УДК 532.546

НЕСТАЦИОНАРНАЯ ФИЛЬТРАЦИЯ ГАЗА, ВОЗНИКАЮЩАЯ ПРИ ИНТЕНСИВНОМ ТЕПЛОВОМ ВОЗДЕЙСТВИИ НА ПОРИСТУЮ ВЛАГОСОДЕРЖАЩУЮ СРЕДУ

А. М. Воробьев*, К. Н. Егоров, Д. В. Елисеев*, В. В. Козлов, Д. В. Садин

Военный инженерно-космический университет им. А. Ф. Можайского, 197082 Санкт-Петербург * Конструкторское бюро специального машиностроения, 194100 Санкт-Петербург

Предложены математическая модель и методика расчета нестационарного тепломассопереноса в пористой среде, содержащей механически связанную жидкость и двухкомпонентный газ (смесь инертного газа и пара). Исследован случай интенсивного теплового воздействия на пористую влагосодержащую среду за счет внешнего теплового потока и конвективного теплообмена. Определены характерные области течения и межфазного взаимодействия.

1. Физическая модель. Рассматривается пористая влагосодержащая среда, имеющая следующую структуру (рис. 1,a). Капилляр состоит из цепочки пор 1 различной формы и размеров, соединенных участками щелей (трубок) 2 намного меньшего поперечного сечения. Внутри капилляра содержатся механически связанная вода 3 и смесь инертного газа и пара. Пористая среда ограничена жесткой непроницаемой стенкой, к которой внезапно подводится тепловой поток Q.

В результате прогрева среды температура фаз (твердого материала среды, воды, газа) меняется, и на границе раздела вода — пар происходят фазовые переходы. Изменение термодинамических параметров газа вызывает течение (фильтрацию) газа (а в общем случае и механически связанной воды) в капиллярах под действием разности давлений.

Процесс фильтрации газа в пористой среде определяется силовым взаимодействием между газом и пористым скелетом. Для рассматриваемого типа пористой среды, когда поры соединяются между собой относительно узкими щелями, существенную роль играет сила Архимеда, обусловленная градиентом давления [1]:

$$\mathbf{F}_A = -\alpha_1 \nabla p(1 - \varepsilon^2), \qquad \varepsilon \ll 1, \tag{1}$$

106

Рис. 1

где α_1 — пористость среды (отношение объема, занятого газом, к объему всей среды); p — давление; ε — отношение проекций наиболее узких сечений щелей на выходе из пор, пересеченных заданным сечением, к просветности в плоскости этого сечения [1].

Силы гидродинамического трения, обусловленные касательными напряжениями на поверхности пористого скелета, можно представить в виде

$$\boldsymbol{F}_{\mu} = \frac{\alpha_1^2 \mu \boldsymbol{v}}{\chi},\tag{2}$$

где μ — динамическая вязкость газа; v — вектор скорости газа; χ — величина, имеющая размерность площади. Если пористость среды не является постоянной, то из-за расширения трубки тока необходимо учитывать также силу $-p\nabla\alpha_1$.

Для условий рассматриваемой задачи течение газа в пористой среде имеет волновой характер [2], т. е. возмущения распространяются с конечной скоростью $a\varepsilon$ (a — скорость звука в поровом газе).

В рассматриваемой задаче источником возмущения является импульсное тепловое воздействие на пористую среду. В отличие от работ [1, 2] здесь учитываются тепло- и массообмен между фазами. Процессы фильтрации определяются распределением микропараметров внутри пор. Для упрощения анализа необходимо схематизировать структуру среды (рис. 1, δ) и модель микропроцессов. Аналогично [3] вместо поля температур в поре вводятся три характерные температуры: газовой фазы T_1 , границы между жидкостью и газом T_s и пористого скелета T_3 . Поток межфазного тепла задается с помощью числа Нуссельта, а поток тепла через жидкую пленку определяется ее толщиной δ .

Газовую фазу будем считать состоящей из двух компонентов: инертного, не претерпевающего фазовых переходов, и пара. Полагается, что эти компоненты не вступают в химические реакции между собой, являются калорически совершенными газами с зависящими от температуры коэффициентами теплопроводности, а их теплофизические параметры удовлетворяют условиям аддитивности.

Полагаем, что размеры пор во много раз больше молекулярно-кинетических размеров и во много раз меньше расстояний, на которых макроскопические параметры меняются существенно. Поры представляют собой сферы одинакового размера. Действие вязкости и теплопроводности порового газа проявляется лишь в процессах межфазного взаимодействия. Действием сил тяжести пренебрегаем.

2. Математическая модель. В рамках сделанных предположений тепломассоперенос в пористой влагосодержащей среде описывается уравнениями сохранения масс, импульса и энергий фаз

$$\frac{\partial \rho_g}{\partial t} + \nabla \cdot \rho_g \boldsymbol{v} = 0, \quad \frac{\partial \rho_v}{\partial t} + \nabla \cdot \rho_v \boldsymbol{v} = -J_{12}, \quad \frac{dr_1}{dt} = -\frac{J_{12}r_1}{3\alpha_1\rho_{2s}^0}, \quad \frac{d\alpha_1}{dt} = -\frac{J_{12}}{\rho_{2s}^0}, \\
\rho_1 \frac{d_1 \boldsymbol{v}}{dt} = -\nabla p\alpha_1 - \boldsymbol{F} + J_{12} \boldsymbol{v}, \qquad \frac{d_1}{dt} \equiv \frac{\partial}{\partial t} + \boldsymbol{v} \cdot \nabla, \\
\frac{\partial \rho_1 E_1}{\partial t} + \nabla \cdot \rho_1 E_1 \boldsymbol{v} + \nabla \cdot \alpha_1 p \boldsymbol{v} + p \frac{\partial \alpha_1}{\partial t} = Q_{s1} - J_{12} i_{vs},$$
(3)

$$\frac{\partial T_3}{\partial t} = a_T^2 \Delta T_3 + \frac{Q_{s3}}{\rho_3 c_3}, \quad a_T^2 = \frac{\lambda_3}{\rho_3 c_3}, \quad \rho_i = \rho_i^0 \alpha_i, \quad \sum_{i=1}^3 \alpha_i = 1, \quad E_1 = u_1 + \frac{|\boldsymbol{v}|^2}{2}, \quad i = 1, 2, 3.$$

Здесь индексы 1, 2, 3 соответствуют газовой, жидкой и твердой фазам, g и v — инертному и парообразному компонентам, s — поверхностной фазе (Σ -фазе); ∇ , Δ — операторы Гамильтона и Лапласа; ρ_i , ρ_i^0 , α_i , E_1 , u_i , i_{vs} , r_1 — соответственно приведенная и истинная плотности, объемная доля *i*-й фазы, удельные (отнесенные к единице массы) полная энергия газа и внутренняя энергия *i*-й фазы, энтальпия пара, претерпевающая фазовый переход на межфазной границе, радиус поры, занятой газом; J_{12} , F, Q_{si} — интенсивности фазового перехода, силового межфазного взаимодействия и теплообмена между Σ -фазой и *i*-й фазой соответственно; a_T , λ_3 , c_3 — коэффициенты температуропроводности, теплопроводности и теплоемкость материала пористого скелета.

Подставляя объемную силу межфазного взаимодействия (в соответствии с (1) и (2) $\mathbf{F} = \mathbf{F}_A + \mathbf{F}_\mu - p \nabla \alpha_1$) в уравнение сохранения импульса газовой фазы (3) и приводя его к дивергентному виду, получим

$$rac{\partial
ho_1 oldsymbol{v}}{\partial t} +
abla
ho_1 oldsymbol{v} oldsymbol{v} + lpha_1 arepsilon^2
abla p = -rac{lpha_1^2 \mu_1 oldsymbol{v}}{\chi}.$$

Расчет межфазного тепло- и массообмена будем проводить с использованием равновесной схемы межфазной границы [3]

$$J_{12}l(p_v) = Q_{s1} + Q_{s3}, \qquad Q_{s1} = 1,5 \frac{\alpha_1}{r_1^2} \operatorname{Nu}_1 \lambda_1 (T_s - T_1),$$
$$p_2 = p - \frac{2\sigma}{r_1}, \quad p = p_g + p_v, \quad Q_{s3} = 12\lambda_2 \frac{\alpha_1 r_2}{\pi r_1^2 \delta} (T_s - T_3).$$

Здесь T_s — средняя температура на поверхности жидкой фазы, равная температуре насыцения; $l(p_v)$ — теплота парообразования; p_2 — давление в жидкой фазе; σ — поверхностное натяжение; r_2 — радиус поры, занятой газом и жидкостью; δ — толщина жидкой пленки на стенках пор; λ_i — коэффициент теплопроводности *i*-й фазы; Nu₁ — число Нуссельта (Nu₁ = 10 — квазистационарное значение для внутренней задачи теплообмена).

Система уравнений сохранения (3) замыкается уравнениями состояния калорически совершенных газовых компонентов

$$p_g = \rho_g^0 R_g T_1, \quad p_v = \rho_v^0 R_v T_1, \quad \rho = \rho_g + \rho_v,$$

$$k_g = \frac{\rho_g}{\rho_1}, \quad k_v = \frac{\rho_v}{\rho_1} \quad (k_g + k_v = 1), \quad u_1 = k_g u_g + k_v u_v, \quad \lambda_1 = \lambda_1 (k_g, T_1)$$

$$i_g = c_g (T_1 - T^*) + i_g^*, \qquad i_v = c_v (T_1 - T^*) + i_v^*.$$

Здесь p_g, p_v, R_g, R_v — парциальные давления и универсальные газовые постоянные; $\rho_g^0, \rho_v^0, k_g, k_v, u_g, u_v$ — истинные плотности, концентрации и внутренние энергии единицы массы компонентов; верхний индекс "*" соответствует фиксированным параметрам; c_g, c_v — теплоемкости инертного газа и пара при постоянном давлении; i_g — энтальпия газового компонента. Значение энтальпии парового компонента i_v связано с энтальпией конденсированной фазы i_l условием нормировки

$$i_v^* - i_l^* = l(p_v^*) + (c_l - c_v)(T_s(p_v^*) - T^*),$$

где c_l — теплоемкость жидкости.

3. Метод расчета. Разностная схема для расчета нестационарного тепломассопереноса в пористой влагосодержащей среде строится с расщеплением по физическим процессам на три этапа. На первом этапе осуществляется численное интегрирование уравнения теплопроводности методом прогонки [4]:

$$\frac{\partial T_3^{\mathrm{I}}}{\partial t} = a_T^2 \Delta T_3^{\mathrm{I}}.\tag{4}$$

На втором и третьем этапах расчет выполняется методом, предложенным в [5], в котором межфазные взаимодействия учитываются на эйлеровом этапе неявно:

$$\frac{\partial \rho_{g}^{\mathrm{II}}}{\partial t} = 0, \quad \frac{\partial \rho_{v}^{\mathrm{II}}}{\partial t} = -J_{12}, \quad \frac{dr_{1}^{\mathrm{II}}}{dt} = -\frac{J_{12}r_{1}}{3\alpha_{1}\rho_{2s}^{0}}, \\
\frac{d\alpha_{1}^{\mathrm{II}}}{dt} = -\frac{J_{12}}{\rho_{2s}^{0}}, \qquad \rho_{1} \frac{\partial \boldsymbol{v}^{\mathrm{II}}}{\partial t} + \alpha_{1}\varepsilon^{2}\nabla p = -\frac{\alpha_{1}^{2}\mu_{1}\boldsymbol{v}^{\mathrm{II}}}{\chi}, \quad (5) \\
\rho_{1} \frac{\partial E_{1}^{\mathrm{II}}}{\partial t} + \nabla \cdot \alpha_{1}p\boldsymbol{v} = Q_{s1}^{\mathrm{II}} - J_{12}i_{vs}, \qquad \frac{\partial T_{3}^{\mathrm{II}}}{\partial t} = \frac{Q_{s3}^{\mathrm{II}}}{\rho_{3}c_{3}}; \\
\frac{\partial \rho_{g}^{\mathrm{III}}}{\partial t} + \nabla \cdot \rho_{g}\boldsymbol{v}^{\mathrm{II}} = 0, \quad \frac{\partial \rho_{v}^{\mathrm{II}}}{\partial t} + \nabla \cdot \rho_{v}\boldsymbol{v}^{\mathrm{II}} = 0, \quad \frac{\partial (\rho_{1}\boldsymbol{v})^{\mathrm{III}}}{\partial t} + \nabla (\rho_{1}\boldsymbol{v}\boldsymbol{v})^{\mathrm{II}} = 0, \\
\frac{\partial (\rho_{1}E_{1})^{\mathrm{III}}}{\partial t} + \nabla \cdot (\rho_{1}E_{1}\boldsymbol{v})^{\mathrm{II}} + p\frac{\partial \alpha_{1}^{\mathrm{II}}}{\partial t} = 0, \quad (6) \\
r_{1}^{\mathrm{III}} = r_{1}^{\mathrm{II}}, \quad \alpha_{1}^{\mathrm{III}} = \alpha_{1}^{\mathrm{II}}, \quad T_{3}^{\mathrm{III}} = T_{3}^{\mathrm{II}}, \quad p_{g}^{\mathrm{III}} = \rho_{g}^{\mathrm{III}}R_{g}(E_{1}^{\mathrm{III}} - (\boldsymbol{v}^{\mathrm{III}})^{2}/2), \\
p_{v}^{\mathrm{III}} = \rho_{v}^{\mathrm{III}}R_{v}(E_{1}^{\mathrm{III}} - (\boldsymbol{v}^{\mathrm{III}})^{2}/2), \quad p^{\mathrm{III}} = p_{g}^{\mathrm{III}} + p_{v}^{\mathrm{III}}.
\end{aligned}$$

В (4)–(6) верхние индексы соответствуют номеру этапа. Разностная аппроксимация осуществляется в соответствии с [5]. Приведенная схема является маршевой, шаг по времени τ должен выбираться из условия Куранта — Фридрихса — Леви, связанного с отношением шага сетки к скорости распространения малых возмущений $a\varepsilon$.

4. Исходные данные. Рассматривается пористая влагосодержащая среда толщиной H, ограниченная непроницаемыми стенками. В момент t = 0 осуществляется импульсное тепловое воздействие на левую стенку длительностью Θ за счет внешнего теплового потока с интенсивностью Q и конвективного теплообмена.

Задача решается в одномерной постановке при следующих исходных параметрах: H = 0.01 м, Q = 600 Вт/м², температура правой стенки $T_{\rm m} = 293$ К, температура левой стенки $T_{\rm m} = 1073$ К, начальные объемные доли газа $\alpha_{10} = 0.2$ и воды $\alpha_{20} = 0.1$, $\lambda_3 = 1.7$ Вт/(м · K), $c_3 = 500$ Дж/(кг · K), $\rho_3 = 4000$ кг/м³, $\varepsilon = 10^{-3}$, $\chi = 10^{-8}$ м², $\gamma_g = 1.4$, коэффициент теплоотдачи $\alpha = 300$ Вт/(м² · K), $R_g = 287$ Дж/(кг · K), $\Theta = 5$ с, $\lambda_g = 0.025$ Вт/(м · K), $\mu_g = 1.85 \cdot 10^{-5}$ Па · с.

Для определения теплофизических свойств воды и водяного пара используются табличные значения [6]. Фиксированные параметры для водяного пара при $T_1^* = 373$ К взяты из указанных таблиц.

В начальный момент времени заданы следующие условия: $T_1 = T_s = T_3 = 293$ К, $p = 10^5$ Па, $\boldsymbol{v} = 0$. Парциальные давления p_g , p_v определяются из условия фазового равновесия при t = 0. Обе стенки считаются непроницаемыми. Условие теплообмена на левой стенке $Q - \alpha(T_3 - T_{\pi}) = -\lambda_3 \partial T_3 / \partial R$, на правой стенке $\lambda_3 \partial T_3 / \partial R = \alpha(T_3 - T_{\pi})$.

5. Некоторые результаты. В результате интенсивного теплового воздействия на левую стенку происходит нагрев материала пористой среды, а также нагрев и испарение воды, содержащейся в порах. Повышаются давление и температура газовой фазы, что вызывает ее фильтрацию. На рис. 2 показаны распределения указанных параметров по толщине среды при t = 5 с (кривая 1 -давление газа, 2 -температура газа). Как показано на рис. 3 (t = 5 с), плотности компонентов газовой фазы (кривая 1 -воздух, 2 -пар), имеющие в начальный момент равномерное равновесное распределение, с течением времени меняются. Вблизи левой границы интенсивный фазовый переход приводит к повышению концентрации парового компонента, а фильтрация газовой фазы приводит к

перераспределению концентрации инертного компонента (воздуха). После полного испарения воды пористость (кривая 3 на рис. 3) достигает максимального значения $\alpha_{10} + \alpha_{20} = 0,3$ и в дальнейшем не меняется. За счет теплообмена между твердой фазой и газом температура последнего повышается (кривая 2 на рис. 2), а в результате фильтрации плотность пара уменьшается.

Таким образом, можно выделить следующие характерные области распределения параметров по толщине пористой среды. У левой стенки вода полностью испарилась, и температура здесь наибольшая. Далее следует зона фазового перехода воды в пар (излом на кривой T(x) (см. рис. 2)), которой соответствует максимальное значение плотности пара (см. рис. 3). Перенос пара в область меньших температур пористого скелета приводит к конденсации и уменьшению пористости среды (см. рис. 3). Наконец, с увеличением координаты x температура приближается к начальной, а повышение давления у правой стенки обусловлено увеличением плотности воздуха, перераспределяемого за счет массопереноса.

ЛИТЕРАТУРА

- 1. **Христианович С. А.** Об основах теории фильтрации // Физ.-техн. пробл. разраб. полез. ископаемых. 1991. № 1. С. 3–18.
- 2. Садин Д. В. О неустановившейся фильтрации газа // Изв. РАН. Механика жидкости и газа. 1994. № 1. С. 201–203.
- 3. Нигматулин Р. И. Динамика многофазных сред. М.: Наука, 1987. Ч. 1.
- 4. Самарский А. А. Теория разностных схем. М.: Наука, 1983.
- Садин Д. В. Модифицированный метод крупных частиц для расчета нестационарных течений газа в пористой среде // Журн. вычисл. математики и мат. физики. 1996. Т. 36, № 10. С. 158–164.
- 6. Кириллов П. Л., Юрьев Ю. С., Бобков В. П. Справочник по теплогидравлическим расчетам (ядерные реакторы, теплообменники, парогенераторы). М.: Энергоатомиздат, 1990.

Поступила в редакцию 15/II 2000 г., в окончательном варианте — 12/X 2000 г.