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Авиационные двигатели являются источником значительных выбросов парниковых газов, в
частности CO2. В связи с ужесточением норм эмиссии ведутся поиски путей сокращения вы-
бросов CO2 авиацией. Одним из наиболее перспективных путей достижения этой цели является
применение топлив из возобновляемых источников, например из растительного сырья. Для моде-
лирования рабочего процесса камер сгорания авиационных двигателей при сжигании биотоплив

и их смесей с нефтяными топливами требуется знание физико-химических свойств таких топлив.
В данной работе проведен обзор существующих методик расчета физико-химических свойств
кислородсодержащих биотоплив, включающих в себя эфиры, спирты и кетоны. Представленные
методики валидированы на веществах, выступающих в качестве биодобавок к авиационному
топливу, и проанализированы с точки зрения точности расчета и простоты их применения для
исследования рабочего процесса в камерах сгорания.
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ВВЕДЕНИЕ

Антропогенные выбросы углекислого га-
за (CO2) являются основным фактором уве-
личения концентрации CO2 в атмосфере [1],
что приводит к ряду серьезных экологических

проблем, включая глобальное потепление и из-
менение климата. Из-за роста потребности в
авиаперевозках количество вредных выбросов

авиацией быстро возрастает. В 2016 г. Меж-
дународная организация гражданской авиации

(ICAO) запустила инициативу CORSIA (Схе-
ма компенсации и сокращения выбросов угле-
кислого газа для международной авиации) с це-
лью снижения выбросов CO2 [2]. Международ-
ная ассоциация воздушного транспорта (IATA)
и Группа действий по воздушному транспор-
ту (ATAG) установили целевые показатели по
сокращению выбросов CO2 на 50 % к 2050 г.
(относительно уровня 2005 г.) [3, 4].

Сокращение выбросов авиационными дви-
гателями может быть достигнуто как за счет

снижения спроса, так и за счет технических ре-
шений (например, повышения эффективности

c©Цапенков К. Д., Кураева Ю. Г., Сидорова Е. И.,
Штырлов А. Е., Зубрилин И. А., 2024.

производства и потребления топлива, разви-
тия альтернативных источников энергии). На-
стоящее исследование фокусируется на стра-
тегии производства и применения альтерна-
тивных источников энергии как способе улуч-
шения экологических характеристик авиацион-
ных двигателей по сравнению с таковыми на

нефтяном топливе.
Авиационное топливо, полученное из био-

сырья (биотопливо), имеет хорошие перспек-
тивы в плане сокращения выбросов в авиаци-
онной промышленности [5]. Биотоплива, полу-
ченные по различным технологиям, за рубежом
проходят сертификацию согласно регламенту

Международного общества испытаний и мате-
риалов (ASTM) (ASTM D7566 — Стандарт-
ная спецификация для авиационного турбинно-
го топлива, содержащего синтезированные уг-
леводороды) или по эквивалентным стандар-
там; в Российской Федерации — соответствен-
но ГОСТ 10227 [6]. При этом состав топли-
ва практически не регламентируется. Таким
образом, для дальнейшего развития авиацион-
ной отрасли необходимо иметь достаточную

научно-техническую базу, позволяющую оце-
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нить влияние как чистых биотоплив, так и их
смесей с авиационным керосином на рабочий

процесс двигателя. При этом первым этапом

должна быть оценка влияния состава топлива

на его физико-химические характеристики.
Целью данной работы является формиро-

вание базы данных расчетных методик опре-
деления свойств углеводородов, полученных из
биосырья, и их валидация. Основное внимание
в работе уделено так называемым оксигени-
рованным углеводородам, включающим в себя
спирты, эфиры и кетоны.

1. ВЛИЯНИЕ БИОТОПЛИВ НА ПРОЦЕССЫ
В ГАЗОТУРБИННОМ ДВИГАТЕЛЕ

Сложноэфирные молекулы компонентов

биотоплив по своему строению отличаются от

углеводородов нефтяного топлива: в составе

присутствуют атомы кислорода. Это приводит
к снижению теплоты сгорания топлива, но поз-
воляет добиться более полного сгорания топли-
ва в двигателе, снижения выбросов токсичных
веществ в атмосферу с отработавшими газами

и увеличения цетанового числа топлива [7, 8].
Биотоплива на основе эфиров жирных кис-

лот обладают следующими особенностями:
• высокое цетановое число, что обеспечивает
низкую задержку воспламенения и хорошие ха-
рактеристики сгорания [7, 9, 10];
• отсутствие соединений серы [8, 11];
• хорошая термическая стабильность благода-
ря отсутствию ароматических соединений;
• низкая склонность к образованию сажи [12];
• снижение смазывающей способности из-за
отсутствия серы;
• повышенная вязкость;
• высокое содержание парафинов, негатив-
но влияющих на низкотемпературные свой-
ства [8];
• низкая термоокислительная стабильность;
• существенный разброс физико-химических
свойств в зависимости от используемого сырья;
• пониженная теплота сгорания по сравнению
с нефтяным топливом;
• низкое содержание ароматических углеводо-
родов, что приводит к сокращению ресурса ра-
боты резинотехнических уплотнителей агрега-
тов силовой установки и летательного аппа-
рата.

Перечисленные особенности оказывают

серьезное влияние на процессы распыла и горе-
ния топлива, а также на его эксплуатационные
характеристики. При моделировании этих про-

цессов физико-химические свойства биотоплив
на основе эфиров жирных кислот учитывают-
ся в моделях химической кинетики путем вве-
дения в рассмотрение суррогатов. Использова-
ние биотоплив и их смесей с нефтяными топли-
вами требует разработки методик определения

свойств таких смесей.

2. РАСЧЕТ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ
ИНДИВИДУАЛЬНЫХ КОМПОНЕНТОВ

БИОТОПЛИВ И ИХ СМЕСЕЙ

В качестве компонентов биотоплив широ-
кое распространение получили сложные эфиры

карбоновых кислот, которые образуются в ре-
акции переэтерификации между триацилгли-
церинами и низкомолекулярными алифатиче-
скими спиртами [13].

2.1. Молекулярная масса биотоплив

Молекулярную массу чистых компонентов

рассчитывают по молекулярной формуле веще-
ства

Mi =

n∑
k=1

M ′k.

Среднюю молекулярную массу смесей извест-
ного состава независимо от химической приро-
ды компонентов находят по формуле [14]

M = 1
/ n∑
i=1

xi
Mi

.

Здесь xi — молярная доля компонента в смеси,
M ′k — молекулярная масса k-го атома в моле-
куле.

2.2. Индекс сажеобразования

Для определения склонности топлива к са-
жеобразованию используют различные экспе-
риментальные методики, наиболее распростра-
ненная среди них— определение по максималь-
ной высоте некоптящего диффузионного пламе-
ни (SP). Для сопоставления результатов, полу-
ченных в различных лабораториях на разных

приборах [12, 15], был введен пороговый индекс
сажеобразования

TSIi = a
Mi

SPi
+ b,

где a и b — константы экспериментальной

установки, используемые для масштабирова-
ния TSI от 0 до 100.
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Величина TSI хорошо работает в случае
углеводородных топлив нефтяного происхожде-
ния. Однако для топлив, содержащих оксигена-
ты, наблюдаются расхождения. Установлено,
что TSI неправильно учитывает относительно
массы топлива содержащийся в нем кислород и

не учитывает изменения в стехиометрическом

соотношении топливо/воздух. В [16] был пред-
ложен новый индекс сажеобразования — рас-
ширенный кислородный индекс сажеобразова-
ния (OESI), который учитывает влияние содер-
жащегося в топливе кислорода путем нормали-
зации по стехиометрической потребности горе-
ния в кислороде из воздуха:

OESIi = a′
(z +m/4 − p/2

SP

)
+ b′,

где z, m и p — число атомов соответственно

углерода, водорода и кислорода в молекуле, a′ и
b′ — константы экспериментальной установки.

Для бескислородного топлива индексы

OESI и TSI эквивалентно оценивают сажеобра-
зование. Для кислородсодержащих топлив ис-
пользуется только индекс OESI. Как показали
результаты [16], на склонность к сажеобразова-
нию влияет не только наличие кислорода в мо-
лекуле, но и природа функциональной группы,
в которую входит кислород. Установлено, что
склонность к сажеобразованию в среднем сни-
жается с увеличением содержания кислорода:
монооксигенированные < диоксигенированные

< триоксигенированные группы.

2.3. Плотность

Важнейшей характеристикой топлива яв-
ляется плотность. Доставка топлива из топ-
ливного бака в двигатель обычно измеряет-
ся по объемному расходу, а энергия, выделяе-
мая в камере сгорания, рассчитывается по мас-
се. Оба параметра взаимосвязаны через плот-
ность. Кроме того, данные по плотности также
необходимы в расчетах, касающихся хранения,
транспортировки, переработки топлива и т. д.

Для расчета плотности жидких сложных

эфиров применимо классическое уравнение Рэ-
кетта, которое с учетом модификаций Спенсе-
ра, Даннера и других имеет вид [17]

ρ =
M

RTcr
Pcr

Z
1+(1−T/Tcr)2/7
RA

.

Здесь Pcr — критическое давление, Tcr — кри-
тическая температура, ZRA — коэффициент

сжимаемости Рэкетта, R — универсальная га-
зовая постоянная. Данная модель очень сложна.
В ней присутствуют критическая температу-
ра, критическое давление и коэффициент сжи-
маемости, которые, в свою очередь, требуют
знания ацентрического фактора молекулы.

В [18] для прогнозирования плотности

жидкости был предложен метод группового

вклада (GCVOL):

ρ =
1 000M∑
ni∆νi

,

где ni — номер группы i, ∆νi — молярный объ-
ем группы i. Данное уравнение использовалось
для оценки плотности различных метиловых

эфиров жирных кислот, при этом были скор-
ректированы вклады ∆νi и добавлены вклады
двойных связей. Полученные результаты рас-
четов соответствуют экспериментальным дан-
ным при температурах ниже 373 К [19].

В литературе имеется ряд корреляцион-
ных уравнений, связывающих плотность с мо-
лекулярной массой (Mi) сложного эфира и на-
личием двойных связей (Ni) в молекуле. В ра-
боте [20] для расчета плотности жидких ме-
тиловых эфиров жирных кислот предложено

уравнение

ρi = 881.86 − 0.065Mi + 11.91Ni [кг/м3].

Вычисленные по нему значения плотности ме-
тиловых эфиров жирных кислот и их смесей

близки к экспериментальным данным при тем-
пературах 20 ÷ 30 ◦C. Для того чтобы полу-
чать значения при нормируемой температуре

15 ◦C, в работе [21] коэффициенты уравнения

были скорректированы:

ρi = 881.84 − 0.047Mi + 12.2Ni.

Представленная корректировка позволила сни-
зить погрешность расчета до 1.5 %.

Предложенное в работе [22] уравнение для
расчета плотности при 20 ◦C сложных эфи-
ров насыщенных и ненасыщенных кислот дает

близкие результаты:

ρi = 0.8463 + 4.9/Mi + 0.0118Ni.

В работе [19] получены температурные за-
висимости плотности для эфиров жирных кис-
лот. Для короткоцепочечных (С6 ÷ С12) жир-
ных кислот

ρ = −0.546 − 0.0078z + 128.7/T − 3.093z/T.
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Для длинноцепочечных кислот (С12 ÷ С24)

ρ = −0.435 − 0.0025z + 85.98/T − 0.792z/T.

Рассчитанные по данным уравнениям значе-
ния плотности насыщенных метиловых эфиров

жирных кислот как с короткой, так и с длин-
ной цепью при 10 ÷ 100 ◦C хорошо согласу-
ются с опубликованными значениями, относи-
тельная погрешность не превышает 0.43 %.

В случае ненасыщенных кислот необходи-
мо учитывать количество двойных связей в мо-
лекуле:

ρ = −0.435 − 0.0025z + 85.98/T −

− 0.792z/T − 0.00001Ni + 4Ni/T.

Плотность оксигенированных углеводоро-
дов может быть вычислена методом [23]:

ρ = AB−(1−T/Tcr)
n
,

где A, B — регрессионные коэффициенты.

2.4. Цетановое число

Для расчета цетанового числа метиловых

эфиров жирных кислот можно использовать

формулу из работы [20]

DCNi = −4.92 + 0.3Mi − 22.8Ni

или из работы [22]

DCNi = −7.8 + 0.302Mi − 20Ni.

2.5. Теплоемкость

Удельная теплоемкость оксигенированных

углеводородов может быть рассчитана по фор-
муле из [23]:

cp = A+BT + CT 2 +DT 3,

где A, B, C, D — регрессионные коэффициен-
ты.

В работе [24] показано, что модифициро-
ванный метод Роулинсона хорошо предсказы-
вает удельную теплоемкость метиловых эфи-
ров жирных кислот, с точностью до 3 %:

cp − c0p
R

= 1.45 + 0.45(1 − Tr)
−1 + 0.25ω ×

× [17.11 + 25.2(1 − Tr)
1/3 + 1.742(1 − Tr)

−1].

Здесь Tr = T/Tcr,

Tcr = Tb

[
0.584 + 0.965

∑
∆T −

(∑
∆T

)2]−1
,

Tb = 218.49 ln(z) − 6.933 — нормальная тем-
пература кипения метиловых эфиров кислот.
Значения ∆T можно рассчитать путем сумми-
рования групповых вкладов различных атомов

или групп атомов, приведенных в [25]. Ацен-
трический фактор ω представлен в [25, 26] либо
может быть рассчитан [27].

Теплоемкость идеального газа c0p оценива-
ется с использованием метода групповых вкла-
дов Джобака:

c0p =
(∑

j

nj∆a−37.93
)

+
(∑

j

nj∆b+0.210
)
T+

+
(∑

j

nj∆c− 0.000391
)
T 2 +

+
(∑

j

nj∆d+ 2.06 · 10−7
)
T 3,

где ∆a, ∆b, ∆c, ∆d — параметры, получен-
ные на основе вклада метильных, алкильных и
сложноэфирных групп, присутствующих в ме-
тиловом эфире.

На основании расчетов, выполненных для
метиловых эфиров жирных кислот предложе-
но уравнение второго порядка, связывающее
удельную теплоемкость с молекулярной массой

эфира [24]:

cp = −1E − 0.6(Mi)
2 + 247.1Mi + 1.9291,

где E — регрессионный коэффициент.
Для этиловых эфиров н-алкановых кислот

в работе [28] получена зависимость теплоемко-
сти от числа атомов углерода zn в материнской
кислоте:

cp (298.15 K) = 107.937 + 29.920zn.

2.6. Теплопроводность

В [23] предложено рассчитывать теплопро-
водность оксигенированных углеводородов сле-
дующим образом [23]:

K = A+BT + CT 2.

Теплопроводность сложных эфиров оценивает-
ся с помощью корреляции Састри [24]:
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K = Tba
m,

где m = 1 −
( 1 − Tr

1 − Tbr

)n
, Tbr — приведенная

температура к нормальной температуре кипе-
ния, константы a и n принимают значения со-
ответственно 0.16 и 0.2 согласно рекоменда-
циям Састри [25]. Теплопроводность при нор-
мальной температуре кипения является адди-
тивным параметром, рассчитанным на основе
вклада метильных, алкильных и сложноэфир-
ных групп.

Теплопроводность жидкостей может быть

определена по методике Латини [27]:

K =
A(1 − Tr)

0.38

T
1/6
r

, A =
A∗Tαb
MβT

γ
cr
.

Для эфиров A∗ = 0.0415, α = 1.2, β = 1.0, γ =
0.167.

2.7. Вязкость

Для расчета вязкости оксигенированных

углеводородов можно воспользоваться методи-
кой [23]:

lg(µ) = A+B/T + CT +DT 2.

Для расчета кинематической вязкости

топлива при 40 ◦C, содержащего сложные эфи-
ры, в работе [22] предложено соотношение

η = exp
(∑

xiln(ηi)
)

[мм2/с],

где вязкость i -го сложного эфира рассчитыва-
ется по формуле

ln(ηi) = −12.53 + 2.496 ln(Mi) − 0.178Ni.

Расчет кинематической вязкости cложных
эфиров можно провести по уравнению [20]

ηi = −5.59 + 0.03644Mi + 0.784Ni

или по скорректированному уравнению для ме-
тиловых эфиров [20]

ηi = −5.59 + 0.0398Mi + 0.782Ni.

Вязкость смеси при температуре 40 ◦C
равна

η =

n∑
i=1

ηixi.

В [27] предложена линейная зависимость
между логарифмом вязкости и обратной вели-
чиной температуры:

ln
µ

ρLM
= A+

B

T
,

где ρL — плотность при 20 ◦C, г/см3. Значе-
ния констант A и B рассчитываются методом

группового вклада [25].

2.8. Теплота сгорания

Для расчета высшей теплотворной способ-
ности метиловых эфиров жирных кислот в ра-
боте [20] предложено уравнение

HHVi = 25.7 + 0.057Mi − 3.16Ni.

Для сложных эфиров используется выражение

из работы [22]

HHVi = 46.19 − 1 794

Mi
− 0.21Ni.

2.9. Давление насыщенных паров

Расчет давления насыщенных паров окси-
генированных углеводородов может быть про-
веден по методике [23]:

lg(P ) = A+B/T + Clg(T ) +DT + ET 2.

2.10. Коэффициент поверхностного натяжения

Коэффициент поверхностного натяжения

оксигенированных углеводородов определяется

по формуле из [23]

σ = A(1 − T/B)n.

Для прогнозирования свойств топлив, со-
стоящих из смеси ископаемых углеводородов,
необходимо знать их количественный состав,
который может быть известен при формиро-
вании суррогатов (модельных топлив) либо

определен по данным хроматографии для сме-
сей неизвестного состава. Обычно для расче-
та большинства физико-химических характе-
ристик смеси применяются правила аддитив-
ности, т. е. свойства изменяются пропорцио-
нально долям компонентов в смеси. В случае,
когда ископаемые углеводороды смешиваются

с биокомпонентами, свойство аддитивности не
всегда применимо, поэтому необходимо экспе-
риментальное исследование свойств таких сме-
сей.
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3. АНАЛИЗ И ВЫБОР НАИБОЛЕЕ
ПОДХОДЯЩИХ РАСЧЕТНЫХ МЕТОДИК

В табл. 1 представлены результаты рас-
четов плотности при температуре 20 ◦C. Ме-
тодики [19–22] применимы только для расче-
та метиловых эфиров, из них наименьшую по-
грешность имеет методика [20] со средним от-
клонением от справочных данных [29] 0.76 %.
Методика [18] самая простая, но характеризу-
ется самым высоким отклонением (11.65 % в

Та блиц а 1
Валидация методик расчета плотности

Вещество
ρ, кг/м3 (20 ◦C)

[29] [17] [18] [20] [21] [22] [19] [23]

Метилолеат 873.9 922.2 876.5 874.5 880.1 874.6 883.2 873.8

Метилпальмитат 852.0 914.1 870.4 864.3 869.1 864.4 870.8 858.7

Диэтиловый эфир

малоновой кислоты
1 055 1 011 999.4 — — — — 1 055

Метилэтилкетон 805.0 796.4 796.8 — — — — 804.8

Метанол 791.8 782.2 1 183 — — — — 792.0

Та блиц а 2
Валидация методик расчета цетанового числа и низшей теплоты сгорания

Вещество
DCN HHVi, МДж/кг

[30] [20] [22] [29, 30] [20] [22]

Метилолеат 55.7 61.20 61.70 40.09 39.44 39.93

Метилпальмитат 81.08 76.20 73.90 42.35 41.12 39.56

Диэтиловый эфир

малоновой кислоты
— — — — — —

Метилэтилкетон — — — 33.89 — —

Метанол 3.25 — — 22.69 — —

Та блиц а 3
Валидация методик расчета теплоемкости, коэффициента поверхностного натяжения

и давления насыщенных паров

Вещество
cp, кДж/(кг ·K) (20 ◦C) σ, Н/м (25 ◦C) P , мм. рт. ст (25 ◦C)

[29] [23] [24] [29] [23] [29] [23]

Метилолеат — 2.098 2.108 0.03130 0.03131 6.29 · 10−6 6.287 · 10−6

Метилпальмитат 1.754 — 2.099 0.02956 — 6.04 · 10−5 —

Диэтиловый эфир

малоновой кислоты
1.874 1.773 — 0.03130 0.03133 0.19 0.2687

Метилэтилкетон — 2.201 — 0.02384 0.02396 90.6 95.50

Метанол — 2.481 — 0.02220 0.02355 127.0 126.0

среднем). Методика [17] очень сложна для при-
менения, отклонение от справочных данных в
среднем составляет 3.84 %. Методика [23] име-
ет самое низкое отклонение 0.17 % и достаточ-
но проста для применения.

В табл. 2 представлены результаты рас-
четов цетанового числа и низшей теплоты

сгорания. Все методики сопоставимы по слож-
ности и применимы только для метиловых

эфиров. Наименьшее отклонение от справоч-
ных данных по цетановому числу (2.43 %) дает
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Та блиц а 4
Валидация методик расчета теплопроводности

Вещество
K, Вт/(м ·K) (25 ◦C)

[29] [23] [27]

Метилолеат — 0.1152 0.1007

Метилпальмитат — 0.1695 0.1078

Диэтиловый эфир

малоновой кислоты
— 0.1251 0.1267

Метилэтилкетон 0.1428 0.1472 —

Метанол 0.2013 0.2023 —

методика [22], а по низшей теплоте сгорания —
методика [20] (2.26 %).

В табл. 3 представлены результаты расче-
тов удельной теплоемкости, коэффициента по-
верхностного натяжения и давления насыщен-
ных паров. Методика [24] для расчета тепло-
емкости, в отличие от методики [23], примени-
ма только для метиловых эфиров. Справочных
данных для оценки точности методик расчета

теплоемкости недостаточно, в дальнейших ис-
следованиях эти пробелы должны быть запол-
нены результатами экспериментальных иссле-
дований. Методика [23] для расчета коэффици-
ента поверхностного натяжения имеет среднее

отклонение от справочных данных 1.69 %. Ме-
тодика [23] для расчета давления насыщенных
паров дает среднее отклонение от справочных

данных 11.92 %.
В табл. 4 представлены результаты рас-

четов теплопроводности. Справочных данных
для оценки точности методик [23, 27, 29] недо-
статочно, но из имеющихся данных видно,
что методика [23] характеризуется невысоким

Та блиц а 5
Валидация методик расчета вязкости

Вещество
µ, сСт (20 ◦C) η, сП (20 ◦C)

[29] [23] [27] [22] [20] [21] [29]

Метилолеат 5.630 5.275 9.152 6.442 4.478 5.998 6.992

Метилпальмитат 3.680 4.999 6.740 4.320 4.254 4.265 5.174

Диэтиловый эфир

малоновой кислоты
2.15 1.960 1.985 2.038 — 1.031 —

Метилэтилкетон 0.3960 0.4159 0.4182 0.4919 — — —

Метанол 0.5820 0.5698 0.8276 0.7358 — — —

Прим е ч а н и е. 1 сП = 10−3 Па · с, 1 сСт = 10−6 м2/с.

средним отклонением от справочных данных

(1.55 %).
В табл. 5 представлены результаты рас-

четов вязкости. Методики [21, 22] применимы
только для метиловых эфиров, из них методика
[21] более точная (среднее отклонение от спра-
вочных данных 14.15 %). Методика [20] приме-
нима только для эфиров (метиловых и этило-
вых) и имеет среднее отклонение от справоч-
ных данных 19.19 %. Методики [23, 27] приме-
нимы для всех углеводородов, из них методика
[23] более точная (среднее отклонение от спра-
вочных данных 11.62 %).

ЗАКЛЮЧЕНИЕ

Проведен обзор существующих методик

определения физико-химических свойств ок-
сигенированных углеводородов. Представлены
методики расчета молекулярной массы биотоп-
лив, индекса сажеобразования, плотности, це-
танового числа, теплоемкости, теплопроводно-
сти, вязкости, низшей теплоты сгорания, дав-
ления насыщенных паров и коэффициента по-
верхностного натяжения.

Молекулярная масса компонента одно-
значно определяется исходя из молекулярной

формулы вещества, а для смесей известного
состава, независимо от химической природы

компонентов, среднюю молекулярную массу

рассчитывают по молярным долям компонен-
тов в смеси. Расширенный кислородный индекс
сажеобразования рассчитывается по макси-
мальной высоте некоптящего пламени, которая
определяется экспериментально. При вычис-
лении плотности наиболее предпочтительной

является методика [23], характеризуемая



10 Физика горения и взрыва, 2024, т. 60, N-◦ 4

наименьшим средним отклоненим от справоч-
ных данных (0.16 %). Представленные методи-
ки расчета цетанового числа применимы толь-
ко для метиловых эфиров жирных кислот, из
них наименьшее отклонение от справочных

данных (2.43 %) дает методика [22]. Из рас-
смотренных методик определения теплоемко-
сти методика [24] применима только для ме-
тиловых эфиров жирных кислот, методика [23]
универсальна, но справочных данных для оцен-
ки этих методик оказалось недостаточно. Спра-
вочных данных для оценки точности методик

расчета теплопроводности [23, 27] также недо-
статочно, но исходя из имеющихся данных, а
также из того факта, что методика [23] уни-
версальна, ее можно рекомендовать к приме-
нению. Из обсуждаемых методик определения
вязкости методика [23] отличается наибольшей
точностью (среднее отклонение от справочных
данных 11.62 %), также следует отметить, что
эта методика применима для всех групп угле-
водородных топлив. Представленные методики
расчета низшей теплоты сгорания применимы

только для метиловых эфиров жирных кислот,
из них наименьшее отклонение от справочных

данных (2.26 %) имеет методика [20].Методики
[23] для расчета коэффициента поверхностного
натяжения и давления насыщенных паров при-
менимы для всех групп углеводородных топ-
лив, их средние отклонения от справочных дан-
ных составляют 1.69 и 11.92 % соответственно.

В дальнейшем планируется формирование

расширенной базы данных физико-химических
свойств оксигенированных углеводородов за

счет проведения экспериментальных исследо-
ваний.
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