m}^2$ и предельной чувствительности $P_* = 9,07 \cdot 10^{-14}$ Вт. Результаты оценки приведены на рис. 4, δ , из которого следует, что на базовых расстояниях до 5 км значения v_{max} для $S_M = 10$ и 50 м почти не отличаются. Для бо́льших Y_N в более прозрачной атмосфере частота v_{max} выше, чем в более мутной.

Тарасенков М.В., Белов В.В., Познахарев Е.С.

В целом v_{max} находится в пределах от $8,3 \cdot 10^5$ до $3,3 \cdot 10^7$ Гц для базовых расстояний 0,5-30 км при $S_M = 10$ км и от $5 \cdot 10^5$ до $3,3 \cdot 10^7$ Гц для базовых расстояний 0,5-175 км при $S_M = 50$ км. Эти оценки не противоречат экспериментальным данным работы [15].

Заключение

Выполненный анализ канала атмосферной оптической связи для случая, когда плоскость, в которой расположены оси линии связи, перпендикулярна земной поверхности, показывает, что на коротких базовых расстояниях ($Y_N < 2-3$ км) наибольшая мощность принимаемого излучения при одинаковых прочих условиях достигается для $\lambda = 0,3$ мкм. На бо́льших базовых расстояниях при низкой мутности среды этот максимум наблюдается для $\lambda = 0,5$ мкм. При высокой мутности среды на базовых расстояниях 3–10 км он достигается также для $\lambda = 0,5$ мкм, а на $Y_N > 10$ км – для $\lambda = 0,9$ мкм.

Проведенные расчеты импульсных реакций позволяют оценить дальнодействие системы связи и максимальную частоту следования импульсов, которую не ограничивает атмосферный канал связи.

В рассмотренной частной модели бистатической оптико-электронной связи возможна передача информации на базовые расстояния вплоть до 30 км с частотой v_{max} от 8,3 \cdot 10⁵ до 3,3 \cdot 10⁷ Гц при $\lambda = 0,5$ мкм, $S_M = 10$ км и на дистанцию до 175 км с частотой v_{max} от 5 \cdot 10⁵ до 3,3 \cdot 10⁷ Гц в зависимости от базового расстояния при $\lambda = 0,5$ мкм, $S_M = 50$ км. Эти данные согласуются с результатами полевых экспериментов с использованием реальной аппаратуры бистатической связи.

Работа выполнена при частичной поддержке РФФИ (гранты № 16-31-00033-мол_а, 15-07-06811-А).

- Воронцов М.А., Дудоров В.В., Зырянова М.О., Колосов В.В., Филимонов Г.А. Частота появления ошибочных битов в системах беспроводной оптической связи с частично когерентным передающим пучком // Оптика атмосф. и океана. 2012. Т. 25, № 11. С. 936–940; Vorontsov М.А., Dudorov V.V., Zyryanova М.O., Kolosov V.V., Filimonov G.A. Bit error rate in freespace optical communication systems with a partially coherent transmitting beam // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 185–189.
- 2. Полянский С.В., Игнатов А.Н. Определение дистанции атмосферного канала связи с заданным коэффициентом готовности для г. Новосибирска // Вест. СибГУТИ. 2009. № 4. С. 73–82.
- 3. Поллер Б.В., Бритвин А.В., Борисов Б.Д., Коломников Ю.Д., Коняев С.И., Кусакина А.Е., Шергунова Н.А., Курочкин В.Л., Зверев А.В., Курочкин Ю.В., Плюсин В.Ф. Характеристики энергоинформационной модели и методов построения телекоммуникационной и квантово-криптографической лазерной системы спутниковой связи // Проблемы информатики. 2013. № 1 (18). С. 69–75.

- 4. *Кеннеди Р.С.* Введение в теорию передачи сообщений по оптическим каналам с рассеянием // Тр. ин-та инженеров по электротех. и радиоэлектрон. 1970. Т. 58, № 10. С. 264–278.
- 5. Пожидаев В.Н. Выбор длины волны для систем загоризонтной связи в оптическом диапазоне // Радиотехн. и электрон. 1977. Т. 22, № 11. С. 2265–2271.
- Пожидаев В.Н. Осуществимость линий связи ультрафиолетового диапазона, основанных на эффекте молекулярного и аэрозольного рассеяния в атмосфере // Радиотехн. и электрон. 1977. Т. 22, № 10. С. 2190– 2192.
- Haipeng D., Chen G., Arun K., Sadler B.M., Xu Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication // IEEE J. Sel. Areas Commun. 2009. V. 27, N 9. P. 1535–1544.
- Han D., Liu Y., Zhang K., Luo P., Zhang M. Theoretical and experimental research on diversity reception technology in NLOS UV communication system // Opt. Express. 2012. V. 20, N 14. P. 15833–15842.
- 9. Elshimy M.A., Hranilovic S. Non-line-of-sight singlescatter propagation model for noncoplanar geometries // J. Opt. Soc. Am. A. 2011. V. 28, N 3. P. 420–428.
- Kedar D. Multiaccess interference in a non-line-of-sight ultraviolet optical wireless sensor network // Appl. Opt. 2007. V. 46, N 23. P. 5895–5901.
- Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Troitskii V.O., Shiyanov D.V. Atmospheric Bistatic Communication Channels with Scattering. Part 1. Methods of study // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 364–370.
- 12. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Gridnev Yu.V., Troitskii V.O., Dimaki V.A. Atmospheric Bistatic Communication Channels with Scattering. Part 2. Field Experiments in 2013 // Atmos. Ocean. Opt. 2015. V. 28, N 3. P. 202–208.
- Belov V.V., Tarasenkov M.V., Abramochkin V.N., Troitskii V.O. Over-the-horizon Optoelectronic Communication Systems // Russ. Phys. J. 2014. V. 57, N 7. P. 202–208.
- 14. Belov V.V., Tarasenkov M.V., Abramochkin V.N. Bistatic Atmospheric Optoelectronic Communication Systems (Field Experiments) // Tech. Phys. Lett. 2014. V. 40, N 10. P. 871–874.
- 15. Абрамочкин В.Н., Белов В.В., Гриднев Ю.В., Кудрявцев А.Н., Тарасенков М.В., Федосов А.В. Оптико-электронная связь на рассеянном лазерном излучении в атмосфере. Полевые эксперименты // Светотехника. 2017. (В печати).
- 16. Белов В.В., Тарасенков М.В. Три алгоритма статистического моделирования в задачах оптической связи на рассеянном излучении и бистатического зондирования // Оптика атмосф. и океана. 2016. Т. 29, № 5. С. 397–403; Belov V.V., Tarasenkov M.V. Three algorithms of statistical modeling in problems of optical communication on scattered radiation and bistatic sensing // Atmos. Ocean. Opt. 2016. V. 29, N 6. P. 533–540.
- 17. Белов В.В., Тарасенков М.В. Алгоритмы статистического моделирования импульсных реакций бистатических каналов связи // Тр. Междунар. конф. «Актуальные проблемы вычислительной и прикладной математики – 2015», посвященной 90-летию со дня рождения академика Гурия Ивановича Марчука. Ин-т вычислительной математики и математической

Моделирование процесса передачи информации по атмосферным каналам...

геофизики СО РАН. Новосибирск. 19–23 октября 2015 г. Новосибирск: Абвей, 2015. С. 95–101.

- 18. Зуев В.Е., Белов В.В., Веретенников В.В. Теория систем в оптике дисперсных сред. Томск: ИОА СО РАН, «Спектр», 1997. 402 с.
- Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A., Clough S.A., Gallery W.O. User Guide to LOWTRAN-7. ARGL-TR-86–0177. ERP 1010. MA. Hansom AFB, 1988. P. 137.
- 20. Анисимова И.И., Глуховской Б.М. Фотоэлектронные умножители. М.: Сов. радио, 1974. 61 с.
- 21. Аксененко М.Д., Бараночников М.Л. Приёмники оптического излучения. М.: Радио и связь, 1987. 296 с.
- Соболева Н.А., Меламид А.Е. Фотоэлектронные приборы. М.: Высш. школа, 1974. 376 с.
- Васильев А.Ф., Чмутин А.М. Фотоэлектрические приёмники излучения. Волгоград: ВГУ, 2010. 81 с.
- 24. Чечик Н.О., Файнштейн С.М., Лифшиц Т.М. Электронные умножители / Под ред. Д.В. Зернова. М.: ГИТТЛ, 1957. 576 с.
- Гуревич М.М. Фотометрия (теория, методы и приборы). Л.: Энергоатомиздат, 1983. 272 с.

Tarasenkov M.V., Belov V.V., Poznaharev E.S. Simulation of information transfer through atmospheric channels of scattered laser radiation propagation.

Results of simulation of the impulse response of an atmospheric optical communication channel on scattered radiation at wavelengths of 0.3, 0.5, and 0.9 μ m are considered. Our analysis shows that the maximal power of the received information-bearing signal is attained at $\lambda = 0.3 \ \mu$ m for base distances between the source and the receiving system of 2–3 km and shorter. For larger base distances and low atmospheric turbidity, the maximum is attained at $\lambda = 0.5 \ \mu$ m. When the atmospheric turbidity is high and the base distances are 3–10 km, the maximal power is observed at $\lambda = 0.5 \ \mu$ m. However, when the base distances exceed 10 km, the maximum power of information-bearing signal is attained at $\lambda = 0.9 \ \mu$ m. For a particular example of laser source and receiver system, the limiting base distance between the source and the receiver and the limiting pulse repetition frequency which is not filtered out by the communication channel are estimated using the results of calculations of the impulse response of the atmospheric communication channel at $\lambda = 0.5 \ \mu$ m.