2010. Том 51, № 1

Январь – февраль

C. 201 – 204

КРАТКИЕ СООБЩЕНИЯ

УДК 548.73:541(14+49+64):535.37

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ЛЮМИНЕСЦЕНЦИЯ МЕТАКРИЛАТА ТЕРБИЯ (III)

© 2010 Б.В. Буквецкий¹, Н.В. Петроченкова², А.Г. Мирочник^{1*}

¹Институт химии ДВО РАН, Владивосток

²Морской государственный университет им. Г.И. Невельского, Владивосток

Статья поступила 17 февраля 2009 г.

Методом рентгеноструктурного анализа определена атомная структура люминесцирующего метакрилата тербия (сингония ромбическая, a = 14,791(1), b = 12,9306(8), c = 7,6869(5) Å, пр. гр. $Cmc2_1$, Z = 4, $\rho_{\rm выч} = 1,867$ г/см³). Структура кристаллов представлена бесконечными цепями из молекул $C_{12}H_{15}TbO_6$ в направлении кристаллографической оси c, связанных ван-дер-ваальсовым взаимодействием.

Ключевые слова: кристаллическая структура, тербий(III), метакрилат, люминесценция.

Полимеризацей металлсодержащих мономеров (MCM) получают новые практически значимые продукты — полимеры, каждое повторяющееся звено которых содержит эквивалент металла. Это приводит к улучшению многих свойств полимеров и композиций на их основе и возникновению новых свойств [1]. Сведения о синтезе и полимеризации лантанидсодержащих мономеров на основе непредельных кислот немногочисленны [2—4]. Возможность гомои сополимеризации MCM Ln(III) позволяет получить светотрансформирующие полимеры с заданными свойствами, отличающимися от свойств низкомолекулярных аналогов [5, 6]. В связи с тем, что данные по пространственному строению макромолекулярных комплексов (MMK) крайне ограничены, изучение строения MMK и исходных MCM крайне актуально.

Настоящая работа является продолжением исследований взаимосвязи строения и люминесцентных свойств солей РЗЭ с непредельными кислотами [7] и посвящена определению кристаллической структуры метакрилата тербия(III) Tb(Macr)₃ и исследованию его спектрально-люминесцентных свойств.

Экспериментальная часть. Метакрилат тербия получали растворением свежеприготовленного гидроксида Tb(III) в метакриловой кислоте согласно методике [8] с последующим упариванием полученных растворов на водяной бане. По данным элементного анализа: вычислено/найдено, %: C, H, Tb для Tb(Macr)₃: 34,78/34,92, 3,63/3,63, 38,41/38,79. В итоге метакрилат Tb(III) получен в виде мелких кристаллов, растворимых в воде и полярных органических растворителях.

Спектры люминесценции при температуре 77 К регистрировали на спектрометре СДЛ-1, источником возбуждения служила лампа ДРШ-250, фильтр УФС-6 ($\lambda_{возб} = 365$ нм).

Для рентгеноструктурного исследования использовали изометричную часть прозрачного бесцветного монокристалла игольчатой формы. Полное рентгеноструктурное исследование проведено в системе SMART-1000 CCD фирмы Bruker. Сбор, редактирование данных и уточнение параметров элементарной ячейки проведены по программам [9]. Структура определена прямым методом с последующим уточнением позиционных и тепловых параметров в анизотропном приближении для всех неводородных атомов по программам [10]. Положения атомов

^{*} E-mail: mirochnik@ich.dvo.ru

Таблица 1

Кристаллографические данные, характеристики рентгендифракционного эксперимента
и детали уточнения структуры I

Параметр	Значение				
Формула	C ₁₂ H ₁₅ TbO ₆				
Молекулярная масса	413,15				
Температура, К	293(2)				
Длина волны, Å	$MoK_{\alpha}(0,71073)$				
Пространственная группа	$Cmc2_1$				
<i>a</i> , <i>b</i> , <i>c</i> , Å	14,791(1), 12,9306(8), 7,6869(5)				
Ζ	4				
$ρ_{\rm выч}$, $Γ/cm^3$	1,867				
μ, мм ⁻¹	4,827				
<i>F</i> (000)	796				
Размер кристалла, мм	$0,24 \times 0,21 \times 0,20$				
Область сбора данных по θ , град.	3,15—32,54				
Интервалы индексов отражений	$-16 \le h \le 22, -19 \le k \le 19, -11 \le l \le 11$				
Измерено отражений	9117				
Независимых отражений	2652 ($R_{\rm int} = 0,0418$)				
Отражений с $I > 2\sigma(I)$	2288				
Поглощение	По индексам огранки кристалла				
Метод уточнения	Полноматричный МНК по F^2				
Переменных уточнения	100				
S	0,958				
R -факторы по $I > 2\sigma(I)$	$R1 = 0,0269, \ wR2 = 0,0593$				
<i>R</i> -факторы по всем отражениям	R1 = 0,0342, wR2 = 0,0610				
Коэффициент экстинкции	0,0000(2)				
Остаточная эл. пл. min/max), e/Å ³	-0,562/1,691				

водорода хотя и выявились на заключительных синтезах электронной плотности, однако не определили принципиальной новизны и для дальнейшей работы использовались расчетные и уточненные по модели "наездника".

Основные кристаллографические параметры исследуемого образца, характеристики рентгеновского дифракционного эксперимента и детали уточнения модели структуры методом наименьших квадратов приведены в табл. 1, а основные межатомные расстояния и валентные углы — в табл. 2.

Т	a	б	Л	И	ц	a	2

Связь	<i>d</i> , Å	Связь	d, Å	Угол	ф, град.	Угол	ф, град.		
Tb—O(4)	2,299(4)	Tb—O(2)	2,360(3)	$O(4)$ —Tb— $O(1)^1$	77,0(1)	O(3)—Tb—O(2)	78,4(1)		
Tb—O(3)	2,302(4)	$Tb-O(2)^{3}$	2,360(3)	$O(3)$ —Tb— $O(1)^{1}$	77,7(1)	$O(3)$ —Tb— $O(2)^{3}$	78,4(1)		
$Tb-O(1)^1$	2,342(4)	Tb—O(1)	2,642(5)	$O(4)$ —Tb— $O(1)^2$	77,0(1)	O(2)—Tb—O(1)	51,4(1)		
$Tb-O(1)^2$	2,342(4)	$Tb-O(1)^{3}$	2,642(5)	$O(3)$ —Tb— $O(1)^2$	77,7(1)	$O(4)$ —Tb— $O(1)^3$	75,3(1)		
		Tb—Tb ¹	4,0107(3)	$O(1)^{1}$ —Tb— $O(1)^{2}$	77,0(2)	$O(2)^{3}$ —Tb— $O(1)^{3}$	51,4(1)		
						$O(1)$ —Tb— $O(1)^3$	67,0(2)		

Основные длины связей и валентные углы в структуре Tb(Macr)₃

Примечание. Симметричные преобразования: ¹ -*x*+2, -*y*+2, *z*+1/2; ² *x*, -*y*+2, *z*+1/2; ³ -*x*+2, *y*, *z*; ⁴ -*x*+2, -*y*+2, *z*-1/2.

Рис. 1. Фрагмент структуры полимерной цепи метакрилата тербия

CIF файл, содержащий полную информацию по исследованной структуре, был депонирован в ССDС под номером 714680, откуда может быть свободно получен по запросу на следующем интернет-сайте: www.ccdc.cam.ac.uk/data request/cif

Результаты и их обсуждение. Атомная структура кристаллов метакрилата тербия представлена бесконечными цепями из молекул C₁₂H₁₅TbO₆ в направлении кристаллографической оси с. В трехмерный каркас бесконечные цепи шахматным порядком связаны ван-дер-ваальсовым взаимодействием. Координационный полиэдр тербия представлен двухшапочной тригональной призмой состава [TeO₈] (КЧ 8) из атомов кислорода в ее вершинах от метакрилатионов. Шесть таких ионов (от двух кристаллографически независимых) вокруг атомов тербия образуют бесконечную цепочку связанных по общим ребрам искаженных двухшапочных тригональных призм. Метакрилат-ионы, координированные атомами европия, выполняют разные структурные функции: один из кислотных остатков — бидентатно-мостиковый лиганд, а два других выполняют тридентатно-мостиково-циклическую функцию (рис. 1). Расстояние Tb-Tb в цепи равно 4,011(3) Å. Ближайшие расстояния Tb—Tb до четверки соседних цепей метакрилата тербия составляют 9,823 Å.

Для иона Tb³⁺ (4*f*⁸-конфигурация) спектроскопические свойства в основном определяются переходами $4f^8 \rightarrow 4f^75d$. При облучении ультрафиолетовым светом у метакрилата Tb^{3+} наблюдается зеленая люминесценция ($\lambda_{\text{макс}} = 545 \text{ нм}$). ${}^{5}D_{4} - {}^{7}F_{5}$ Спектр люминесценции Тb(Macr)₃ по характеру расщепления полос и интенсивностей переходов ${}^{5}D_{0}$ — ${}^{7}F_{i}$ существенно не отличается от спектров люминесценции известных моноядерных соединеед. ний (рис. 2). Исследуемый метакрилат тербия обла-OTH. дает относительно низкой интенсивностью люминесценции. Исследование атомной структуры со- $^{5}D_{4}$ единения показало, что этому способствуют два

Рис. 2. Спектры люминесценции метакрилата тербия(III) при 77 К

фактора. С одной стороны, спектры возбуждения люминесценции исследуемого метакрилата Tb^{3+} в области 300—400 нм представляют собой набор узких дискретных линий, соответствующих внутриконфигурационным *f*—*f*-переходам, что свидетельствует об отсутствии переноса энергии возбуждения с уровней кислоты на резонансные уровни металла [8]. С другой стороны, полимерное строение метакрилата тербия (см. рис. 1) способствует диссипации энергии электронного возбуждения по цепи молекулы.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 07-03-00761).

СПИСОК ЛИТЕРАТУРЫ

- 1. Помогайло А.Д., Савостьянов В.С. Металлсодержащие мономеры и полимеры на их основе. М.: Химия, 1988.
- 2. *Dzhardimalieva G.U, Selenova B.S., Pomogailo A.D.* // Тезисы докл.: Nontraditional methods of synthesis: International school-seminar for young scientists 26 March—6 April 1990. Alma-Ata, 1990. P. 165.
- 3. Wu S.Z., Wu Y.F., Zeng F. et al. // Macromol. Rapid Com. 2006. 27. P. 937.
- 4. Zhang Q. // J. Polym. Sci.: Polym. Phys. 1997. 35B. P. 101.
- 5. Yang M., Ling Q., Hiller M. et al. // Ibid. 2000. **38A**. P. 3405
- 6. Wang D., Zhang J., Lin Q. et al. // J. Mater. Chem. 2003. 13. P. 2279.
- 7. Петроченкова Н.В., Буквецкий Б.В., Мирочник А.Г. и др. // Координац. химия. 2002. 28, № 1. С. 67.
- 8. Мирочник А.Г., Петроченкова Н.В., Карасев В.Е. // Высокомол. соед. 1999. 41А, № 10. С. 1642.
- Bruker SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART Sistem. Bruker AXS Inc., Madison, Wisconsin, USA (1998).
- 10. *Sheldrick G.M.* SHELXTL/PC. Versions 5.10. An Integrated System for Soling, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA (1998).

204