2010. Том 51, № 2

Март – апрель

C. 301 – 308

УДК 54.057:547.386:548.312.6

СТРОЕНИЕ КОМПЛЕКСОВ Ni(II), Pd(II) и Cu(II) С 1,2-БИС(5,5,5-ТРИФТОР-4-ОКСОПЕНТ-2-ЕН-2-АМИНО)БЕНЗОЛОМ

© 2010 Д.Л. Чижов, Е.Ф. Хмара*, П.А. Слепухин, В.И. Филякова, В.Н. Чарушин

Институт органического синтеза им. И.Я. Постовского УрО РАН, Екатеринбург

Статья поступила 26 марта 2009 г.

Методом РСА впервые структурно охарактеризованы новый фторсодержащий тетрадентатный лиганд 1,2-*бис*(5,5,5-трифтор-4-оксопент-2-ен-2-амино)бензол и его комплексы с Ni(II), Pd(II) и Cu(II). Установлено, что енаминокетонные фрагменты лиганда эквивалентны по величине длин связей и валентных углов, являются практически плоскими и развернуты на 51,3° в противоположные стороны относительно плоскости бензольного кольца. Структуры комплексов Ni(II), Pd(II) и Cu(II) подобны и имеют седловидную конфигурацию. Ионы металлов имеют плоскоквадратную координацию и находятся почти в центре квадрата N₂O₂. Средние расстояния М—N превышают М—O для комплексов Ni(II) и Cu(II) на 0,014 и 0,034 Å соответственно, тогда как для комплекса Pd(II) М—O больше, чем М—N, на 0,029 Å. Средний угол N—M—O хелатного центра в комплексах составляет: N—Ni—O 95,12°; N—Pd—O 95,68°; N—Cu—O 93,88°.

Ключевые слова: комплексы Ni(II), Pd(II) и Cu(II), 1,2-бис(5,5,5-трифтор-4-оксопент-2-ен-2-амино)бензол, синтез, PCA.

введение

Развитие координационной химии во многом обусловлено как синтезом новых типов лигандов, так и модификацией известных лигандных систем, например оснований Шиффа [1, 2]. Введение в их молекулы разнообразных функциональных групп дает возможность не только получать координационные соединения с различными металлами, но и широко варьировать их свойства. В частности, комплексы 3*d*-металлов и тетрадентатных N₂O₂-оснований Шиффа, относительно легко получаемых конденсацией 1,3-дикетонов или салициловых альдегидов с замещенными диаминами, зарекомендовали себя в качестве эффективных катализаторов [3—7] и моделей металлоферментов [8, 9]. В последнее время возрос интерес к подобным комплексам благодаря их способности участвовать в различных типах межмолекулярных взаимодействий, что нашло применение в синтезе гетеробиметаллических структур [10—15]. Использование в качестве соединительного звена *орто*-фенилендиамина (o-ФДА) приводит к лигандам, комплексы которых проявляют специфические оптические [16, 17] и рецепторные [18—21] свойства.

Введение атомов фтора (или фторалкильных заместителей) в лиганды значительно изменяет распределение электронной плотности и влияет на их физические и химические свойства. Стабильность, липофильность, летучесть и льюисовская кислотность комплексов фторированных лигандов с ионами переходных металлов, как правило, существенно изменяются по сравнению с их нефторированными аналогами. Фторсодержащие 1,3-дикетоны и их комплексы в полной мере демонстрируют примеры такого влияния [22—25].

^{*} E-mail: efkhmara@ios.uran.ru

Фторсодержащие тетрадентатные N₂O₂-основания Шиффа с алкильными N,N'-связывающими фрагментами относительно легко получаются из фторсодержащих 1,3-дикетонов [22, 26]. Хорошо известны также комплексы Cu(II), Ni(II), Co(II) с основаниями Шиффа, полученными конденсацией ацетил- и бензоилацетонов, а также трифторацетилацетона с этилен-, пропилен-, три-, тетра- и пентаметилендииминами, 1,3-диимин-2-пропанолом и 2,2'-дииминодиэтиламином [26, 27]. Однако фторсодержащие лиганды с ароматическими N,N'-связывающими фрагментами на основе *о*-ФДА до последнего времени описаны не были, что обусловлено преобладающими реакциями гетероциклизации и распада при прямом взаимодействии фторсодержащих 1,3-дикетонов с *о*-ФДА [22, 23].

Недавно взаимодействием фторсодержащих β-алкоксиенонов с *о*-ФДА нами был получен ряд фторсодержащих тетрадентатных N₂O₂-оснований Шиффа с ароматическим N,N'-связывающим фрагментом [28]. В литературе имеется два сообщения о получении таких лигандов взаимодействием трифторацетилацетона [29] и тиенилтрифторацетона [30] с *о*-ФДА, в которых, однако, не приведены доказательства состава и строения полученных продуктов.

В настоящей работе методом PCA установлены особенности строения тетрадентатного 1,2*бис*(5,5,5-трифтор-4-оксопент-2-ен-2-амино)бензола 1 и его комплексов с Ni(II), Cu(II) и Pd(II) **2а—с**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуру плавления определяли на комбинированных столиках Boetius и не корректировали. Спектры ЯМР ¹H, ¹⁹F зарегистрированы на спектрометре Bruker DRX-400 (400 МГц), растворитель CDCl₃, внутренние стандарты — Me₄Si, C₆F₆. Элементный анализ выполнен на автоматическом анализаторе Perkin Elmer PE-2400. ИК спектры зарегистрированы на ИК Фурье спектрометре Spectrum One B Perkin Elmer с использованием приставки диффузного отражения. РСА соединений проведен на автоматическом четырехкружном рентгеновском дифрактометре Xcalibur 3 с CCD-детектором при 295(2) К, (λ Mo K_{α} , графитовый монохроматор, ω -сканирование, шаг сканирования 1°). Поправка на поглощение для соединения 1 не вводилась, для остальных соединений введена аналитически по модели многогранного кристалла. Структуры соединений были расшифрованы прямым методом и уточнены с помощью пакета программ SHELX-97 [31] в анизотропном (изотропном для атомов водорода) приближении. Атомы водорода добавлены в геометрически рассчитанные положения и включены в уточнение в модели наездника с зависимыми тепловыми параметрами, за исключением атомов водорода NH-групп соединения 1, которые решены прямым методом и уточнены независимо в изотропном приближении. Результаты рентгеноструктурных исследований зарегистрированы в Кембриджском центре кристаллографических данных под номерами CCDC No 727803-727806. Эти материалы свободном доступе могут быть запрошены находятся В И по адресу www.ccdc.cam.ac.uk/data request/cif. Основные параметры структурных экспериментов приводятся в табл. 1.

Соединение 1 получено по известной методике [28]. Комплексы, рассматриваемые в данной работе, получены по схеме:

Синтез комплекса 2a. К раствору Ni(CH₃COO)₂·4H₂O (0,131 г, 0,52 ммоль) в 10 мл метанола приливали раствор 1 (0,200 г, 0,52 ммоль) в метаноле. Образовавшийся осадок отфильтровывали, промывали дистиллированной водой, сушили на воздухе. Получили 0,190 г кристаллического порошка 2a темно-бордового цвета, выход 83 %.

Таблица 1

Поралотр	Соединение				
Параметр	1	2a	2b	2c	
Состав	C ₁₆ H ₁₄ F ₆ N ₂ O ₂	C ₁₆ H ₁₂ F ₆ O ₂ N ₂ Ni	$C_{16}H_{12}F_6N_2O_2Pd$	C ₁₆ H ₁₂ F ₆ N ₂ O ₂ Cu	
М, г/моль	380,29	436,96	484,69	441,82	
Сингония кристалла	Моноклинная	Моноклинная	Моноклинная	Моноклинная	
Пространственная группа	C2/c	$P2_1/n$	$P2_1/n$	C2/c	
Параметры элементарной ячейки					
<i>a</i> , Å	12,4797(7)	11,4971(9)	11,4565(17)	20,485(7)	
b, Å	12,2941(8)	12,4789(12)	12,3378(16)	11,5724(15)	
<i>c</i> , Å	10,8596(6)	11,6824(12)	11,8585(12)	16,069(5)	
в, град.	92,159(5)	93,041(7)	93,053(10)	116,632(9)	
$V, Å^3$	1664,97(17)	1673,7(3)	1673,8(4)	3405,3(16)	
Z	4	4	4	8	
$d_{\rm result}$, Γ/cm^3	1,517	1,734	1,923	1,724	
μ , MM ⁻¹	0,146	1,237	1,186	1,359	
Т, К	295(2)	295(2)	295(2)	295(2)	
Размер, мм	0,38×0,27×0,18	0,51×0,42×0,28	0,19×0,10×0,05	0,23×0,09×0,006	
Цвет кристалла	Бесцветный	Бордовый	Розовый	Темно-зеленый	
Форма кристалла	Призма	Призма	Призма	Призма	
Число измер. / независ. отражений	8035 / 2729	24776 / 5273	12003 / 4144	8557 / 3408	
R _{int}	0,027	0,0273	0,0428	0,0383	
Число отражений с $I > 2\sigma(I)$	1045	3454	2323	1969	
Число уточняемых параметров	126	268	244	245	
R_1 (по всем отражениям)	0,1252	0,0564	0,0724	0,0831	
wR (по всем отражениям)	0,1005	0,0876	0,0523	0,0694	
$R_1 (\text{no } I > 2\sigma(I))$	0,0454	0,0333	0,0316	0,0361	
wR (no $I > 2\sigma(I)$)	0,0945	0,0837	0,0503	0,0644	
Добротность (S)	1,005	1,000	1,010	1,001	
Величины остаточных пиков на карте электронной плотности, е/Å ³	0,224 / -0,207	0,498 / -0,302	0,609 / -1,014	0,360 / -0,352	
Полнота эксперимента (0, град.)	0,981 (26,50)	0,995 (26,00)	0,996 (28,28)	0,976 (26,38)	

Кристаллографические данные и параметры рентгеноструктурных экспериментов

 $C_{16}H_{12}F_6N_2O_2Ni; M$ 436,96; T_{nn} = 284 °C. Вычислено, %: C 43,98, H 2,77, F 26,09, N 6,41. Найдено, %: C 44,10, H 2,78, F 26,10, N 6,33. ¹H ЯМР (δ , м.д.), CDCl₃: 2,41 (c, 6H, 2CH₃), 5,72 (c, 2H, 2 =CH—), [6,94—6,96 (м, 2H), 7,13—7,15 (м, 2H) C₆H₄]. ¹⁹F ЯМР (δ , м.д.), CDCl₃: 89,31 (c, CF₃). ИК спектр (см⁻¹): 3073, 3027 (v_{CH} бензольного кольца); 2926 (v_{CH}, CH₃); 1607, 1597, 1577, 1511, 1489 (v_{CC} бензольного кольца и v_{O=C—C=C}); 1462, 1376 (δ _{CH}, CH₃); 1368, 1301, 1256, 1183 (v_{CF}).

Синтез комплекса 2b. К охлажденному до 0 °C раствору $Pd_3(CH_3COO)_6$ (0,059 г, 0,26 ммоль) в CH₃CN медленно прибавляли охлажденный раствор 1 (0,100 г, 0,26 ммоль) в CH₃CN. Реакционную массу выдерживали при 0 °C в течение 5 мин, после чего оставляли при комнатной температуре на 2 ч. Образовавшиеся кристаллы 2b отфильтровывали, промывали ацетонитрилом, сушили на воздухе. Получили 0,103 г кристаллов оранжевого цвета, выход 81 %.

С₁₆H₁₂F₆N₂O₂Pd; *M* 484,69; *T*_{пл} = 330—331 °С. Вычислено, %: С 39,65, Н 2,49, F 23,52, N 5,78. Найдено, %: С 39,65, Н 2,29, F 23,49, N 5,73. ¹Н ЯМР (δ , м.д.), CDCl₃: 2,57 (c, 6H, 2CH₃),

Таблица 2

1	1	2	a	2	b	2c	
Связь	d	Связь	d	Связь	d	Связь	d
C1—C1#1	1,387(3)	Ni1—N1	1,8746(13)	Pd1—N1	1,970(2)	Cu1—N1	1,940(2)
C1—C2	1,385(2)	Ni1—N2	1,8699(14)	Pd1—N2	1,970(2)	Cu1—N1A	1,948(2)
C2—C3	1,370(2)	Ni1—01	1,8575(12)	Pd1—O1	1,9987(19)	Cu1—O1	1,909(2)
C3—C3#1 C1—N1	1,369(3) 1,4208(19)	Ni1—O2 O1—C2	1,8588(12) 1,287(2)	Pd1—O2 O1—C2	1,9994(18) 1,282(3)	Cu1—01A 01—C2	1,909(2) 1,911(2) 1,285(3)
N1—C4	1,3350(18)	C2—C3	1,353(2)	C2—C3	1,370(4)	C2—C3	1,359(4)
C4—C8	1,4946(19)	C4—C3	1,421(2)	C4—C3	1,411(4)	C4—C3	1,428(4)
C5—C4	1,383(2)	N1—C4	1,319(2)	N1—C4	1,324(4)	N1—C4	1,311(3)
C5—C6	1,390(2)	O2—C13	1,284(2)	O2—C15	1,293(3)	O1A—C2A	1,290(3)
C6—C7	1,524(2)	C13—C14	1,358(3)	C15—C14	1,351(4)	C2A—C3A	1,353(4)
O1—C6	1,2352(16)	C14—C15	1,420(3)	C14—C13	1,427(3)	C3A—C4A	1,419(4)
N1—H1	0,804(15)	N2—C15	1,324(2)	N2—C13	1,324(3)	N1A—C4A	1,315(3)

Длины связей d, Å

Примечание. Симметрийные преобразования: #1 - x, y, -z + 3/2.

5,68 (с, 2H, 2 =CH—), [7,06—7,08 (м, 2H), 7,34—7,36 (м, 2H) C₆H₄]. ¹⁹F ЯМР (δ, м.д.), CDCl₃: 90,62 (с, CF₃). ИК спектр (см⁻¹): 3060, 3016 (v_{CH} бензольного кольца); 2991, 2925 (v_{CH}, CH₃); 1598, 1576, 1506, 1486 (v_{CC} бензольного кольца и v_{O=C—C=C}) 1459, 1371 (δ_{CH}, CH₃); 1295, 1260, 1183 (v_{CF}).

Синтез комплекса 2с. По методике синтеза комплекса 2а из 0,300 г (0,79 ммоль) 1 и 0,189 г (0,95 ммоль) Сu(CH₃COO)₂·H₂O получили 0,323 г кристаллического порошка темнозеленого цвета, выход 93 %.

 $C_{16}H_{12}F_6N_2O_2Cu; M$ 441,82; $T_{nn} = 245$ °C (разл.). Вычислено, %: С 43,49, Н 2,74, F 25,80, N 6,34. Найдено, %: С 43,50, Н 2,74, F 26,22, N 6,19. ИК спектр (см⁻¹): 3077,2 (v_{CH} бензольного кольца); 2990 (v_{CH}, CH₃); 1608, 1597, 1581, 1514, 1489 (v_{CC} бензольного кольца и v_{O=C—C=C}); 1460, 1375 (δ_{CH} , CH₃); 1364, 1308, 1281, 1259, 1174 (v_{CF}).

Длины связей соединений 1 и 2а—с приведены в табл. 2.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структура 1,2-*бис*(5,5,5-трифтор-4-оксопент-2-ен-2-амино)бензола **1** по данным РСА (рис. 1) характеризуется полной эквивалентностью енаминокетонных фрагментов по значениям длин связей и валентных углов: в кристалле молекула расположена в частной позиции на оси вращения второго порядка.

Енаминокетонный фрагмент имеет U-конфигурацию и является практически плоским ($\Delta_{max} = 0,033$ Å), что обусловлено наличием сопряжения двойных связей во фрагменте O1=C6— C5=C4 и внутримолекулярной водородной связи N1—H1...O1 (N1—O1 2,678 Å, H1—O1 1,992 Å, угол N1—H1—O1 143,11°). Плоскости енаминокетонных фрагментов развернуты относительно плоскости бензольного кольца ($\Delta_{max} = 0,021$ Å) под углом 51,3°.

Молекулы комплексов Ni(II), Pd(II) и Cu(II) имеют схожую между собой геометрию, отличную от геометрии лиганда 1 (рис. 2—4).

Введение металла в структуру приводит к развороту енаминокетонных фрагментов относительно плоскости бензольного кольца, в результате чего образуется комплекс седловидной конфигурации (рис. 5).

Фрагмент N₂O₂ металлокомплексов является почти плоским (**2a**: $\Delta_{max} = 0,028$ Å; **2b**: $\Delta_{max} = 0,015$ Å; **2c**: $\Delta_{max} = 0,022$ Å), при этом ионы металла находятся практически в центре плоскости

Рис. 1. Структура 1 по данным РСА в тепловых эллипсоидах 50%-й вероятности

Рис. 3. Структура **2b** по данным РСА в тепловых эллипсоидах 50%-й вероятности

Рис. 2. Структура 2а по данным РСА в тепловых эллипсоидах 50%-й вероятности

Рис. 4. Структура **2с** по данным РСА в тепловых эллипсоидах 50%-й вероятности

 N_2O_2 и имеют плоскоквадратную координацию. Для комплексов **2а—с** характерно отклонение плоскости бензольного кольца от плоскости N_2O_2 в противоположную сторону по сравнению с енаминокетонными фрагментами. Величины углов этих отклонений лежат в пределах 20—30° (см. табл. 3).

Структуры лиганда 1 и комплекса 2а подобны соответствующим структурам нефторированного 1,2-*бис*(4-фенил-4-оксобут-2-ен-2-амино)бензола и его Ni(II) комплекса [32]. Следует отметить, что в комплексах 2а-с связи N1—С4 и С2—С3 короче, а связи С4—С3 и O1—С2 длиннее соответствующих связей в исходном лиганде и соответствуют длинам связей иминоенолятной формы (см. табл. 2).

Упаковка молекул соединения 1 характеризуется наличием укороченных межмолекулярных полярных контактов между фрагментом $C_{sp}^{2}H$ енаминокетона и кислородом карбониль-

ной группы C5—H5...O1 [-*x*, 1-*y*, 1-*z*] (H5...O1 2,482 Å; угол C5—H5—O1 170,95°), которые выстраивают молекулы лиганда в виде цепей вдоль оси *с* (рис. 6).

В комплексах **2a**, **b** также реализуются укороченные полярные контакты между CH-кислотным фрагментом енолята и кислородом (**2a**: C3—H3...O2 [0,5-x, -0,5+y, 0,5-z], **2b**: C14—H14a...O1 [0,5-x, -0,5+y, 1,5-z]), однако вовлече-

Таблица З

Некоторые валентные углы α, град.						
Угол	α	Угол	α	Угол	α	
O1—C6—C5	127,08(14)	N1—C4—C5	120,63(13)	C1—N1—H1	120,1(11)	
С5—С6—С7	116,54(12)	C5—C4—C8	119,77(13)	C4—N1—C1	127,89(13)	
C4—C5—C6	123,19(13)	C4—N1—H1	111,5(11)	C1#1—C1—N1	118,61(8)	
2a						
O1—Ni1—N2	176,84(6)	O1—C2—C3	128,05(16)	C3—C4—C5	114,92(16)	
O2—Ni1—N1	179,47(6)	O2—C13—C14	127,89(16)	C4—N1—Ni1	124,73(11)	
O1—Ni1—N1	95,31(5)	C3—C2—C1	119,02(16)	C15—N2—Ni1	124,23(12)	
O2—Ni1—N2	94,93(6)	C14—C13—C12	119,23(16)	C4—N1—C11	123,71(14)	
N2—Ni1—N1	85,50(6)	C2—C3—C4	124,17(16)	C15—N2—C11	123,90(14)	
01—Ni1—O2	84,25(5)	C13—C14—C15	123,84(16)	C6—N1—Ni1	111,20(11)	
C2—O1—Ni1	122,28(11)	N1—C4—C3	120,91(16)	C11—N2—Ni1	111,44(11)	
C13—O2—Ni1	122,51(11)	N2-C15-C14	120,87(16)	C11—C6—1	113,22(15)	
		C14—C15—C16	115,37(17)	C6—C11—N2	113,74(14)	
		2b				
N2—Pd1—O1	178,06(9)	O1—C2—C3	129,4(3)	C14—C13—C12	114,6(3)	
N1—Pd1—O2	176,54(9)	O2—C15—C14	129,7(3)	C4—N1—Pd1	122,42(19)	
N1—Pd1—O1	95,58(9)	C3—C2—C1	118,7(3)	C13—N2—Pd1	123,27(19)	
N2—Pd1—O2	95,79(9)	C14—C15—C16	119,3(3)	C4—N1—C6	125,7(2)	
N1—Pd1—N2	83,38(10)	C2—C3—C4	127,9(3)	C13—N2—C11	124,9(2)	
O1—Pd1—O2	85,15(8)	C15—C14—C13	128,6(3)	C6—N1—Pd1	111,38(19)	
C2—O1—Pd1	118,91(18)	N1—C4—C3	121,8(3)	C11—N2—Pd1	111,40(18)	
C15—O2—Pd1	118,36(18)	N2-C13-C14	121,1(3)	C11—C6—N1	115,1(2)	
		C3—C4—C5	115,1(3)	C6-C11-N2	115,3(2)	
2c						
O1—Cu1—N1A	177,09(9)	O1A—C2A—C3A	128,9(3)	C4—N1—Cu1	124,56(19)	
O1A—Cu1—N1	177,42(9)	C3—C2—C1	119,2(3)	C4A—N1A—Cu1	124,4(2)	
O1—Cu1—N1	94,26(9)	C3A—C2A—C1A	119,1(3)	C4—N1—C6	125,1(3)	
O1A—Cu1—N1A	93,49(9)	C2—C3—C4	125,0(3)	C4A—N1A—C6A	125,3(3)	
N1—Cu1—N1A	83,93(10)	C2A—C3A—C4A	126,2(3)	C6—N1—Cu1	110,11(19)	
O1—Cu1—O1A	88,31(8)	N1—C4—C3	120,4(3)	C6A—N1A—Cu1	109,82(18)	
C2—O1—Cu1	121,37(19)	N1A—C4A—C3A	119,7(3)	C6A-C6-N1	114,8(3)	
C2A—O1A—Cu1	120,77(19)	C3—C4—C5	115,7(3)	C6—C6A—N1A	115,4(3)	
O1—C2—C3	129,4(3)	C3A—C4A—C5A	116,2(3)			

Симметрийные преобразования: #1 -*x*, *y*, -*z*+3/2.

Рис. 6. Полярные контакты в соединении **1**

Рис. 7. Упаковка в кристалле молекул соединения **2**а

ние кислорода в хелатообразование приводит к значительным искажениям геометрии этого контакта по сравнению со свободным лигандом: для **2a** длины C3...O2 3,411 Å; H3...O2 2,525 Å; угол C3—H3—O2 159,2°, для **2b** длины C14...O1 3,403 Å; H14a...O1 2,499 Å; угол C14—H14a—O1 163,8°. В результате молекулы комплексов **2a**, **b** в кристалле упаковываются в виде зигзагообразных цепей (рис. 7).

Упаковка молекул Cu(II) комплекса **2c** в кристалле (молекулы упаковываются в виде скошенных стопок, ориентированных вдоль диагональной оси a+c) существенно отлична от **2a**, **b**. Она характеризуется π — π -взаимодействием иминоенольных фрагментов (расстояние между среднеквадратичной плоскостью и атомами соседнего фрагмента около 3,5 Å) и взаимодействием арильных колец (расстояние между плоскостью арильного заместителя и атомами соседнего кольца варьируется от 3,37 до 3,65 Å). Также наблюдаются взаимные короткие контакты между ионами меди и атомами углерода бензольного кольца другой молекулы (Cu1...C7A [–x, y, 0,5–z], 3,058 Å), которые связывают молекулы комплекса в пары (рис. 8). Вероятно, в данном случае реализуется общее π -электронное связывание ароматических систем хелатных циклов.

Комплексы **2a**, **b** дополнительно охарактеризованы с помощью ЯМР ¹Н и ¹⁹F спектроскопии. В спектрах ЯМР ¹Н соединений **2a**, **b** наблюдается общая для обоих комплексов тенденция изменения химических сдвигов протонов по сравнению с соответствующими сигналами лиганда **1** [28].

Сигналы AA'BB' системы ароматических протонов смещены в сторону сильного поля ($\Delta\delta$ центра AA'BB' системы для **2a** составляет 0,32, для **2b** — 0,15 м.д.), тогда как сигналы протонов метильных групп — в слабое поле ($\Delta\delta$ для **2a** и **2b** составляет 0,34 и 0,50 м.д. соответственно).

Сигналы олефиновых протонов незначительно смещены в слабое поле ($\Delta \delta = 0,10-0,06$ м.д.). В спектрах ¹⁹F ЯМР сигналы CF₃-групп комплексов **2a**, **b** также смещены в слабое поле на 4,52 и 5,83 м.д. соответственно по сравнению с сигналом исходного лиганда **1** (δ CF₃ 84,79 м.д. [28]). Столь существенные сдвиги сигналов в ЯМР спектрах комплексов, вероятно, обусловлены не только влиянием ионов металла, но и существенным изменением геометрии и взаимного расположения в пространстве характеристических групп при комплексообразовании (сравни рис. 1 и рис. 2, 3).

Таблица 4

Соединение	Угол между плоскостями N_2O_2 и бензольного кольца	Угол между плоскостями N ₂ O ₂ и енаминокетонного фрагмента	Угол между плоскостями N ₂ O ₂ и енаминокетонного фрагмента
2a	23,23	20,95	19,22
2b	20,07	28,13	26,56
2c	29,56	22,55	18,08

Углы между плоскостями, град.

Таким образом, нами впервые структурно охарактеризован фторсодержащий тетрадентатный 1,2-бис(5,5,5-трифтор-4-оксопент-2-ен-2-амино)бензол и его комплексы с Ni(II), Pd(II) и Cu(II). Установлено, что ионы металлов в полученных комплексах имеют плоскоквадратную координацию. Сами комплексы имеют схожую седловидную конфигурацию, отличающуюся от конфигурации исходного лиганда. Кристаллические структуры комплексов Ni(II) и Pd(II) **2a**, **b** близки и существенным образом отличаются от структуры Cu(II) комплекса **2c**.

Работа выполнена при финансовой поддержке программы "Государственная поддержка ведущих научных школ" грант № НШ-3758.2008.3.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pettinary C., Drozdov A., Marchetty F. // Comprehensive Coordination Chemistry. 2003. 1. P. 97.
- Synthetic and Organometallic Chemistry / Eds. A.D. Garnovskii, B.I. Kharisov. New York: Marcel Dekker, 2003.
- 3. Katsuki T. // Chem. Soc. Rev. 2004. 33. P. 437.
- 4. Atwood D.A., Harvey M.J. // Chem. Rev. 2001. 101. P. 37.
- 5. Serrone S.A., Haar C.M., Nolane S.P., Brammer L. // Organometallics. 1997. 16. P. 5120.
- 6. Darensbourg D.J., Frantz E.B. // Inorg. Chem. 2008. 47. P. 4977.
- 7. Larrow J.F., Jacobsen E.N. // Top. Organomet. Chem. 2004. 6. P. 123.
- 8. Tsou T.-T., Loots M., Halpern J. // J. Amer. Chem. Soc. 1982. 104. P. 623.
- 9. Summers M.F., Marzilli L.G., Bresciani-Pahor N., Randaccio L. // Ibid. 1984. 106. P. 4478.
- 10. O'Bryan N.B., Maier T.O., Paul I.C., Drago R.S. // Ibid. 1973. 95. P. 6640.
- 11. Bencini A., Benelli C., Caneschi A. et al. // Inorg. Chem. 1986. 25. P. 572.
- 12. Uflyand I.E., Kurbatov V.P., Pomogailo A.D. // Transition Met. Chem. 1992. 17. P. 501.
- 13. Ramade I., Kahn O., Jeannin Y., Robert F. // Inorg. Chem. 1997. 36. P. 930.
- 14. Ryazanov M., Nikiforov V., Lloret F. et al. // Ibid. 2002. 41. P. 1816.
- 15. Kim M., Taylor T.J., Gabbaï F.P. // J. Amer. Chem. Soc. 2008. 130. P. 6332.
- 16. Averseng F., Lacroix P.G., Malfant I. et al. // Chem. Mater. 1999. 11. P. 995.
- 17. Di Bella S., Fragalá I., Ledoux I. et al. // J. Amer. Chem. Soc. 1997. 119. P. 9550.
- 18. Cort A.D., Mandolini L., Pasquini C. et al. // New J. Chem. 2007. 31. P. 1633.
- 19. Germain M.E., Vargo T.R., Khalifah P.G., Knapp M.J. // Inorg. Chem. 2007. 46. P. 4422.
- 20. *Ion A.C., Ion I., Antonisse M.M.G. et al.* // Журн. общей химии. 2001. **71**. С. 181. [Russ. J. General Chem. 2001. **71**. Р. 159].
- 21. Ganjali S. Shirvani-Arani M.R., Norouzi P. et al. // Microchim. Acta. 2004. 146. P. 35.
- 22. Пашкевич К.И., Салоутин В.И., Постовский И.Я. // Успехи химии. 1981. Р. 325. [Russ. Chem. Rev. 1981. **50**. Р. 180.]
- 23. Пешкова В.М., Мельчакова Н.В. β-Дикетоны. М.: Наука, 1986.
- 24. Суглубов Д.Н., Сидоренко Г.В., Легин Е.К. Летучие органические и комплексные соединения f-элементов. – М.: Энергоатомиздат, 1987.
- 25. Соколов Д.Н. Газовая хроматография летучих комплексов металлов М.: Наука, 1981.
- 26. McCarthy P.J., Hovey R.J., Ueno K., Martell A.E. // J. Amer. Chem. Soc. 1955. 77. P. 5820.
- 27. Hovey R.J., O'Connel J.J., Martell A.E. // Ibid. 1959. 81. P. 3189.
- 28. *Мкртчян Е.Г., Ячевский Д.С., Чижов Д.Л., Чарушин В.Н. //* Изв. РАН. Сер. хим. 2005. **54**. С. 2086. [Russ. Chem. Bull. 2005. **54**. Р. 2150].
- 29. Morris M.L., Koob R.D. // Org. Mass Spectrometry. 1983. 18. P. 305.
- 30. Sallam Sh.A. // Egyptian J. Chem. 1994. 37. P. 79.
- 31. Sheldrick G.M. SHELX-97, release 97-2. Germany, University of Göttingen, 1998.
- 32. Eilmes J., Basato M., Valle G. // Inorg. Chim. Acta. 1999. 290. P. 14.