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Исследуются характеристики ударной волны, генерируемой зарядом, состоящим из
внутреннего слоя фугасного взрывчатого вещества, среднего слоя недетонирующего ма-
териала и внешнего слоя алюминизированного взрывчатого вещества. Изучено влия-
ние наличия оболочки и режимов инициирования заряда на максимальные избыточ-
ное давление и импульс заряда. С использованием программы AUTODYN разработан
численный метод вычисления пространственного распределения избыточного давления
ударной волны. Показано, что различие результатов численных расчетов, полученных
с использованием предложенного метода, и экспериментальных данных не превышает
16,9 %. С увеличением расстояния от заряда различие значений избыточного давле-
ния на различных азимутах уменьшается. По мере удаления от центра заряда профиль
ударной волны приобретает сферическую форму. Установлено, что избыточное давле-
ние составного заряда с оболочкой в радиальном направлении больше, чем в осевом
направлении, и быстро уменьшается с увеличением расстояния. Азимут, соответству-
ющий максимальному избыточному давлению для заряда без оболочки, равен 75◦, для
заряда с оболочкой — 110◦. Показано, что энергия составного заряда при инициирова-
нии внутреннего слоя меньше, чем при одновременном инициировании внутреннего и
внешнего слоев.

Ключевые слова: ударная волна, составной заряд, избыточное давление, импульс,
эксперимент

Введение. Оценка динамической реакции конструкций, подвергающихся взрывным
нагрузкам, зависит от точности определения их характеристик [1]. Современные рекомен-
дации, в частности UFC 3-340-01 (USACE 2002) и UFC 3-40-02 (USACE 2014), обычно
используются для оценки взрывных нагрузок, создаваемых сферическим зарядом. В по-
следнее время разработан ряд усовершенствованных конструкций зарядов, характеристи-
ки взрывной нагрузки которых существенно отличаются от характеристик традиционных

сферических и цилиндрических зарядов. Широко используется многослойный кольцевой
заряд [2–4], состоящий из различных слоев взрывчатых веществ (ВВ) с различной скоро-
стью детонации и слоя недетонирующего материала, при наличии которого уменьшается
или увеличивается энергия детонации. Для получения различных значений выходной энер-
гии используется заряд с различными режимами инициирования. Результаты исследова-
ния характеристик взрывной волны комбинированного заряда могут быть использованы

для прогнозирования взрывных нагрузок боевого заряда.

Работа выполнена при финансовой поддержке Национального фонда естественных наук Китая (грант
№ 11972018) и Китайского фонда поддержки постдокторов (грант № 2021M701710).
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Распределение взрывной нагрузки составного заряда имеет более сложный характер,
чем распределение взрывной нагрузки одиночного заряда, а наличие слоя недетонирую-
щего материала может оказывать существенное влияние на взрывные характеристики со-
ставного заряда. Использование в заряде инертного материала влияет на взаимодействие
детонационных волн, генерируемых внутренним и внешним слоями ВВ, а применение хи-
мически активного материала позволяет увеличить тепловыделение заряда в результате

реакции, происходящей при разлете ВВ, при этом компенсируются потери энергии, вы-
званные наличием слоя недетонирующего материала.

В работах [5, 6] исследовано влияние режимов инициирования на величину избыточ-
ного давления многослойного составного заряда и установлено, что максимальное значе-
ние избыточного давления достигается при одновременном инициировании внутреннего и

внешнего слоев (далее — одновременное инициирование), промежуточное значение — при

инициировании внешнего слоя и минимальное значение — при инициировании внутренне-
го слоя (далее — внутреннее инициирование). В [7] проведено сравнение мощности взрыва
и осколков составного заряда, заключенного в спиральный и гибридный корпусы. Уста-
новлено, что для заряда в гибридном корпусе значения скорости осколков и избыточного
давления при различных режимах инициирования существенно различаются.

С появлением доступных программных пакетов (AUTODYN, LS-DYNA), позволяю-
щих выполнять численное моделирование, проведены исследования характеристик взрыва
сферических и цилиндрических зарядов [8–14], в том числе пространственного распреде-
ления избыточного давления ударной волны по различным азимутам [8] и на различных
расстояниях от взрыва [10], влияния геометрии заряда [11], режимов инициирования [12]
и наличия оболочки на энерговыделение заряда [13, 14]. Для многослойного составного
заряда масса ВВ и режим инициирования оказывают существенное влияние на процессы

распространения детонационной волны и выделения энергии при детонации, от которых
существенно зависит давление в ударной волне [15–17]. Ранее в основном исследовались ха-
рактеристики составных зарядов с малым удлинением. Влияние различных ограничений
и режимов инициирования на характеристики ударной волны исследовано недостаточно.

В данной работе приводятся результаты численного моделирования характеристик

ударной волны, создаваемой многослойным зарядом. Проведено сравнение результатов мо-
делирования и экспериментальных данных.

1. Численная модель. На рис. 1 представлено поперечное сечение исследуемого со-
ставного заряда с оболочкой. Конструкция заряда включает внутренний слой ВВ (диаметр
30 мм, длина 200 мм), слой полимерного наполнителя (внутренний диаметр 30 мм, тол-
щина 15 мм, длина 200 мм), внешний слой ВВ (диаметр 65 мм, толщина 15 мм, длина
200 мм), корпус из стали марки Ст. 45, представляющий собой цилиндрическую оболочку
и две торцевые крышки. В соответствии с параметрами фугасной бомбы [18] толщина
оболочки цилиндра принята равной 10 мм. Внутренний и внешний заряды представляют
собой ВВ JH-2 (RDX (гексоген) — 95 %, DNT (динитротолуол) — 3 %, CZ (циркон) — 2 %)
и алюминизированное ВВ (RDX (гексоген) — 76 %, Al — 20 %, wax (воск) — 4 %), кото-
рые были изготовлены методом прессования. Исследовались два режима инициирования:
1) детонация только внутреннего слоя ВВ (внутреннее инициирование); 2) детонация внут-
реннего и внешнего слоев ВВ (одновременное инициирование). Для исследования влияния
структуры заряда было проведено моделирование одиночного цилиндрического тротило-
вого заряда с одной и той же эквивалентной массой при двух режимах инициирования.

1.1. Вычислительная модель и параметры материала. Для исследования ударной вол-
ны, характеризующейся высокой частотой, узкой шириной импульса и быстрым затуха-
нием, на этапе генерации ударной волны размер сетки был выбран достаточно мелким.
Поскольку максимальное исследуемое расстояние от центра заряда составляет 4 м, исполь-
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Рис. 1. Схема составного заряда с защитным слоем недетонирующего материала:
1 — торцевая крышка, 2 — цилиндрическая оболочка, 3 — внешний слой ВВ, 4 — слой

недетонирующего материала, 5 — внутренний слой ВВ

зование трехмерной модели не гарантирует точности расчетов. Поэтому была разработана
двумерная модель распространения ударной волны с использованием программного паке-
та AUTODYN.

При исследовании распространения ударной волны на небольшом расстоянии от цен-
тра заряда решалась осесимметричная задача (рис. 2,а). С помощью решателя Эйлера —
Годунова создавалась воздушная зона размером 1,0 × 0,5 м, заполненная ВВ и недетони-
рующим материалом. На рис. 2,а плоскость y = 0 является плоскостью симметрии. При
моделировании предполагалось, что вне области x = 1 м, y = 0,5 м распространяется
воздушная ударная волна.

При моделировании ударной волны на большом расстоянии от центра заряда рассмат-
ривалась область размером 8× 4 м (рис. 2,б). В этой области располагались 57 гауссовых
точек на расстояниях 1, 2, 4 м от центра заряда. Азимут точек 38, 57 и 76 считался равным
α = 0◦, азимут остальных точек увеличивался в направлении против часовой стрелки с
интервалом 10◦.

Процесс моделирования включал два этапа (рис. 3). На первом этапе моделирова-
лись распространение взрывной детонационной волны и ее взаимодействие с оболочкой

(см. рис. 3,а). Из результатов проведенных ранее экспериментов следует, что через 60 мкс
с момента инициирования заряда оболочка полностью разрушается и не влияет на после-
дующее распространение ударных волн. Начиная с этого момента влияние оболочки не
учитывалось, а расчет завершался при достижении ударной волной границы расчетной
области (см. рис. 3,б).

Затем с учетом результатов расчета, полученных на первом этапе, моделировалось
распространение ударной волны на расстоянии от центра заряда R = 4 м (см. рис. 3,в)
и вычислялось избыточное давление в ударной волне, приходящей в различные гауссовы
точки (см. рис. 3,г).

Для внутреннего и внешнего слоев ВВ необходимо использовать различные уравнения

состояния в соответствии с режимом инициирования. Для описания детонации и реакции
ВВ JH-2 использовалось уравнение состояния Джонса — Уилкинса — Ли [16]

p = A
(
1− ω

R1V̄

)
e−R1V̄ + B

(
1− ω

R2V̄

)
e−R2V̄ +

ωE0

V̄
, (1)

где p — давление в продуктах детонации; V̄ = ρ0/ρ1 — удельный объем; ρ0, ρ1 — плот-
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Рис. 2. Области моделирования ударной волны при ее распространении на

различных расстояниях от точки инициирования заряда:
а — схема заряда и области распространения ударной волны, б — расположение гаус-
совых точек в расчетной области; 1 — вакуум, 2 — воздух, 3 — сталь марки Ст. 45,
4 — алюминизированное ВВ, 5 — полиуретан, 6 — ВВ JH-2, 7 — точки инициирования

ность ВВ и продуктов детонации соответственно; E0 — внутренняя энергия в единице

объема; A, B, R1, R2, ω — константы. Для описания реакции воспламенения алюминизи-
рованного ВВ используется уравнение состояния [17]

dλ

dt
= I(1− λ)b

(ρ1

ρ0
− 1− a

)x
+ G1(1− λ)cλdρy + G2(1− λ)eλgρz, (2)

где λ — химическая активность ВВ; t — время; I, G1, G2, a, b, c, d, e, g, x, y, z — констан-
ты. При одновременном инициировании обоих ВВ их поведение описывается уравнением
Джонса — Уилкинса — Ли. Кроме того, для описания поведения полимера использовалось
уравнение состояния, приведенное в работе [19], а для описания деформирования оболоч-
ки — модель Джонсона — Кука [20]. Значения констант, входящих в уравнение состояния
Джонса — Уилкинса — Ли, приведены в табл. 1 [17].

В уравнении (1) состояния для непрореагировавшего алюминизированного ВВ исполь-
зовались следующие значения параметров: A = 40,66 Мбар, B = −1,339 Мбар, R1 = 7,2,
R2 = 3,6, ω = 0,9, E0 = 0,000 91 Гэрг/мм3.

В уравнении (2) при описании реакции воспламенения алюминизированного ВВ ис-
пользуемые параметры имели следующие значения: I = 7 · 1011, b = 0,667, a = 0, x = 20,
G1 = 6500, c = 0,667, d = 0,111, y = 1, G2 = 200, e = 0,333, g = 1,0, z = 3.
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Рис. 3. Этапы моделирования распространения ударной волны:
а — распространение ударной волны на небольшом расстоянии от центра заряда, б —
достижение ударной волной границы расчетной области, в — достижение ударной вол-
ной границы расчетной области (масштабирование), г— распространение ударной вол-
ны на большом расстоянии от центра заряда

Та б л и ц а 1
Значения параметров в уравнении состояния Джонса — Уилкинса — Ли

ВВ ρ, г/см3 D, м/с A, Mбар B, Mбар R1 R2 ω

JH-2 1,700 8425 8,524 0,1802 4,6 1,3 0,38
Алюминизированное 1,823 8270 7,520 0,1200 4,4 1,3 0,33
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Рис. 4. Результаты расчета реакции оболочки, полученные с использованием
двумерной (1, 2) и трехмерной (3, 4) моделей:
a — работа ударной волны, затраченная на деформирование оболочки, б — скорость

расширения оболочки; 1, 3 — первая гауссова точка, 2, 4 — вторая гауссова точка

При использовании двумерной модели для описания распространения взрывной удар-
ной волны, создаваемой оболочечными составными зарядами, результаты расчетов мо-
гут не соответствовать реальному процессу, что в основном обусловлено моделированием
разрушения оболочки. Поэтому для исследования влияния взаимодействия детонационной
волны с оболочкой на формирование ударной волны в воздухе были разработаны двумер-
ная и трехмерная модели, в которых размер ячейки расчетной сетки полагался равным
1 мм. Первая и вторая гауссовы точки выбраны на внутренней поверхности цилиндри-
ческой оболочки на расстояниях от торцевой крышки, равных 5 и 15 см соответственно.
Различие значений работы Ex, затраченной на деформирование оболочки, и максимальной
скорости ее расширения vx составляет 5,8 и 3,2 % соответственно (рис. 4). Поведение кри-
вых, полученных с использованием обеих моделей и приведенных на рис. 4, согласуется.

1.2. Сходимость результатов численных расчетов, полученных с использованием се-
ток различного размера. При моделировании распространения ударной волны использо-
вались сетки с размерами ячеек l = 0,5; 0,8; 1,0; 1,5; 2,0; 2,5 мм. Полученные кривые
избыточного давления при распространении ударной волны на небольшом расстоянии от

центра заряда приведены на рис. 5,а.
Максимальные значения избыточного давления, вычисленные на сетках с размерами

ячеек менее 1,0 мм, различались менее чем на 1,3 %. Поэтому сетки с размером ячеек
1 мм использовались при выполнении расчетов на следующем этапе. При моделировании
распространения ударной волны на большом расстоянии от центра заряда использовались

сетки с ячейками размером l = 5, 8, 10, 15, 20, 25 мм. Полученные кривые избыточного
давления приведены на рис. 5,б. Результаты численных расчетов, полученные на сетках с
размером ячеек менее 10 мм, различаются менее чем на 1,2 %. Поэтому сетка с размером
ячеек 10 мм использовалась в расчетах на данном этапе распространения ударной волны.

1.3. Сравнение результатов численных расчетов и экспериментальных данных. Про-
ведены эксперименты по измерению избыточного давления при внутреннем и одновремен-
ном инициировании составного заряда.

На рис. 6 приведены зависимости избыточного давления от времени, полученные при
численном моделировании и в эксперименте. Видно, что они хорошо согласуются. При
внутреннем инициировании заряда время прихода ударной волны в различные точки, опре-
деленное в численных расчетах, незначительно меньше экспериментального. Это может
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Рис. 5. Зависимости избыточного давления от времени при распространении

ударной волны на различных расстояниях от центра заряда, вычисленные на
сетках с ячейками различного размера:
а — ударная волна на небольшом расстоянии от центра заряда (1 — l = 0,5 мм, 2 —
l = 0,8 мм, 3 — l = 1,0 мм, 4 — l = 1,5 мм, 5 — l = 2,0 мм, 6 — l = 2,5 мм), б —
ударная волна на большом расстоянии от центра заряда (1 — l = 5 мм, 2 — l = 8 мм,
3 — l = 10 мм, 4 — l = 15 мм, 5 — l = 20 мм, 6 — l = 25 мм)
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Та бли ц а 2
Расчетные и экспериментальные значения избыточного давления и импульса

R, м

Внутреннее инициирование Совместное инициирование

∆pm, кПа
∆, %

i, кПа · с−1

∆, %
∆pm, кПа

∆, %
i, кПа · с−1

∆, %
Рас-
чет

Экспе-
римент

Рас-
чет

Экспе-
римент

Рас-
чет

Экспе-
римент

Рас-
чет

Экспе-
римент

2 99,9 106,8 6,5 0,062 0,072 13,9 172,0 186,6 7,8 0,116 0,108 −7,4
3 67,2 70,9 5,2 0,046 0,063 27,0 94,1 103,5 9,1 0,080 0,077 −3,9

быть обусловлено наличием опоры датчика и неровностями стенки, которые задерживают
приход ударной волны. В табл. 2 приведены расчетные и экспериментальные значения

избыточного давления и импульса. Различие ∆ между максимальными расчетными и экс-
периментальными значениями избыточного давления и импульса составляет менее 13,7
и 16,9 % соответственно, что подтверждает адекватность разработанной численной мо-
дели.

2. Генерация и распространение детонационной и взрывной волн. Исследова-
но влияние взаимодействия внутренней и внешней детонационных волн составного заряда

на формирование и распространение ударной волны. Поскольку скорости детонации внут-
реннего и внешнего ВВ различны, совместное воздействие энергий детонации этих ВВ
возможно после их инициирования, что, по-видимому, влияет на размер области детона-
ционной реакции и на энерговыделение обоих ВВ.

Изолинии давления через 2, 10 и 18 мкс после инициирования приведены на рис. 7.
Размеры x × y областей, представленных на рис. 7 для этих моментов времени, равны
22× 9 мм, 25× 12 мм и 30× 15 мм соответственно. При внутреннем инициировании пер-
вым детонирует внутренний слой ВВ, имеющего большую скорость детонации, при этом
возникает косая ударная волна в полиуретановом недетонирующем слое. Поскольку вол-
новое сопротивление внутреннего слоя ВВ меньше по сравнению со слоем полиуретана, на
границе этих слоев ударная волна преломляется. Затем ударная волна распространяется
во внешний слой ВВ, в результате чего возникает детонационная волна. Различие момен-
тов времени детонации заряда приводит к отставанию волнового фронта внешнего слоя

от волнового фронта внутреннего слоя, что вызывает удлинение зоны реакции и уменьше-
ние степени реакции внешнего заряда. При одновременном инициировании детонационные

à âá

x
y

1

2

1

2

1

2

Рис. 7. Изолинии детонационного давления в различные моменты времени:
а — t = 2 мкс, б — t = 10 мкс, в — t = 18 мкс; 1 — внутреннее инициирование, 2 —
одновременное инициирование
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Рис. 8. Распространение ударной волны составного заряда без оболочки (а–г)
и с оболочкой (д–з):
а, д — t = 100 мкс, б, е — t = 700 мкс, в, ж — t = 2200 мкс, г, з — t = 6000 мкс; 1 —
внутреннее инициирование, 2 — одновременное инициирование

волны, генерируемые внутренним и внешним зарядами, могут столкнуться внутри слоя
недетонирующего материала, что приведет к значительному увеличению давления в об-
ласти столкновения. В результате скорость выделения тепла и интенсивность взрывной
волны увеличиваются.

Цилиндрический заряд генерирует ударную волну с несферическим профилем. Сфе-
рическая взрывная волна, распространяющаяся в воздухе, генерирует так называемые
концевые и боковые волны, распространяющиеся в осевом и радиальном направлениях
соответственно [7]. Через некоторое время две волны начинают взаимодействовать, гене-
рируя несферическую волну, называемую мостиковой волной [7]. В результате ударная

волна распространяется в различных направлениях. На рис. 8 показаны формы ударной
волны, распространяющейся в воздухе, при различных режимах инициирования зарядов
без оболочки и с оболочкой. Размер x× y областей, представленных на рис. 8, составляет
250× 125 мм.

На небольшом расстоянии от заряда значения избыточного давления существенно раз-
личаются, что обусловлено сложностью структуры заряда. С увеличением расстояния раз-
личие уменьшается и профиль ударной волны постепенно принимает сферическую форму,
аналогичную форме ударной волны для цилиндрического заряда.

Из результатов, приведенных на рис. 8,а–г, следует, что для составного заряда без
оболочки при внутреннем инициировании в направлении под углом 45◦ распространяется
мостиковая волна, аналогичная волне в случае одиночного цилиндрического заряда. Это
свидетельствует о том, что наличие среднего слоя недетонирующего материала практи-
чески не влияет на возникновение и эволюцию концевой и боковой волн. При одновремен-
ном инициировании возникает мостиковая волна, распространяющаяся в направлениях,
близких к направлениям под углами 20 и 160◦, что обусловлено наличием многоочаговых
детонационных волн, распространяющихся от торца заряда. Взаимодействие детонацион-
ных волн может привести к увеличению скорости распространения осевой ударной волны,
в результате чего осевая и боковая волны будут располагаться ближе к концу. В отли-
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Рис. 9. Зависимости избыточного давления от времени на различных расстояни-
ях от центра заряда при распространении ударной волны в двух азимутальных

направлениях:
а, б — внутреннее инициирование, в, г — одновременное инициирование; а, в — R =
1 м, б, г — R = 4 м; 1, 2 — α = 50◦, 3, 4 — α = 140◦; 1, 3 — составной заряд без

оболочки, 2, 4 — заряд с оболочкой

чие от составного заряда без оболочки в заряде с оболочкой характер распространения

ударной волны иной (см. рис. 8,д–з). Мостиковая волна отсутствует, вследствие избыточ-
ного давления наблюдается асимметрия течения. Наличие торцевой крышки оказывает
существенное влияние на детонационную волну, которая распространяется с большей ра-
диальной скоростью, при этом профиль волнового фронта принимает форму, близкую к

эллиптической.
На рис. 9 приведены зависимости избыточного давления от времени при распростране-

нии ударной волны в двух азимутальных направлениях. На приведенных кривых имеется
второй пик, меньший первого, что может быть обусловлено взаимодействием детонаци-
онных волн, распространяющихся от внутреннего и внешнего зарядов. Еще одна важная
особенность кривых, приведенных на рис. 9, заключается в том, что при внутреннем ини-
циировании ударная волна в большей степени диспергирована. Это обусловлено формой
профиля ударной волны, которая при большей энергии инициирования близка к сфериче-
ской.

3. Влияние наличия оболочки на ударную волну. Наличие оболочки может
приводить к задержке возникновения ударной волны и уменьшению ее интенсивности. На
границе между оболочкой и ВВ возникает отраженная ударная волна, что, по-видимому,
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Рис. 10. Распределения по азимуту максимального избыточного давления (а–в)
и импульса (г–е) на различных расстояниях от центра заряда при взрыве одиноч-
ного заряда (1, 2), составного заряда без оболочки (3, 4) и составного заряда с
оболочкой (5, 6):
а, г — R = 1 м, б, д — R = 2 м, в, е — R = 4 м; 1, 3, 5 — внутреннее инициирование,
2, 4, 6 — одновременное инициирование

оказывает влияние на процессы распространения и воздействия детонационной волны. При
разрушении оболочки поглощается энергия взрыва и изменяется интенсивность ударной

волны.
На рис. 10 приведены круговые диаграммы избыточного давления и импульса для

составного заряда без оболочки, составного заряда с оболочкой и одиночного заряда с эк-
вивалентным зарядом. Диаграммы, полученные при одновременном инициировании, были
повернуты на угол, равный 180◦, для более наглядного представления различия процессов
распространения ударной волны при двух режимах инициирования.

Распределения максимальных избыточного давления и импульса составного заряда,
в отличие от одиночного, на различных азимутах более однородны, а форма профиля
импульса ближе к полусфере. Следовательно, при наличии оболочки начальная скорость
ударной волны и градиент давления на соседних азимутах уменьшаются, что обуслов-
ливает форму фронта ударной волны, более близкую к сферической. Также отсутствует
вторичное взаимодействие осевых и радиальных ударных волн, что объясняет отсутствие
мостиковой волны на рис. 8,д–з.

На рис. 10 видна асимметричность распределения избыточного давления. Значения
максимальных избыточного давления и импульса в диапазоне α = 90÷ 180◦ существенно
больше, чем в диапазоне α = 0÷ 90◦. В случае одиночного заряда максимальные значения
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избыточного давления и импульса имеют место на азимуте α ≈ 110◦, в отличие от состав-
ного заряда без оболочки, для которого эти значения имеют место на азимуте α ≈ 75◦. При
детонации заряда на одном торце оболочка начинает разрушаться в окружном направле-
нии вблизи этого торца, затем разрушение распространяется к противоположному торцу.
Таким образом, отмеченное выше смещение положения максимума избыточного давления
может быть обусловлено наличием оболочки вблизи точки инициирования.

Из приведенных на рис. 10 результатов следует, что распределение избыточного дав-
ления в ударной волне, распространяющейся от составного заряда, соответствует распре-
делению избыточного давления в ударной волне, распространяющейся от одиночного за-
ряда, характеризующегося более высоким осевым и радиальным давлением, а также более
низким давлением при угле, приближенно равном 45◦. Для составного заряда c оболочкой
радиальное избыточное давление больше осевого на небольших расстояниях от центра за-
ряда вследствие наличия торцевых крышек. При увеличении расстояния до R = 2 м осевые
значения избыточного давления и импульса становятся больше радиальных. Это означа-
ет, что радиальное избыточное давление для заряда с оболочкой уменьшается быстрее
осевого. При внутреннем инициировании максимальные значения избыточного давления в
ударной волне, распространяющейся от составного заряда без оболочки и с оболочкой, су-
щественно различаются. При одновременном инициировании это различие уменьшается.
Таким образом, при наличии оболочки различие энерговыделения заряда при двух режи-
мах инициирования уменьшается.

4. Влияние способа инициирования на ударную волну. На рис. 11 приведены
распределения избыточного давления и импульса при внутреннем и одновременном ини-
циировании заряда. Форма кривых при двух режимах инициирования практически одина-
кова. Таким образом, режим инициирования практически не влияет на характер распреде-
ления избыточного давления (максимальные значения избыточного давления и импульса,
положение мостиковой волны и т. д.) при различных азимутальных углах.

Для исследования энерговыделения составного заряда при двух режимах иницииро-
вания характеристики ударной волны, генерируемой зарядом, сравнивались с характери-
стиками ударной волны одиночного заряда с такой же эквивалентной массой. При этом
избыточное давление вычислялось по эмпирическим формулам. Сложный характер рас-
пределения избыточного давления для составного заряда обусловливает большую погреш-
ность при определении импульса. Поэтому рассчитывались только значения максималь-
ного избыточного давления. В соответствии с экспериментальными данными формула для
вычисления максимального избыточного давления, возникающего при сферическом взрыве
тротила в бесконечной воздушной среде, имеет вид [21]

∆pm = 0,082
1

R̄
+ 0,265

1

R̄2
+ 0,686

1

R̄3
, 1 6 R̄ 6 15, (3)

где R̄ = R/
√

Wt; Wt — масса заряда; R — расстояние от центра заряда. Для вычисления
максимального избыточного давления, создаваемого ВВ, массу в тротиловом эквиваленте
можно определить в соответствии с теорией ВВ, а затем рассчитать по формуле (1). Для
исследуемого в данной работе составного заряда величина Wt определяется по формуле

Wt =
Qv1W1 + Qv2W2

Qvt
,

где Qv1, Qv2, Qvt — количество теплоты при детонации внутреннего слоя ВВ, внешнего
слоя ВВ и тротила соответственно. Для составного заряда эквивалентная масса ВВ m1

вычисляется по формуле

m1 = m
[ α

2− α
+

2(1− α)

2− α

( r0

rp0

)2γ−2]
,
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Рис. 11. Распределения по углу максимальных избыточного давления (а–в) и
импульса (г–е) при различных режимах инициирования составных зарядов без
оболочки (1, 2) и с оболочкой (3, 4) на различных расстояниях от центра заряда:
а, г — R = 1 м, б, д — R = 2 м, в, е — R = 4 м; 1, 3 — внутреннее инициирование,
2, 4 — одновременное инициирование

где m — общая масса ВВ; α = m/(m+mc); mc — масса оболочки; r0, rp0 — начальный ра-
диус оболочки и радиус разрушенной оболочки; γ — коэффициент удельной теплоемкости

воздуха, обычно принимаемый равным 1,4 [21]. Полученные теоретические результаты
приведены также на рис. 11.

Из результатов, представленных на рис. 11, следует, что и для составного заряда без
оболочки, и для составного заряда с оболочкой максимальные значения избыточного давле-
ния, полученные в результате численного моделирования, в целом меньше максимального
значения избыточного давления, вычисленного по формуле (3). На большом расстоянии от
центра заряда при одновременном инициировании максимальные теоретические значения

близки к значениям, полученным в результате численного моделирования, а при внутрен-
нем инициировании превышают их. Это обусловлено тем, что при внутреннем иницииро-
вании составного заряда недетонирующий материал поглощает энергию взрывной волны,
в результате чего максимальное избыточное давление уменьшается, при одновременном
инициировании поглощение компенсируется совместным воздействием энергий внутрен-
него и внешнего зарядов.

На рис. 12 приведена зависимость величины β (отношения максимального значения
избыточного давления, полученного в результате численного моделирования, к значению,
вычисленному по приведенным выше формулам) от азимутального угла. Для композитно-
го заряда без оболочки максимальное избыточное давление в осевом и радиальном направ-



26 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 3

a, ãðàä

à áb

4

5

6

150120906030 180

0,5

1,0

0,5

2,0

2,5

0

1

2

3

a, ãðàä

b

4
5

6

150120906030 180

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

0

1

2

3

Рис. 12. Зависимость величины β от азимутального направления:
а — составной заряд без оболочки, б — составной заряд с оболочкой; 1, 2 — R = 1 м,
3, 4 — R = 2 м, 5, 6 — R = 4 м; 1, 3, 5 — внутреннее инициирование, 2, 4, 6 —
одновременное инициирование

лениях больше, чем в направлении под углом 45◦. С увеличением расстояния от центра
заряда амплитуда колебаний кривой уменьшается и при R ≈ 4 м практически не меняет-
ся. В частности, значения β, полученные при численном моделировании при внутреннем
инициировании заряда, в основном меньше теоретических значений, причем среднее зна-
чение равно β = 0,46. При одновременном инициировании значения β, полученные при
численном моделировании, в основном больше теоретических значений, при этом среднее
значение равно β = 0,96. Это свидетельствует о том, что в данном случае энерговыделение
близко к энерговыделению заряда без оболочки с такой же эквивалентной массой заряда.
Следует отметить, что на различных расстояниях R при азимутальных углах α = 70, 120◦

значения β практически одинаковы и близки к теоретическим значениям. Для составного
заряда с оболочкой максимальное избыточное давление в радиальном направлении больше,
чем для заряда без оболочки, при этом энерговыделение значительно меньше, его среднее
значение равно 0,35 при внутреннем инициировании и 0,73 при одновременном иницииро-
вании.

Заключение. В работе предложен метод расчета составного заряда с использовани-
ем программы AUTODYN. Для проверки адекватности предложенного метода выполнен
взрывной эксперимент. Исследовано влияние наличия оболочки и режимов инициирования
на процесс распространения ударной волны. В частности, изучены распределения избы-
точного давления и импульса на различных азимутах и расстояниях от центра заряда.

Установлено, что для расчета избыточного давления на малом и большом расстояниях
от центра заряда достаточно использовать сетки с размером ячеек, равным 1 и 10 мм со-
ответственно. Значения максимального избыточного давления и импульса, полученные в
результате моделирования, хорошо согласуются с экспериментальными значениями (раз-
личие результатов не превышает 16,9 %).

При внутреннем инициировании фронт детонационной волны, распространяющейся
от внешнего заряда, отстает от фронта волны, распространяющейся от внутреннего за-
ряда. При одновременном инициировании в среднем слое появляется вогнутая зона столк-
новения, что приводит к возникновению пересжатой волны детонации и значительному

увеличению избыточного давления.
На небольших расстояниях от центра заряда избыточное давление составного заряда

на различных азимутах существенно различается. С увеличением расстояния это различие
уменьшается, а фронт ударной волны принимает сферическую форму.
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В случае заряда с оболочкой отсутствует мостиковая волна, а распределение избы-
точного давления по различным азимутам является более равномерным. На малых рас-
стояниях избыточное давление в радиальном направлении больше, чем в осевом, и с уве-
личением расстояния уменьшается. Максимальное избыточное давление имеет место на
азимуте α ≈ 110◦. Для составного заряда без оболочки максимальное избыточное давление
возникает на азимуте α ≈ 75◦.

При внутреннем инициировании недетонирующий материал поглощает значительное

количество энергии взрывной волны, при этом максимальное избыточное давление умень-
шается. При одновременном инициировании поглощение энергии волны компенсируется
совместным воздействием энергий зарядов.
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3. Maiz L., Trzciński W. A., Paszula J. Semi-closed investigations of new aluminized
thermobaric and enhanced blast composites // Propellants, Explosiv., Pyrotech. 2017. V. 42,
N 8. P. 857–863.

4. Li J., Li W., Yu J., et al. Blast performance of layered charges enveloped by aluminum
powder/rubber composites in confined spaces // Defence Technol. 2022. V. 18, N 4. P. 583–592.

5. Hong X. W., Li W. B., Li W. B., et al. Experimental study on explosion dispersion process of
a multi-layer composite charge under different initiation modes // Defence Technol. 2020. V. 16,
N 4. P. 883–892.

6. Hong X. W., Li W. B., Wang X. M., et al. Explosion temperature and dispersion
characteristics of composite charges based on different non-detonative materials // Propellants,
Explosiv., Pyrotech. 2018. V. 43, N 12. P. 1251–1262.

7. Reynolds M., Huntington-Thresher W. Development of tuneable effects warheads // Defence
Technol. 2016. V. 12, N 3. P. 255–262.

8. Gao C., Kong X. Z., Fang Q., et al. Numerical investigation on free air blast loads generated
from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation //
Defence Technol. 2021. V. 8. P. 1–17.

9. Langlet A., Souli M., Aquelet N., et al. Air blast reflecting on a rigid cylinder: simulation
and reduced scale experiments // Shock Waves. 2015. V. 25, N 1. P. 47–61.
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