УДК 536.631

Удельная теплоемкость гадолиний-скандий-галлиевого и кальций-ниобий-галлиевого гранатов*

Д.А. Самошкин, С.В. Станкус

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: d.a.samoshkin@gmail.com

Методом дифференциальной сканирующей калориметрии проведено экспериментальное исследование удельной теплоемкости гадолиний-скандий-галлиевого и кальций-ниобий-галлиевого гранатов, которые широко используются в лазерной технике и микроэлектронике. Получены новые экспериментальные результаты по удельной изобарной теплоемкости в интервале температур $300-1270~\rm K$, на основании которых разработаны аппроксимационные уравнения и таблица рекомендуемых значений для научного и практического использования. Проведено сопоставление с известными литературными данными. Оцениваемая погрешность полученных данных составила $2-4~\rm \%$.

Ключевые слова: гадолиний-скандий и кальций-ниобий галлиевые гранаты, удельная теплоемкость, дифференциальная сканирующая калориметрия.

Синтетические кристаллы со структурой граната наряду с традиционным использованием в квантовой электронике нашли широкое применение в различных областях науки и техники. В этой связи возникла необходимость изучения теплофизических свойств гранатов, без знания которых затруднена разработка технологии их изготовления, а также проведение инженерных расчетов при конструировании соответствующих приборов. Помимо чисто прикладного, технического применения, данные о теплофизических свойствах монокристаллов способствуют развитию теоретических представлений: они требуются при изучении особенностей механизмов передачи энергии, изменения интенсивности теплового движения в многоатомных структурных соединениях. Обзор литературы показал, что к настоящему времени существуют, видимо, две работы [1, 2], в которых исследовалась удельная теплоемкость гадолиний-скандий-галлиевого и кальций-ниобий-галлиевого гранатов в области температур, не превышающих 300 K, и практически отсутствуют данные по теплоемкости галлиевых гранатов в области температур выше 300 K за единичным исключением [3]. Но именно эта область представляет интерес при использовании гранатов в качестве функциональных элементов аппаратуры

^{*}Исследования выполнены в рамках государственного задания ИТ СО РАН (№ 121031800219-2).

[©] Самошкин Д.А., Станкус С.В., 2022

различного назначения и особенно в качестве активных элементов оптических квантовых генераторов, когда рабочие температуры могут значительно превосходить комнатные. Исходя из вышесказанного, целью настоящей работы явилось экспериментальное исследование удельной теплоемкости гадолиний-скандий и кальций-ниобий галлиевых гранатов в интервале температур 300 – 1270 К твердого состояния.

В представленной работе методом дифференциальной сканирующей калориметрии на установке DSC 404 F1 (NETZSCH) проведено измерение удельной изобарной теплоемкости (c_n) двух синтетических галлиевых гранатов. Эксперименты выполнялись на образцах гадолиний-скандий-галлиевого (ГСГГ) и кальций-ниобий-галлиевого (КНГГ) гранатов, представляющих собой монокристаллы $Gd_{3.04}Sc_{1.8}Ga_{3.16}O_{12}$ {100} и $Ca_3Nb_{1.5}$ Ga_{3.5}O₁₂ {111}. Получение монокристаллов, из которых вырезались образцы исследованных гранатов, описывалось в работе [4]. Масса образцов взвешивалась на электронных весах AND GH-252 с погрешностью не более 0,3 мг и составляла 172,73 и 114,87 мг для ГСГГ и КНГГ соответственно. Контрольные измерения массы образцов проводились непосредственно до и после экспериментов. Эксперименты по определению c_n осуществлялись в интервале температур 300-1270 К со скоростью нагрева 10 К/мин в проточной (20 мл/мин) атмосфере аргона особой чистоты (99,992 об. %). Перед проведением каждого термического цикла рабочий объем печи установки откачивался до вакуума (1 Па) и несколько раз промывался аргоном. В качестве стандарта для калибровки c_n использовался образец сапфира массой 85,28 мг. В экспериментах все исследуемые образцы гранатов и сапфир располагались в платиновых тиглях. Погрешность измерения c_n на калориметре DSC 404 F1 составляет 2-4 %, что было установлено в экспериментах с эталонными образцами высокочистой платины и сапфира.

На рис. 1 представлены данные по удельной теплоемкости ГСГГ, полученные в последовательных термических циклах нагрева—охлаждения. Эксперименты показали, что температурная зависимость удельной теплоемкости ГСГГ изменяется монотонно, аномальные изменения $c_p(T)$ отсутствуют во всем исследованном интервале температур. Из рисунка видно, что результаты экспериментов воспроизводятся между собой в пределах оцениваемой погрешности измерений. Аналогичная ситуация наблюдалась в экспериментах с образцом КНГГ. Также следует отметить, что после первого и последующих термических циклов масса исследуемых образцов гранатов не изменялась.

Рис. 1. Удельная теплоемкость ГСГГ. 1 — нагревы, 2 — охлаждения.

<i>T</i> , K	$c_p,$ Дж/(Γ ·К)				$c_p M_{\text{сред}}$,
	ΓΓΓ [5]	НГГ [5]	ГСГГ	КНГГ	Дж/(моль·К)
300	0,372	0,409	0,398	0,544	19,25
400	0,423	0,461	0,445	0,613	21,70
500	0,448	0,491	0,473	0,652	23,05
600	0,463	0,511	0,490	0,676	23,92
700	0,474	0,528	0,502	0,693	24,54
800	0,483	0,540	0,511	0,705	25,00
900	0,489	0,547	0,517	0,714	25,33
1000	0,494	0,547	0,523	0,722	25,26
1100	_	-	0,528	0,730	25,52
1200	_	-	0,533	0,738	25,78
1300	_	_	0,539	0,746	26,07

Таблица Рекомендуемые данные по удельной теплоемкости галлиевых гранатов

Оба граната в температурном интервале $300-1270~{\rm K}$ не испытывают фазовых превращений, и первичные данные по c_p хорошо аппроксимируются уравнениями типа Шомейта:

для
$$\Gamma C \Gamma \Gamma$$
: $c_p(T) = 0.6004 + 2.1 \cdot 10^{-6} T - 4.98 \cdot 10^{-8} T^2 + 3.02 \cdot 10^{-11} T^3 - 59.95 T^{-1}$; (1)

для КНГГ:
$$c_p(T) = 0.888 - 1.1 \cdot 10^{-4} T + 2.02 \cdot 10^{-8} T^2 + 1.8 \cdot 10^{-11} T^3 - 94.1 T^{-1};$$
 (2)

где c_p измеряется в Дж/(г·К), T — в К. Среднеквадратичное отклонение экспериментальных точек от аппроксимаций (1) и (2) не превышает 0,4 %. Случайная погрешность аппроксимации (при 95 % доверительной вероятности) удельной теплоемкости лежит в пределах 0,005 – 0,04 %. В таблице представлены рекомендуемые данные по c_p ГСГГ и КНГГ, полученные на основании уравнений (1) и (2).

На рис. 2 представлено сравнение экспериментальных результатов настоящей работы по c_p ГСГГ и КНГГ с известными литературными данными [1–3], а также с экспериментальными данными по c_p гадолиний-галлиевого (ГГГ, $Gd_3Ga_5O_{12}$) и неодим-гал-

Puc. 2. Сравнение результатов удельной теплоемкости галлиевых гранатов.

1-3 — соответственно результаты работ [1-3], 4, 5 — данные настоящего исследования для ГСГГ и КНГГ соответственно,

6, 7 — результаты [5] для ГГГ и НГГ соответственно.

лиевого (НГГ, $\mathrm{Nd_3Ga_5O_{12}}$) гранатов, полученными авторами настоящей работы ранее [5]. Кромс гого, из рисунка видно, что при комнатной температуре результаты работ [1] и [2] совпадают в пределах погрешности измерений с полученными авторами значениями c_p ГСГГ и КНГГ соответственно. Для КНГГ данные [3] хорошо согласуются с полученными в представленной работе результатами в интервале температур $300-360~\mathrm{K}$, однако выше $360~\mathrm{K}$ $c_p(T)$ в работе [3] начинает более резко возрастать по сравнению с настоящими данными. Тем не менее, максимальное отличие ($\sim 5~\%$) при $700~\mathrm{K}$ между результатами авторов и данными [3] не превышает пределы суммарных погрешностей измерений. Следует отметить, что для КНГГ в интервале температур $700-1270~\mathrm{K}$ и для ГСГГ выше $300~\mathrm{K}$ данные по удельной теплоемкости получены впервые.

Как видно из рис. 2, добавка примеси скандия в структуру граната в целях замещения галлия, имеющего больший молекулярный вес, а также замена гадолиния в структуре граната на неодим с меньшим молекулярным весом приводит к увеличению удельной массовой теплоемкости. Установлено, что замена редкоземельного элемента в структуре граната на кальций, имеющий существенно меньший молекулярный вес по сравнению с этим элементом, приводит к увеличению c_p на 33-46%. Таким образом, наличие примесей замещения, а также полная замена катионов металлов в додекаэдрических позициях в структуре галлиевых гранатов, которые уменьшают молекулярный вес последних, приводят к увеличению их удельной массовой теплоемкости.

Изучение гранатов позволяет проследить влияние катионного состава на значение теплофизических свойств, в том числе на теплоемкость [2, 6]. Монокристаллы исследованных гранатов отличаются друг от друга катионами металлов, расположенных в додекаэдрических позициях, и для анализа необходим обобщенный параметр, который бы учитывал замещение катионов и количественным образом отражал бы изменения состава катионов. В публикациях [2, 3] было показано, что для работы с многоатомными соединениями в твердом состоянии, в частности, галлиевыми гранатами, таким параметром при анализе тепловых характеристик может служить средний атомный вес M, равный молекулярному, деленному на число атомов в соединении. В настоящей работе, а также в исследовании [5] число атомов в каждом из соединений составляло 20. Рассмотрим произведение удельной массовой теплоемкости на средний атомный вес $(c_n M)$, которое характеризует теплоемкость N частиц соединения (N — число Авогадро). Величина $c_n M$ может быть сопоставлена с атомной теплоемкостью простых веществ. Это дает возможность оценить, насколько далека теплоемкость гранатов при данной температуре от классического насыщения, а также прогнозировать теплоемкость по среднему атомному весу. Авторами работ [2, 3] было показано, что для однотипных веществ со сходным типом связи c_p обратно пропорциональна M, а среднеатомная теплоемкость $c_p M$ является приблизительно постоянной величиной в пределах рассматриваемого кристаллохимического класса при одинаковых термодинамических условиях.

Изложенные выше выводы подтверждаются результатами настоящей работы. На рис. 3 представлена зависимость $c_p M(T)$ исследуемых галлиевых гранатов. Согласно графику, $c_p M$ представляет собой постоянную величину при заданной температуре с отклонением от среднего, не превышающим 5 %. Это является следствием близости их характеристических температур, обусловленных идентичностью структуры. При этом для ГГГ, ГСГГ и КНГГ во всем исследованном интервале температур, а также для НГГ в интервале $300-650~{\rm K}$ отклонение от среднего значения среднеатомной теплоемкости $c_p M_{\rm сред}$, взятого по всем четырем гранатам (кривая 5 на рис. 3), не превышает пределов погрешности измерений. Максимальное отклонение $4-5~{\rm %}~c_p M_{\rm сред}$ от $c_p M$ достигается

Puc. 3. Среднеатомная теплоемкость галлиевых гранатов.

$$1 - \Gamma \Gamma \Gamma, 2 - \Pi \Gamma \Gamma, 3 - \Gamma \Gamma \Gamma \Gamma, 4 - \Pi \Gamma \Gamma,$$
 5 — зависимость $c_p \, M_{\rm cpeq}.$

для граната НГГ в интервале 650-1000 К. В таблице приведены значения $c_p M_{\rm сред}$ при заданной температуре, рассчитанные для интервала 300-1300 К. Из рис. З видно, что значения $c_p M$ в области высоких температур 700-1300 К достигают классического насыщения для решеточной теплоемкости твердых тел (25 Дж/(моль·К)). При нормальных температурах (300 K) величина $c_p M_{\rm сред}$ составляет 19,25 Дж/(моль·К) и совпадает с результатами работ [2, 3]. Никаких особенностей в температурном поведении теплоемкости синтетических гранатов, противоречащих представлениям теории теплоемкости твердого тела, не обнаружено.

Рисунок 4 демонстрирует зависимость удельной массовой теплоемкости исследованных галлиевых гранатов от среднего атомного веса $c_p(M)$ при температуре 300 К. Из графика видно, что c_p является обратно пропорциональной величиной от M. Полученные значения c_p гранатов при 300 К в пределах погрешности измерения укладываются на кривую $c_p = 19,25 \cdot M^{-1}$. Похожее поведение $c_p(M)$ также наблюдается при других температурах из интервала 300-1300 К. При этом удельная теплоемкость галлиевых гранатов при заданной температуре будет описываться уравнением $c_p = c_p M_{\rm cpell}(T) \cdot M^{-1}$.

Таким образом, получены новые экспериментальные данные по удельной теплоем-кости гадолиний-скандий и кальций-ниобий галлиевых гранатов в интервале температур 300-1270 K, причем для КНГГ в интервале температур 700-1270 K и для ГСГГ выше 300 K они получены впервые. Проведено сравнение экспериментальных результатов с ли-

тературными данными. Показана возможность прогнозировать теплоемкость синтетических гранатов схожего кристаллохимического класса по среднему атомному весу (по составу кристалла) в интервале температур 300 – 1300 К.

 $Puc.\ 4.$ Зависимость удельной теплоемкости галлиевых гранатов от среднего атомного веса. I — зависимость $c_p(M)$ при 300 K, 2 - уравнение $c_p = 19,25\ M^{-1}.$

Список литературы

- Krupke W.F., Shinn M.D., Marion J.E., Caird J.A., Stokowski S.E. Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet // J. Optic. Soc. Amer. B. 1986. Vol. 3, No. 1. P. 102–114.
- 2. Осико В.В., Петрунин Г.И., Попов В.Г., Тимошечкин М.И. Влияние химического состава на теплофизические характеристики галлиевых гранатов // Докл. АН СССР. 1989. Т. 309, № 1. С. 92–96.
- 3. Петрунин Г.И., Попов В.Г., Тимошечкин М.И. Температурные зависимости теплоемкости, температуропроводности и теплопроводности галлиевых гранатов (300–700 K) // Теплофизика высоких температур. 1989. Т. 27, № 6. С. 1097–1102.
- **4. Stankus S.V., Khairulin R.A., Tyagel'sky P.V., Ivanov I.A.** Crystallization and thermal properties of rare earth gallium garnets // J. of Alloys and Compounds. 1995. Vol. 225, No. 1–2. P. 220–224.
- Samoshkin D.A., Stankus S.V. Heat capacity of neodymium- and gadolinium-gallium garnets // J. of Physics: Conf. Series. 2020. Vol. 1677. P. 012175-1-012175-4.
- **6.** Жариков Е.В., Китаева В.Ф., Осико В.В., Рустамов И.Р., Соболев Н.Н. Упругие, фотоупругие и теплофизические характеристики гадолиний-скандий-галлиевого граната // Физика твердого тела. 1984. Т. 26, № 5. С. 1517—1519.

Статья поступила в редакцию 13 июня 2022 г., после обработки— 4 июля 2022 г., принята к публикации 2 сентября 2022 г.