УДК 662.612

ЭКСПЕРИМЕНТАЛЬНО-РАСЧЕТНАЯ МЕТОДИКА ОЦЕНКИ КИНЕТИЧЕСКИХ ПРОЦЕССОВ ТЕРМОХИМИЧЕСКОГО ПРЕВРАЩЕНИЯ ТВЕРДЫХ ОРГАНИЧЕСКИХ ТОПЛИВ

Е. А. Бойко, С. В. Пачковский, Д. Г. Дидичин

Красноярский государственный технический университет, 660074 Красноярск, boikoe@fivt.krasn.ru

Предложена экспериментально-расчетная методика оценки степени термохимического превращения твердых органических топлив, основанная на использовании методов комплексного термического анализа и математического моделирования. В основу методики обработки данных термогравиметрического эксперимента и описания математической модели положена единая расчетная схема материальных балансов и кинетических процессов выгорания натуральных углей. Получено удовлетворительное количественное соответствие экспериментальных и численных результатов.

Ключевые слова: уголь, кинетические процессы, комплексный термический анализ, математическое моделирование.

Опыт использования твердых органических топлив на тепловых электростанциях показывает, что до сих пор отсутствуют способы их эффективного и надежного сжигания, обеспечивающие экологическую чистоту работы котельных агрегатов.

Для формирования практических рекомендаций по выбору рациональных режимов сжигания твердых органических топлив необходимо установление основанной на кинетических параметрах взаимосвязи показателей качества угля с характеристиками различных этапов его термохимического превращения. Эмпирические зависимости, применяемые в большинстве работ (см., например, [1-4]), учитывают далеко не все основные этапы и факторы, влияющие на эффективность горения, и, что самое существенное, не связаны в очевидной форме с реакционными параметрами, описывающими эти процессы, что ставит под сомнение надежность указанных методик и качество предлагаемых технических решений.

Целью настоящей работы является разработка методики оценки кинетических характеристик основных стадий термохимического превращения широкого класса твердых органических топлив применительно к условиям реальных топочных процессов, которая обеспечивала бы качественную и количественную сходимость численных и экспериментальных данных.

Считая, что реакционная способность адекватна времени полного выгорания энерге-

тического топлива, можно констатировать, что при пылевидном сжигании эта характеристика определяется набором параметров последовательно-параллельных процессов, в частности: скоростью испарения влаги, скоростью выделения и горения летучих веществ, скоростью горения нелетучего (коксового) остатка. При этом схема выгорания угольного вещества на определенных этапах осложняется протеканием таких процессов, как хемосорбция кислорода, взаимодействие нелетучего остатка с диоксидом углерода и водяным паром, превращение химических компонентов минеральной части топлива и т. д. [5]. Необходимость учета этих процессов при оценке степени термохимических превращений, определяющих выгорание пылевидного твердого топлива, обусловлена их существенным взаимным влиянием друг на друга, а также значительным вкладом эндо- и экзотермических процессов. Максимальная достоверность такой оценки может быть достигнута при реализации комплексного подхода, включающего экспериментальное определение реакционных характеристик различных стадий процесса горения топлива и вычисление на основе этих данных кинетических параметров термохимического превращения углей.

Принципиальной особенностью предлагаемой методики является единство экспериментально-методических приемов и аналитического аппарата с точки зрения структурной схемы и базовых математических моделей, использу-

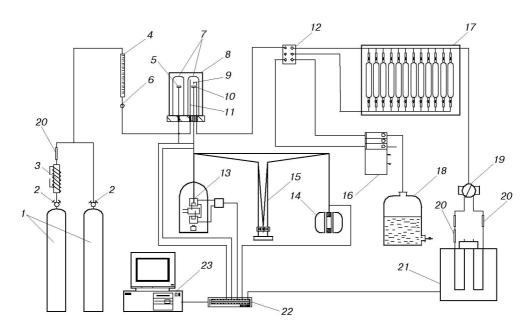


Рис. 1. Принципиальная схема установки комплексного термического анализа твердого топлива:

1 — баллоны с газом; 2 — регуляторы расхода; 3 — реактор для удаления кислорода на линии подачи инертного газа; 4 — ротаметр; 5 — тигель с инертным образцом; 6 — тонкий регулятор расхода; 7 — кварцевые стаканы; 8 — печь; 9 — кварцевый зонд для отвода газообразных продуктов реакции; 10 — тигель с исследуемым образцом; 11 — канал подвода газа в реакционное пространство; 12 — шестиходовой кран; 13 — катушка индуктивности; 14 — дифференциальный трансформатор для преобразования термогравиметрического сигнала; 15 — аналитические весы; 16 — перистальтический насос; 17 — штатив газовых пипеток; 18 — газометр с солевым раствором; 19 — кран-дозатор; 20 — аскаритовый и ангидронный фильтры; 21 — хроматографический газоанализатор; 22 — цифровой контроллер; 23 — компьютер

емых для описания отдельно взятых этапов и процессов выгорания твердого органического топлива. Однако для практической реализации такого подхода необходимо преодолеть ряд методических трудностей, связанных с определением скоростей различных этапов термохимического превращения углей в широком диапазоне режимных условий (среда, температура, скорость нагрева и т. д.), сопряженных с наложением друг на друга нескольких процессов и невозможностью их раздельной оценки применительно к условиям реальных технологических процессов переработки твердых органических топлив.

Эффективным средством решения указанной задачи является комплексный термический анализ твердого топлива при непрерывной регистрации в неизотермических условиях в сочетании с методами математического моделирования кинетических процессов. При этом в основу методики обработки данных термогравиметрического эксперимента и математической модели должна быть положена общая

структурная физико-химическая схема с набором базовых моделей отдельно взятых процессов и этапов, ответственных за выгорание твердого органического топлива.

Установка для комплексного термического анализа твердого топлива (рис. 1) объединяет в рамках единой функциональной схемы *Q*-дериватограф марки 1500 Венгерской фирмы МОМ и хроматографический газоанализатор «Союз-3101», что позволяет наряду с суммарными характеристиками процесса нагрева навески угля (убыль массы, скорость убыли массы, изменение температуры, тепловые эффекты) изучать также и динамику выделения газообразных продуктов (СО, СО₂, Н₂, СН₄ и др.) в неизотермических условиях [6]. Параметры режима работы Q-дериватографа подбирались и уточнялись оценочными расчетами по результатам реализации многократных изотермических и квазистатических режимов таким образом, чтобы обеспечивалось протекание процессов термообработки исследуемого материала в строго кинетической области

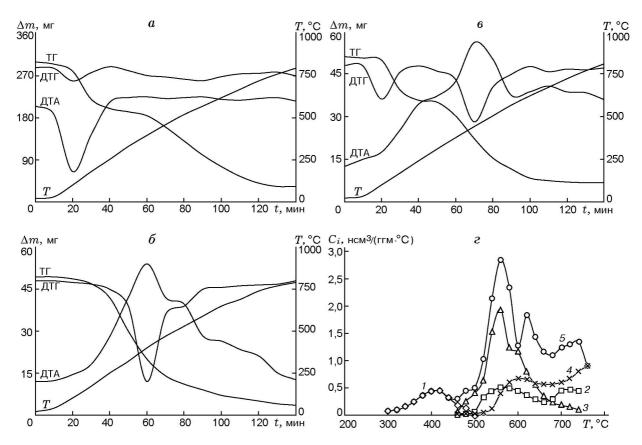


Рис. 2. Данные комплексного термического анализа на примере ирша-бородинского угля ($b=5~^{\circ}\mathrm{C/muh}$):

a — термическое разложение; b — горение коксовой основы; b — термоокислительная деструкция; b — динамика выделения индивидуальных газовых компонентов в инертной среде: b — b — b — b — суммарный выход компонентов (нсмb /ггм — нормальный сантиметр/грамм горючей массы топлива)

при отсутствии диффузионных осложнений [7]. Режимные параметры работы дериватографа при термическом разложении топлива: среда инертная (Не), масса угольной навески 500 мг, скорость нагрева $5 \div 20$ °C/мин; при сжигании нелетучих продуктов термического разложения и термоокислительной деструкции: среда окислительная (воздух), масса угольной навески 50 мг, скорость нагрева $5 \div 20$ °C/мин. Для исследуемых процессов использовался также ряд обобщенных настроек: инертный материал — Al_2O_3 ; тигель платиновый; чувствительность записи: термогравиметрической $(T\Gamma) - 500$ мкВ, дифференциально-термической (ДТА) — 1000 мкВ, дифференциальнотермогравиметрической (ДТГ) — 500 мкВ; расход газа 200 см³/мин; размер частиц угля — полифракция (с остатками на ситах $R_{90} = 45 \div 50 \%, R_{200} = 28 \div 32 \%, R_{1000} < 1 \%$).

Методика оценки кинетики выгорания пылевидного твердого топлива основана на экспериментальных данных трех опытов (рис. 2), обработанных с помощью комплексного термического анализа [8]: 1) в инертной среде — выделение летучих веществ, по результатам газового анализа определяются характеристики процесса испарения влаги, общий выход и состав летучих веществ, ДТГ-кривая после вычитания дифференциальной кривой суммарного выхода парогазовых компонентов преобразуется в кривую смоловыделения; 2) в окислительной среде — выгорание нелетучего остатка, получаемого в предыдущем опыте; 3) в окислительной среде — термоокислительная деструкция исходного угольного вещества, характеризующаяся наложением процессов испарения влаги, выделения и горения летучих веществ, а также горения нелетучей основы.

Учитывая одновременность протекания при термоокислительной деструкции нескольких процессов, суммарная скорость которых регистрируется в виде ДТГ-кривой, процесс

выхода летучих веществ («синтетических» летучих [9]) выделяли путем вычитания скорости окисления коксовой основы из ДТГ-кривой процесса термоокислительной деструкции. Скорость реакции окисления нелетучего остатка определялась по результатам второго опыта и накладывалась на ДТГ-кривую процесса термоокислительной деструкции при соответствующей корректировке температурных интервалов.

Затем полученную в первом опыте суммарную кривую скорости газовыделения совмещали с периодом выхода летучих веществ, выделенным при термоокислительной деструкции. При этом кривую пересчитывали по отношению скоростей выделения летучих веществ в инертной и окислительной средах, принимая постоянным общее количество газового компонента. Вычитая из дифференциальной кривой процесса выделения летучих в окислительной среде соответствующую кривую газовыделения, получали дифференциальную кривую смоловыделения в окислительной среде («синтетические» смолы).

Вышеприведенная методика получения экспериментальных данных по результатам трех опытов (термическое разложение, горение нелетучего остатка и термоокислительная деструкция) позволяет перейти к их обработке с целью определения кинетических параметров (энергия активации E и предэкспоненциальный множитель k_0 , числа индивидуальных стадий реагирования N, S, G, доля прореагировавшего вещества, температурный диапазон реакций т. д.) многостадийных последовательно-параллельных процессов термохимического превращения топлива [10].

Кинетический анализ и оценку сложных экспериментальных кривых, отражающих динамику термохимического превращения твердого органического топлива, выполняли с помощью вычислительного программного комплекса [11], построенного на основе обобщенной кинетической математической модели в предположении аддитивности многостадийного процесса, удовлетворяющей расчетной схеме (рис. 3). Математическая модель представляет собой систему обыкновенных дифференциальных уравнений:

$$\frac{dW_{0,h}}{d\tau} = -k_{0,W_{0,h}} \exp\left(-\frac{E_{W_{0,h}}}{RT(\tau)}\right) W_{0,h}; \qquad (1)$$

$$\frac{dV_0}{d\tau} = -\left[\sum_{i=1}^{M} \sum_{j=1}^{N} k_{0,V_{0,ij}} \exp\left(-\frac{E_{V_{0,ij}}}{RT(\tau)}\right) V_{0,ij}\right];$$
(2)

$$\frac{dV}{d\tau} = \sum_{i=1}^{M} \sum_{j=1}^{N} k_{0,V_{0,ij}} \exp\left(-\frac{E_{V_{0,ij}}}{RT(\tau)}\right) V_{0,ij} - \sum_{i=1}^{M} k_{0,V_{i}} \exp\left(-\frac{E_{V_{i}}}{RT(\tau)}\right) a V_{i}^{a} O_{2}^{b}; \quad (3)$$

$$\frac{d\mathbf{C}}{d\tau} = -\left[\sum_{r=1}^{S} k_{0,\mathbf{C},r} \exp\left(-\frac{E_{\mathbf{C},r}}{RT(\tau)}\right) a \mathbf{C}^{a} \mathbf{O}_{2}^{b} + \sum_{u=1}^{G} k_{0,\mathbf{C},u} \exp\left(-\frac{E_{\mathbf{C},u}}{RT(\tau)}\right) a \mathbf{C}^{a} P^{b}\right]; \quad (4)$$

$$\frac{d\mathcal{O}_2}{d\tau} = -\left[\sum_{i=1}^M k_{0,V_i} \exp\left(-\frac{E_{V_i}}{RT(\tau)}\right) V_i^a b \mathcal{O}_2^b + \right. \\
\left. + \sum_{r=1}^S k_{0,\mathcal{C},r} \exp\left(-\frac{E_{\mathcal{C},r}}{RT(\tau)}\right) \mathcal{C}^a b \mathcal{O}_2^b\right]; \quad (5)$$

$$\frac{dP}{d\tau} = k_{0,W_{0,h}} \exp\left(-\frac{E_{W_{0,h}}}{RT(\tau)}\right) W_{0,h} +
+ \sum_{i=1}^{M} \sum_{j=1}^{N} k_{0,V_{ij}} \exp\left(-\frac{E_{V_{ij}}}{RT(\tau)}\right) V_{0,ij} +
+ \sum_{i=1}^{M} k_{0,V_{i}} \exp\left(-\frac{E_{V_{i}}}{RT(\tau)}\right) g V_{i}^{a} O_{2}^{b} \varphi_{V_{i}} +
+ \sum_{r=1}^{S} k_{0,C,r} \exp\left(-\frac{E_{C,r}}{RT(\tau)}\right) g C^{a} O_{2}^{b} \varphi_{C,r} +
+ \sum_{u=1}^{G} k_{0,C,u} \exp\left(-\frac{E_{C,u}}{RT(\tau)}\right) g C^{a} P^{b} \varphi_{C,u} -
- \sum_{u=1}^{G} k_{0,C,u} \exp\left(-\frac{E_{C,u}}{RT(\tau)}\right) C^{a} b P^{b}. \quad (6)$$

Здесь $W_{0,h}$ — начальная концентрация гигроскопической влаги топлива; V_0 — начальная концентрация летучих веществ в топливе

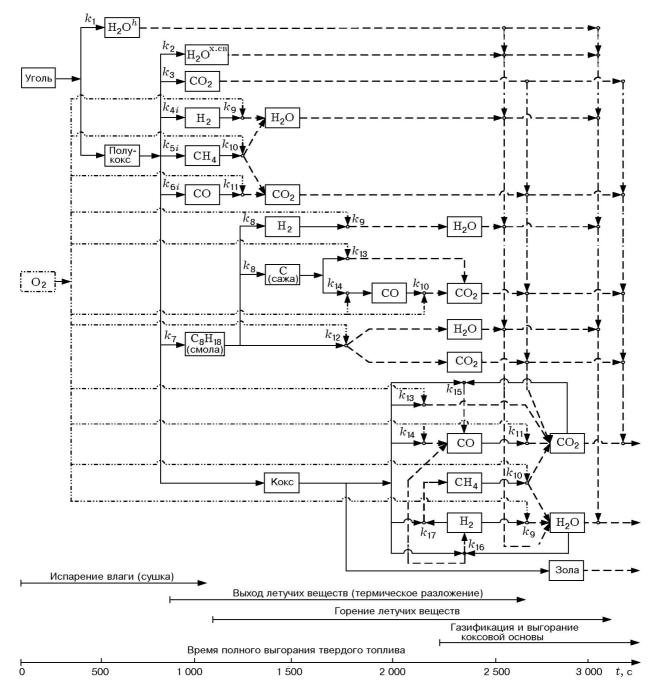
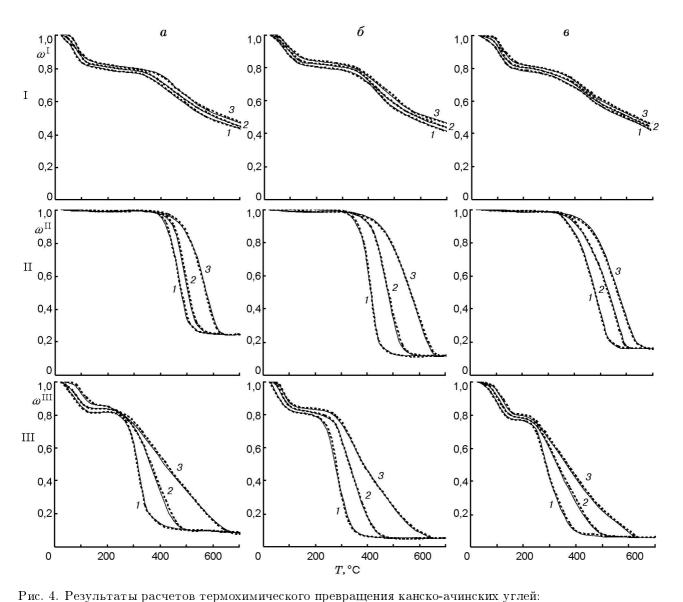


Рис. 3. Расчетная схема кинетических процессов термохимического превращения твердого органического топлива:

длительность процессов приведена для условий комплексного термического анализа при темпе нагрева $b=10~^{\circ}\mathrm{C/muh}$

и продуктов их сгорания								
Состав угля, %						A^{r} $\circ Z$	V ^{daf} %	Q_i^r , кДж/кг
W^r	\mathbf{C}^r	O^r	S^r	H^r	N^r	Α, 70	v , 70	
Ирша-бородинское месторождение								
33,0	41,2	12,1	0,29	2,89	0,57	9,95	48,2	15 318
Березовское месторождение								
35,5	42,4	14,4	0,3	3,0	0,4	4,0	49,5	15 084
Назаровское месторождение								
38,5	38,8	13,5	0,4	2,86	0,41	$5,\!53$	49,1	13 157


 $\begin{tabular}{ll} $T\,a\,6\,\pi\,u\,\mu\,a\ 1$ \\ $\partial_{\mu} = T\,a\,6\,\pi\,u\,\mu\,a\ 1$ \\ $\partial_{\mu} = T\,a\,6\,\pi\,u\,a\ 1$ \\ $\partial_{\mu} = T\,a\,6\,\pi\,u\,a\ 1$ \\ $\partial_{$

(твердой фазе); V — концентрация летучих веществ в газовой фазе; С — концентрация углерода (коксовой основы) в топливе (твердой фазе); O_2 — концентрация кислорода; P — концентрация продуктов: испарения влаги и термического разложения исходного топлива, горения летучих веществ, газификации и горения нелетучего остатка; E, k_0 — соответственно энергия активации и предэкспоненциальный множитель; R — универсальная газовая постоянная; T — температура процесса; τ — время; a, b, g — стехиометрические коэффициенты; φ_x — коэффициент, учитывающий мольную долю компонента x в газовой фазе; i = $1, \dots, M$ — число учитываемых парогазовых компонентов; j = 1, ..., N — число индивидуальных стадий, ответственных за выделение i-го компонента; $r = 1, \ldots, S$ — число групп реакций, описывающих процесс выгорания коксовой основы; $u = 1, \ldots, G$ — число групп реакций, составляющих процесс газификации нелетучего остатка.

Уравнение (1) описывает кинетику испарения гигроскопической влаги с поверхности угля; (2) — многостадийный механизм выхода балластных (H₂O и CO₂) и горючих (H₂, CH₄, CO, смолы (C₈H₁₈)) летучих веществ при термическом разложении органической массы угля; (3) — процесс гомогенного горения выделяющихся летучих веществ; (4) — кинетику гетерогенных реакций выгорания и газификации нелетучего (коксового) остатка; (5) — изменение концентрации кислорода при гомогенном и гетерогенном выгорании соответственно летучих веществ и нелетучего остатка; (6) — динамику образования продуктов термохимического превращения топлива.

Данная математическая модель независимых последовательно-параллельных реакций положена в основу алгоритма обработки брутто-процесса термохимического превращения твердого органического топлива, позволяющего определять всю совокупность реакционных характеристик элементарных стадий этого процесса. Реализация алгоритма базируется на последовательном поиске и расчете элементарных стадий с использованием многофакторного регрессионного анализа [6]. Расчет позволяет последовательно вычитать кинетические кривые найденных стадий из исходного процесса, продолжая обработку до начальной точки экспериментальной кривой исследуемого процесса. На основе изложенной методики выполнены исследования кинетики выгорания канско-ачинских углей, в частности Ирша-Бородинского, Березовского и Назаровского месторождений.

С использованием вышеуказанной математической модели и значений кинетических характеристик, полученных по результатам оценки данных комплексного термического анализа, была решена обратная кинетическая задача для процессов термического разложения, выгорания коксовой основы и термоокислительной деструкции канско-ачинских бурых углей. В настоящей работе приведено сопоставление результатов решения обратной кинетической задачи с данными комплексного термического анализа на примере канско-ачинских углей при скоростях нагрева $b=\frac{dT}{d au}=5,\ 10$ и 20 °С/мин. Характеристики технического анализа и элементного состава канско-ачинских углей приведены в табл. 1.

I м. 4. Гезультаты расчетов термохимического превращения канско-ачинских углеи.

I — термическое разложение, II — выгорание коксовой основы, III — термоокислительная деструкция; уголь: a — ирша-бородинский, b — березовский, b — назаровский; сплошная линия — данные комплексного термического анализа, пунктирная — расчет; b = 5 (1), 10 (2), 20 °C/мин (3)

Тип учитываемых химических реакций согласно расчетной схеме, изображенной на рис. 3, и значения соответствующих кинетических параметров различных процессов и этапов термохимического превращения канскоачинских углей, полученные по результатам обработки данных комплексного термического анализа и дополненные параметрами для гомогенных газофазных реакций (реакции № 9–11) из работы [1], представлены в табл. 2. Для описания неизотермичности процесса термохимического превращения угля в математической модели использовалось уравнение T=

 $T_0 + b au$, соответствующее условиям комплексного термического анализа. Расчет выполнялся на ЭВМ в среде программирования Builder C++5.0. Для численного решения системы дифференциальных уравнений использовался метод Рунге — Кутта — Фельберга с автоматическим выбором шага и точностью 10^{-4} . Результаты расчетов в сопоставлении с данными комплексного термического анализа приведены на рис. 4. На этом рисунке представлены кривые изменения степени термохимического превращения $\omega^{\rm I} = m^{\rm I}/m_0^{\rm I}$, $\omega^{\rm II} = m^{\rm II}/m_0^{\rm II}$ и $\omega^{\rm III} = m^{\rm III}/m_0^{\rm II}$ от температуры процесса, где

m и m_0 — текущая и начальная масса топлива, индексы I, II, III соответствуют термическому разложению, горению коксового остатка и термоокислительной деструкции. Проводился контроль обеспечения строгого соотношения материального баланса процесса термохимического превращения топлива в пересчете на аналитическую массу $m_{\rm T}-m_W-m_V-m_{\rm C}-m_A=0$, где $m_{\rm T}$ — масса исходного топлива, m_W — гигроскопической влаги, m_V — летучих веществ, $m_{\rm C}$ — коксовой основы и m_A — зольного остатка.

Как видно из полученных результатов, наблюдаемая кинетика испарения влаги согласуется с механизмом конкуренции адсорбции и десорбции воды, находящейся в угле в виде общей фазы и молекулярных кластеров пор угольной структуры. Криволинейный характер изменения массы навески топлива в интервале температур 20÷180 °C полностью соответствует схеме испарения гигроскопической формы связи влаги с материалом по классификации Ребиндера. Изменение массы топлива на этом участке соответствует испарению капиллярной влаги и влаги мономолекулярной и полимолекулярной адсорбции, обусловленной водородными связями молекул воды с активными центрами поверхности топлива [8]. Максимальная скорость испарения влаги в диапазоне изменения темпа нагрева $5 \div 20$ °C/мин при сушке иршабородинского, березовского и назаровского углей равна соответственно $2,34 \div 2,85,\ 2,2 \div 2,75$ и $2.53 \div 2.98 \text{ мг/(r·°C)}$ с общим положением максимума температуры $T_{\text{max}} = 70 \div 120$ °C.

Температура, соответствующая максимальной скорости реакции термического разложения у всех трех типов канско-ачинских углей, принимает значения $T_{\text{max}} = 440 \div 460 \, ^{\circ}\text{C}$. Максимальная скорость выхода летучих веществ у ирша-бородинского, березовского и назаровского углей составляет $1.61 \div 1.95$, $1.87 \div$ 2.21 и $1.33 \div 1.69$ мг/(г·°С) соответственно. Пик суммарного газовыделения при термическом разложении ирша-бородинского угля наблюдается при T = 560 °C, березовского — 700 °С и назаровского — 520 °С. Следует отметить, что процесс выделения летучих веществ ирша-бородинского угля в окислительной среде протекает в области более низких температур $(240 \div 360 \, ^{\circ}\text{C})$ и с более высокой скоростью $(5.4 \div 5.6 \text{ мг/(г·°C)})$ по сравнению с аналогичным процессом в инертной среде $(300 \div 580 \, ^{\circ}\mathrm{C})$ и $1,29 \div 1,36 \text{ мг/(г·°C)}$). Аналогичный эффект наблюдается при выделении летучих веществ березовского и назаровского углей.

Выгорание нелетучего остатка назаровского угля осуществляется в две стадии с максимумами скорости реакции $0,44 \div 0,56$ и $0,48 \div 0,6$ мг/(г· °C) при $T_{\rm max} = 400 \div 475$ и $490 \div 545$ °C соответственно. Выгорание нелетучих остатков ирша-бородинского и березовского углей протекает в одну стадию при максимальной скорости реакции соответственно $0,52 \div 0,66$ мг/(г· °C) при $T_{\rm max} = 430 \div 550$ °C и $0,65 \div 0,79$ мг/(г· °C) при $T_{\rm max} = 400 \div 525$ °C.

Проведенные исследования и сопоставление результатов расчета кинетики термохимического превращения различных углей позволяет констатировать, что предлагаемая экспериментально-расчетная методика оценки степени выгорания твердых топлив обеспечивает удовлетворительную качественную и количественную сходимость при линейном законе нагрева, моделирующем условия комплексного термического анализа. Относительная погрешность экспериментальных и расчетных параметров исследуемых термохимических реакций при 95 %-м доверительном интервале статистического теста Стьюдента составила 3÷5 %.

Сформулируем основные выводы работы.

- 1. Разработана экспериментально-расчетная методика оценки кинетических параметров процессов испарения влаги, выхода летучих веществ с раздельной оценкой смоло- и газовыделения, горения и газификации коксовой основы твердого органического топлива.
- 2. Комплексное использование как экспериментальных, так и расчетных методов исследования процессов горения канско-ачинских углей, реализованных в обсуждаемой методике, позволяет обеспечить оценку и контроль кинетики протекания различных параллельно-последовательных процессов и стадий термо-химического превращения твердого топлива в широком диапазоне режимных условий с учетом изменения реакционной способности угля от исходного качества.

ЛИТЕРАТУРА

- 1. **Основы** практической теории горения / Под ред. В. В. Померанцева. Л.: Энергоатомиздат, 1986
- 2. **Виленский Т. В., Хзмалян Д. М.** Динамика горения пылевидного топлива. М.: Энергия, 1978.

- 3. **Шатиль А. А.** Топочные процессы и устройства (исследования и расчет). СПб.: АООТ НПО ЦКТИ, 1997.
- 4. **Бабий В. И., Куваев Ю. Ф.** Горение угольной пыли и расчет пылеугольного факела. М.: Энергоатомиздат, 1986.
- Химия горения / Под ред. Н. Гардинера, мл. М.: Мир, 1988.
- 6. **Boiko E. A.** Research on kinetics of the thermal processing of brown coals of various oxidative ageing degree using the nonisothermal methods // Thermochimica Acta. 2000. N 348. P. 97–104.
- 7. Бойко Е. А., Шишмарев П. В., Дидичин Д. Г. Тепломассообмен при деструкции твердого топлива в условиях комплексного термического анализа // Тр. XXII Российской школы «Наука и технология». М.: РАН, 2002. С. 55–61.
- 8. Бойко Е. А., Дидичин Д. Г., Шишмарев П. В. Комплексный термический анализ процессов термолиза и горения нелетучих продуктов канско-ачинских углей разной степени окисленности // Журн. прикл. химии. 2003. Т. 76, вып. 4. С. 605–610.
- 9. **Алаев Г. П.** Разработка и практическое использование комплексного метода оценки реакционной способности энергетических топлив: Автореф. дис. ... д-ра техн. наук / ЛТИ ЦБП. Л., 1978.
- 10. **Бойко Е. А.** Кинетика температурной обработки бурых углей Канско-Ачинского бассейна // Химия твердого тела. 1995. № 5. С. 31—37.
- 11. **Свидет.** РФ № 2003612099. Программнометодический комплекс для оценки реакционной способности твердых топлив / Дидичин Д. Г., Бойко Е. А. Регистр. 08.09.2003.

 $\it Поступила$ в редакцию $13/X\ 2003\ {\it c.},$ в окончательном варианте — $5/IV\ 2004\ {\it c.}$