УДК 536.63

Энтальпия и теплоемкость сплава CsBi в интервале температур 293–1125 К*

С.В. Станкус, И.В. Савченко, О.С. Яцук

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: stankus@itp.nsc.ru

Методом смешения на массивном изотермическом калориметре измерен инкремент энтальпии сплава CsBi в интервале температур 432–1127 К твердого и жидкого состояний. Получены аппроксимационные уравнения, определена изобарная теплоемкость и изменения энтальпии при фазовых превращениях. Оцениваемые погрешности данных по энтальпии и теплоемкости расплава составили 0,75 и 1,5–2,0 % соответственно. Определена энтальпия образования сплава в жидком состоянии. Проведено сопоставление полученных результатов с расчетами по законам идеальных растворов.

Ключевые слова: система цезий-висмут, твердое и жидкое состояния, энтальпия, теплоемкость, массивный изопериболический калориметр.

Сплавы системы цезий-висмут относятся к достаточно редкому классу материалов, у которых в жидком состоянии наряду с металлическим характером межатомного взаимодействия предполагается существование ионной составляющей. Прямого подтверждения наличия в расплаве ассоциатов с ионными связями до настоящего времени не получено, однако сильные отклонения электросопротивления [1] и мольного объема [2] от расчетов по законам идеальных растворов, а также наличие экстремумов при некоторых концентрациях, дают весомые основания для такого предположения. Анализ литературы показал, что измерение калорических свойств сплавов системы цезий-висмут как в твердом, так и в жидком состояниях до последнего времени не проводились. Проведенные авторами экспериментальные исследования энтальпии сплавов Cs-Bi с содержанием висмута 27,1 ат. % и 66,65 ат. % [3, 4] не являются достаточными для построения надежной концентрационной зависимости калорических свойств в жидком состоянии, хотя энергетические характеристики расплавов цезий-висмут играют важную роль при апробации теоретических моделей, описывающих поведение данной системы. Цель настоящей работы заключается в измерении инкремента энтальпии эвтектики CsBi в широком интервале температур твердого и жидкого состояний и определении его теплоемкости.

Эксперименты выполнялись на массивном калориметре смешения с изотермической оболочкой. Конструкция установки, а также методики проведения измерений и обработки результатов описаны в работах [5–7]. Приготовление сплава из компонентов

^{*} Работа выполнена за счет гранта РНФ (проект № 16-19-10023-П).

[©] Станкус С.В., Савченко И.В., Яцук О.С., 2020

чистотой 99,94 масс. % (Cs) и 99,98 масс. % (Bi), а также герметизация дуговой сваркой ампулы из нержавеющей стали 12Х18Н10Т с образцом проводились в перчаточном боксе с аргоновой атмосферой. Концентрация находилась весовым методом и составила $X_{\rm Cs} = 50,00 \pm 0,01$ ат. %. Рассчитанная молекулярная масса сплава $M_{\rm alloy} = 170,940$ кг/кмоль. Инкремент мольной энтальпии сплава рассчитывался по формуле $H_{298}(T) = M_{\rm alloy} h_{298}(T)$, где $h_{298}(T)$ — инкремент массовой энтальпии CsBi при нагреве от 298,15 К до температуры *T*. Термический анализ, проведенный на подготовленной ячейке, показал наличие двух тепловых эффектов при температурах

$$T_L = 665,8 \pm 1,5 \text{ K},\tag{1}$$

$$T_{\alpha\beta} = 552 \pm 6 \text{ K.}$$
 (2)

Температура начала кристаллизации T_L воспроизводилась в пределах 0,01 К при переохлаждении 6–7 К. Воспроизводимость $T_{\alpha\beta}$ была существенно ниже: 5,6 К в двух измерениях при переохлаждении 1,9–2,3 К; величина $T_{\alpha\beta}$ приведена по максимальному значению. Согласно фазовой диаграмме Cs–Bi [8], эквиатомный состав соответствует эвтектике Cs₅Bi₄–CsBi₂, в которой после затвердевания не происходит никаких фазовых превращений. Однако обнаруженный авторами тепловой эффект при $T_{\alpha\beta}$, а также скачок объема при 560 ± 3 K [2] указывают на существование твердофазного превращения в сплаве CsBi, и следовательно, на наличие неточностей в фазовой диаграмме [8] в области составов 50 ат. % Вi. По этой причине будем считать, что ниже температуры (2) эвтектика находится в α -фазе, а выше — в β -фазе.

Результаты измерений энтальпии сплава CsBi приведены в табл. 1 и на рисунке. Первичные данные для α -фазы ($H_{298,\alpha}$), β -фазы ($H_{298,\beta}$) и расплава ($H_{298,m}$) обрабатывались методом наименьших квадратов степенными уравнениями от температуры:

$$H_{298\ \alpha}(t) = 25,14\ t + 0,00788\ t^2,\tag{3}$$

где размерность $H_{298,\alpha}$ — Дж/моль; t = T — 298,15, T — в К. Среднее абсолютное отклонение точек от значений, полученных по (3) — 16,5 Дж/моль;

$$H_{298,\beta}(t_1) = 6989 + 32,08 t_1, \tag{4}$$

где $t_1 = T - 551,9, T$ приводится в К. Среднее абсолютное отклонение точек от значений, рассчитанных по (4), составило 46 Дж/моль или 0,55 %;

$$H_{298, m}(t_2) = 17810 + 40,88 t_2 - 0,00347t_2^2,$$
(5)

Таблица 1

Результаты измерений инкремента энтальпии сплава CsBi

•			
Т, К	H ₂₉₈ , Дж/моль	<i>T</i> , K	<i>H</i> ₂₉₈ , Дж/моль
431,7	3515	778,1	22402
431,7	3497	827,4	24331
456,3	4155	877,1	26386
481,2	4889	926,9	28218
505,9	5541	927,0	28180
530,8	6252	976,6	30091
545,5	6726	976,8	30102
560,3	7186	1026,5	32186
590,0	8310	1026,5	32232
619,6	9168	1051,4	33071
654,3	10229	1076,5	33922
654,4	10285	1126,7	35927
693,9	18920	-	-

Теплофизика и аэромеханика, 2020, том 27, № 2

где $t_2 = T - 665,8$ К. Среднее абсолютное отклонение точек от значений, полученных по (5), составило 60 Дж/моль или 0,20 %. Общая погрешность инкремента энтальпии расплава составила 0,75 %.

Теплоемкость сплава C_p рассчитывалась дифференцированием уравнений (3)–(5). Оцениваемая погрешность C_p составила 1,5–2 % для α -фазы и расплава и 8 % — для β -фазы.

		1	
Фаза	<i>Т</i> , К	H_{298} , Дж/моль	C_p , Дж/(моль К)
	298,15	0	25,14
	300	47	25,17
	350	1325	25,96
α	400	2642	26,74
	450	3999	27,53
	500	5395	28,32
	550	6831	29,11
	$T_{\alpha\beta} = 551,9$	6886	29,14
	$T_{\alpha\beta} = 551,9$	6989	32,08
	600	8531	32,08
β	650	10135	32,08
	$T_L = 665,8$	10642	32,08
	$T_L = 665,8$	17810	40,88
	700	19204	40,64
	750	21227	40,29
	800	23233	39,95
	850	25222	39,60
	900	27193	39,25
Расплав	950	29147	38,90
	1000	31084	38,56
	1050	33003	38,21
	1100	34905	37,86
	1125	35849	37,69

Таблица 2 Рекомендуемые значения калорических свойств сплава CsBi

В табл. 2 и на рисунке приведены сглаженные значения калорических свойств сплава CsBi. Рассчитанные по этим данным изменения энтальпии при фазовых превращениях составили $\Delta H_L = 7168 \pm 75$ Дж/моль и $\Delta H_{\alpha\beta} = 100 \pm 50$ Дж/моль.

Используя данные по калорическим свойствам чистых цезия [9] и висмута [7], а также данные по энтальпии образования соединений системы Cs-Bi при 298,15 K [10, 11] и результаты настоящей работы, была определена энтальпия смешения расплава CsBi и рассчитана его изобарная теплоемкость в приближении идеального раствора. Сопоставление этих данных показало существенное отклонение калорических свойств от рассчитанных по законам идеальных растворов. Так в интервале 700–1100 К измеренная теплоемкость превышает расчетную на 39–24 % соответственно, а энтальпия образования расплава изменяется от –35,6 до –30,8 кДж/моль. Эти факты косвенно подтверждают предположение о существовании в расплаве комплексов с частично ионным характером межатомного взаимодействия и их распадом с ростом температуры.

Список литературы

- Meijer J.A., van der Lugt W. Resistivity of liquid K-Bi and Cs-Bi alloys // J. Phys. Condens. Mat. 1989. Vol. 1. P. 9779–9784.
- 2. Khairulin R.A., Abdullaev R.N., Stankus S.V. Volume contraction in liquid caesium–bismuth alloys // Phys. and Chem. of Liquids. Vol. 58, No. 2. P. 143–149.
- 3. Станкус С.В., Савченко И.В., Яцук О.С., Козловский Ю.М. Энтальпия и теплоемкость интерметаллического соединения CsBi₂ в твердом и жидком состояниях // Теплофизика и аэромеханика. 2018. Т. 25, № 4. С. 665–668.
- 4. Stankus S.V., Khairulin R.A., Abdullaev R.N., Savchenko I.V., Yatsuk O.S. Volumetric and caloric properties of liquid cesium-bismuth alloys compounds // XXII Intern. Conf. on Chemical Thermodynamics in Russia (RCCT-2019): Abstracts, June 19–23, 2019. Saint Petersburg, Russia. P. 134.
- 5. Станкус С.В., Савченко И.В., Яцук О.С. Высокотемпературный калориметр смешения для исследования веществ и материалов в твердом и жидком состояниях // Приборы и техника эксперимента. 2017. № 4. С. 150–156.
- 6. Станкус С.В., Савченко И.В., Яцук О.С., Расчектаева Е.П. Калорические свойства "металлической соли" Rb₇₃Bi₂₇ в твердом и жидком состояниях // Журнал физической химии. 2018. Т. 92, № 9. С. 1379–1383.
- 7. Станкус С.В., Савченко И.В., Яцук О.С. Калорические свойства жидкого висмута // Теплофизика высоких температур. 2018. Т. 56, № 1. С. 30–34.
- 8. Sangster J., Pelton A.D. The Bi-Cs (bismuth-cesium) system // J. Phase Equilibria. 1991. Vol. 12. P. 443-446.
- **9.** Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Справочное издание: в 4-х т. Т. 4, Кн. 2. М.: Наука, 1982. 560 с.
- 10. Воронин Г.Ф., Мухамеджанова Н.М. Термодинамические свойства соединений цезия с висмутом // Вестник МГУ. 1975. Т. 16, № 4. С. 489–491.
- Djaballah Y., Said Amer A., Uğur Ş., Uğur B., Hidoussi A., Belgacem-Bouzida A. Thermodynamic description of the Bi-Cs and Bi-Tm system supported by first-principles calculations // CALPHAD. 2015. Vol. 48. P. 72–78.

Статья поступила в редакцию 26 июля 2019 г., после доработки — 18 сентября 2019 г., принята к публикации 6 ноября 2019 г.