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In this paper, we provide a new a posteriori error analysis for a linear finite element approximation of a
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1. Введение

Хорошо известно, что метод конечных элементов широко используется для реше-
ния задач оптимального управления, описываемых дифференциальными уравнениями
в частных производных (ДУЧП). Невозможно дать здесь даже очень краткий обзор.

∗Работа выполнена при поддержке Программы научно-технического развития провинции Цзилинь
(проект N◦-- 20230101279JC).
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Систематическое использование методов конечных элементов для ДУЧП и задач опти-
мального управления можно найти в [3, 18]. Априорные оценки ошибок и сверхсходи-
мость конечно-элементной аппроксимации были установлены для задач оптимального
управления, описываемых линейными эллиптическими и параболическими уравнения-
ми состояния, например в [5–8, 10, 13, 19]. Что касается апостериорных оценок оши-
бок, на основе которых могут быть построены адаптивные методы конечных элементов,
см. [2, 12, 14,16,17].

В последние годы многие ученые начали разрабатывать высокоэффективные чис-
ленные алгоритмы для задач оптимального управления, описываемых эллиптическими
интегральными уравнениями и параболическими интегро-дифференциальными уравне-
ниями. Эти задачи управления обычно возникают во многих практических применени-
ях, таких как управление теплопроводностью материалов с памятью, управление дина-
микой населения, управление волнами. В [1] Бруннер и Ян проанализировали методы
конечных элементов для задач оптимального управления, описываемых интегральны-
ми и интегро-дифференциальными уравнениями. Шен с соавторами [22] рассмотрели
конечно-элементную аппроксимацию параболических интегро-дифференциальных задач
оптимального управления и получили эквивалентные апостериорные оценки ошибок с
нижними и верхними границами. В [4] Чен и Хоу получили априорные и апостериор-
ные оценки ошибок смешанных H1-методов конечных элементов Галеркина для задач
оптимального управления, описываемых псевдогиперболическими интегро-дифференци-
альными уравнениями.

В [20] Макридакис и Ночетто ввели оператор эллиптической реконструкции, играю-
щий в апостериорных оценках роль, подобную той роли, которую играет эллиптическая
проекция для восстановления оптимальных априорных оценок ошибок для параболиче-
ских задач. Тан и Хуа [23] использовали метод эллиптической реконструкции для анали-
за апостериорных оценок ошибок конечно-элементных дискретизаций задач оптимально-
го управления, описываемых параболическими уравнениями с интегральными ограниче-
ниями. Чен и Линь [9] дали определение смешанной эллиптической реконструкции и по-
лучили апостериорные оценки ошибок полудискретной смешанной конечно-элементной
аппроксимации параболических задач оптимального управления. Однако, насколько нам
известно, метод эллиптической реконструкции не применялся к апостериорному оце-
ниванию ошибок параболических интегрально-дифференциальных задач оптимального
управления.

В этой статье мы используем стандартные конечные элементы для решения зада-
чи оптимального управления, описываемой линейными параболическими интегро-диф-
ференциальными уравнениями. Состояние и сопряженное состояние аппроксимируются
кусочно-линейными и непрерывными функциями, тогда как дискретизированное управ-
ление получается методом вариационной дискретизации. Мы определяем эллиптические
реконструкции для дискретизированных переменных состояния и сопряженного состоя-
ния, а затем получаем апостериорные оценки ошибок остаточного типа для всех пере-
менных. Нас интересует следующая задача оптимального управления:

min
u∈K⊂U

{
1

2

∫ T

0
(‖y − yd‖2 + ‖u‖2) dt

}
, (1.1)

yt − div(A∇y) +

∫ t

0
div(B(t, s)∇y(s)) ds = f + u ∀x ∈ Ω, t ∈ J, (1.2)

y(x, t) = 0 ∀x ∈ ∂Ω, t ∈ J, (1.3)
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y(x, 0) = y0(x) ∀x ∈ Ω, (1.4)

где Ω — выпуклая многоугольная область в R2, x = (x1, x2) и J = (0, T ]. Пусть K —
замкнутое выпуклое множество в U = L2(J ;L2(Ω)), f ∈ L2(J ;L2(Ω)), yd ∈ H1(J ;L2(Ω))
и y0 ∈ H1(Ω). Предположим, что матрица коэффициентов A = A(x) = (aij(x))2×2 ∈
W 1,∞(Ω̄;R2×2) — симметрическая 2×2-матрица и имеются постоянные c1, c2 > 0, удо-
влетворяющие c1‖X‖2R2 ≤ XtAX ≤ c2‖X‖2R2 для любого вектора X ∈ R2. Кроме того,
B(t, s) = B(x, t, s) = (bij(x, t, s))2×2 — также 2×2-матрица. Предположим, что существует
положительная постоянная M такая, что

|bij |+
∣∣∣∣∂bij∂x1

∣∣∣∣+

∣∣∣∣∂bij∂x2

∣∣∣∣+

∣∣∣∣∂bij∂t
∣∣∣∣+

∣∣∣∣∂bij∂s

∣∣∣∣ ≤M, i, j = 1, 2.

Здесь K — допустимое множество переменной управления, определяемое как

K = {u ∈ U : u(x, t) ≥ 0}.

Мы используем стандартное обозначение Wm,p(Ω) для пространств Соболева на Ω
с нормой ‖ · ‖m,p, задаваемой путем ‖v‖pm,p =

∑
|α|≤m ‖Dαv‖pLp(Ω), полунормой | · |m,p,

задаваемой путем |v|pm,p =
∑
|α|=m ‖Dαv‖pLp(Ω). Положим Wm,p

0 (Ω) = {v ∈ Wm,p(Ω) :

v|∂Ω = 0}. Для p = 2 обозначим: Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω), ‖ · ‖m = ‖ · ‖m,2,
‖ · ‖ = ‖ · ‖0,2.

Пусть Ls(J ;Wm,p(Ω)) — банахово пространство всех Ls-интегрируемых функций из J

в Wm,p(Ω) с нормой ‖v‖Ls(J ;Wm,p(Ω)) =
( ∫ T

0 ‖v‖
s
Wm,p(Ω)dt

) 1
s для s ∈ [1,∞) и стандартной

модификацией для s = ∞. Для простоты используется обозначение ‖v‖Ls(Wm,p) вместо
‖v‖Ls(J ;Wm,p(Ω)). Кроме того C — общая положительная постоянная, не зависящая от
размера пространственного шага h.

Статья построена следующим образом. В пункте 2 мы представляем полудискре-
тизированную конечно-элементную аппроксимацию задачи оптимального управления
(1.1)–(1.4) и ее эквивалентные условия оптимальности. В п. 3 мы определяем эллип-
тические реконструкции численных решений и получаем апостериорные оценки ошибок
между эллиптическими реконструкциями и численными решениями. В п. 4 мы обсуж-
даем апостериорные оценки ошибок для всех переменных. В последнем пункте мы даем
заключение и описываем некоторые будущие работы.

2. Конечно-элементная аппроксимация

В данном пункте представлена конечно-элементная аппроксимация задачи оптималь-
ного управления (1.1)–(1.4).

Возьмем пространство для состояния Q = H1(V ) и V = H1
0 (Ω). Затем представим

(1.1)–(1.4) в следующей слабой форме: найти (y, u) ∈ Q×K такое, что

min
u∈K⊂U

{
1

2

∫ T

0
(‖y − yd‖2 + ‖u‖2) dt

}
, (2.1)

(yt, v) + (A∇y,∇v) =

∫ t

0
(B(t, s)∇y(s),∇v) ds+ (f + u, v) ∀ v ∈ V, (2.2)

y(x, 0) = y0(x) ∀x ∈ Ω, (2.3)

где (·, ·) — скалярное произведение L2(Ω) или (L2(Ω))2.
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Отсюда следует (см., например, [18]), что задача оптимального управления (2.1)–(2.3)
имеет единственное решение (y, u), а пара (y, u) является решением (2.1)–(2.3), если и
только если имеется сопряженное состояние p ∈ Q такое, что (y, p, u) удовлетворяет
следующим условиям оптимальности:

(yt, v) + (A∇y,∇v) =

∫ t

0
(B(t, s)∇y(s),∇v) ds+ (f + u, v) ∀ v ∈ V, (2.4)

y(x, 0) = y0(x) ∀x ∈ Ω, (2.5)

−(pt, q) + (A∇p,∇q) =

∫ T

t
(B∗(s, t)∇p(s),∇q) ds+ (y − yd, q) ∀ q ∈ V, (2.6)

p(x, T ) = 0 ∀x ∈ Ω, (2.7)∫ T

0
(u+ p, ũ− u) dt ≥ 0 ∀ ũ ∈ K, (2.8)

где B∗(s, t) — транспонирование B(s, t).
Пусть Th — регулярная триангуляция многоугольной области Ω, hτ — диаметр эле-

мента τ , h = maxτ∈Th hτ . Пусть Vh ⊂ V определяется следующим конечно-элементным
пространством:

Vh =
{
vh ∈ C0(Ω)

⋂
V
∣∣vh ∈ P1(τ) ∀ τ ∈ Th

}
.

Тогда полностью дискретная схема аппроксимации состоит в том, чтобы найти (yh, uh) ∈
H1(Vh)×K такое, что

min
uh∈K

{
1

2

∫ T

0
(‖yh − yd‖2 + ‖uh‖)2dt

}
, (2.9)

(yht, vh) + (A∇yh,∇vh) =

∫ t

0
(B(t, s)∇yh(s),∇vh) ds+ (f + uh, vh) ∀ vh ∈ Vh, (2.10)

yh(x, 0) = yh0 (x) ∀x ∈ Ω, (2.11)

где yh0 (x) ∈ Vh является аппроксимацией y0.
Снова мы видим, что задача (2.9)–(2.11) имеет единственное решение (yh, uh), а пара

(yh, uh) является решением (2.9)–(2.11), если и только если имеется сопряженное состо-
яние ph ∈ Q такое, что (yh, ph, uh) удовлетворяет следующим условиям оптимальности:

(yht, vh) + (A∇yh,∇vh) =

∫ t

0
(B(t, s)∇yh(s),∇vh) ds+ (f + uh, vh) ∀ vh ∈ Vh, (2.12)

yh(x, 0) = Rhy0(x) ∀x ∈ Ω. (2.13)

−(pht, q) + (A∇ph,∇qh) =

∫ T

t
(B∗(s, t)∇ph(s),∇qh) ds+ (yh − yd, qh) ∀ qh ∈ Vh, (2.14)

ph(x, T ) = 0 ∀x ∈ Ω, (2.15)∫ T

0
(uh + ph, ũ− uh) dt ≥ 0 ∀ ũ ∈ K. (2.16)
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3. Эллиптическая реконструкция и
соответствующие результаты

В этом пункте мы сначала определяем эллиптические реконструкции и представля-
ем апостериорные оценки ошибок между эллиптической реконструкцией и численным
решением.

Введем эллиптические реконструкции ỹ(t) ∈ V ∩H2(Ω) и p̃(t) ∈ V ∩H2(Ω) для yh и ph
соответственно, t ∈ [0, T ]. Пусть эллиптические реконструкции ỹ(t) и p̃(t) удовлетворяют

(A∇(ỹ − yh),∇v)−
∫ t

0
(B(t, s)∇(ỹ(s)− yh(s)),∇v) ds

=

∫ t

0
(B(t, s)∇yh(s),∇v)ds− (A∇yh,∇v) + (f + uh − yht, v) ∀ v ∈ V, (3.1)

(A∇(p̃− ph),∇q)−
∫ T

t
(B∗(s, t)∇(p̃(s)− ph(s)),∇q) ds

=

∫ T

t
(B∗(s, t)∇ph(s),∇q) ds− (A∇ph,∇q) + (yh − yd + pht, q) ∀ q ∈ V. (3.2)

Что касается существования и единственности эллиптических реконструкций ỹ(t) и p̃(t),
см. ссылку [21].

Взяв производные (3.1), (3.2) по времени, получим

(A∇(ỹ − yh)t,∇v)−
∫ t

0
(Bt(t, s)∇(ỹ(s)− yh(s)),∇v) ds− (B(t, t)∇(ỹ − yh),∇v)

=

∫ t

0
(Bt(t, s)∇yh(s),∇v) ds+ (B(t, t)∇yh,∇v)− (A∇yht,∇v)+

(ft + uht − yhtt, v) ∀ v ∈ V, (3.3)

(A∇(p̃− ph)t,∇q)−
∫ T

t
(B∗t (s, t)∇(p̃(s)− ph(s)),∇q) ds+ (B∗(t, t)∇(p̃− ph),∇q)

=

∫ T

t
(B∗t (s, t)∇ph(s),∇q) ds− (B∗(t, t)∇ph,∇q)− (A∇pht,∇q)+

(yht − ydt + phtt, q) ∀ q ∈ V. (3.4)

Легко увидеть, что

(A∇(ỹ − yh),∇vh)−
∫ t

0
(B(t, s)∇(ỹ(s)− yh(s)),∇vh) ds = 0 ∀ vh ∈ Vh, (3.5)

(A∇(p̃− ph),∇qh)−
∫ T

t
(B∗(s, t)∇(p̃(s)− ph(s)),∇qh) ds = 0 ∀ qh ∈ Vh, (3.6)

(A∇(ỹ − yh)t,∇vh)−
∫ t

0
(Bt(t, s)∇(ỹ(s)− yh(s)),∇vh) ds−

(B(t, t)∇(ỹ − yh),∇vh) = 0 ∀ vh ∈ Vh, (3.7)

(A∇(p̃− ph)t,∇qh)−
∫ T

t
(B∗t (s, t)∇(p̃(s)− ph(s)),∇qh) ds+

(B∗(t, t)∇(p̃− ph),∇qh) = 0 ∀ qh ∈ Vh. (3.8)
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Для получения нашего основного результата нам нужны следующие леммы:

Лемма 3.1 [3]. Пусть πh — стандартный интерполяционный оператор Лагранжа.
Для m = 0 или 1 и q > 1/2

|v − πhv|m,q ≤ Ch2−m|v|2,q.

Лемма 3.2 [15]. Для v ∈W 1,q(Ω) и 1 ≤ q <∞

‖v‖W 0,q(∂τ) ≤ C
(
h
− 1

q
τ ‖v‖W 0,q(τ) + h

l− 1
q

τ |v|W 1,q(τ)

)
.

Лемма 3.3 [11]. Предположим, что Ω является выпуклой. Тогда для каждой функции
F ∈ L2(Ω) решение φ для

−div(A∇φ) = F в Ω, φ |∂Ω = 0, (3.9)

принадлежит H1
0 (Ω)∩H2(Ω). Кроме того, существует положительная постоянная C1

такая, что

‖φ‖2 ≤ C1‖F‖. (3.10)

Теперь мы можем получить следующие апостериорные оценки ошибок между эллип-
тической реконструкцией (ỹ(t), p̃(t)) и численным решением (yh, ph).

Лемма 3.4. Пусть (ỹ, p̃) и (yh, yh) удовлетворяют (3.1), (3.2). Тогда мы имеем

‖ỹ − yh‖2 + ‖p̃− ph‖2 ≤ C(η2
1 + η2

2), (3.11)

где

η2
1 =

∑
τ∈Th

h4
τ

∥∥∥∥ div(A∇yh)−
∫ t

0
div(B(t, s)∇yh(s)) ds+ f + uh − yht

∥∥∥∥2

L2(τ)

+

∑
l∈∂Th

∫
l
h3
l [A∇yh · n ]2 +

∑
l∈∂Th

∫
l
h3
l

[∫ t

0
B(t, s)∇yh(s) ds · n

]2

,

η2
2 =

∑
τ∈Th

h4
τ

∥∥∥∥ div(A∇ph)−
∫ T

t
div(B∗(s, t)∇ph(s)) ds+ yh − yd + pht

∥∥∥∥2

L2(τ)

+

∑
l∈∂Th

∫
l
h3
l [A∇ph · n ]2 +

∑
l∈∂Th

∫
l
h3
l

[∫ T

t
B∗(s, t)∇ph(s) ds · n

]2

,

здесь l — грань элемента τ, [A∇yh ·n] |l — скачки нормальной производной через внут-
реннюю грань l, определяемые как

[A∇yh · n] |l= (A∇yh |τ1l −A∇yh |τ2l ) · n,

где n — единичный вектор нормали на l = τ1
l ∩ τ2

l наружу τ1
l , hl — максимальный

диаметр грани l. Другие нормальные производные могут быть определены аналогичным
образом.
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Доказательство. Пусть φ — решение (3.9) при F = ỹ − yh, φI = πhφ — стандартная
интерполяция Лагранжа для φ. Пусть δ — произвольная положительная постоянная.
Мы можем получить

‖ỹ − yh‖2 = (ỹ − yh, F ) = (A∇(ỹ − yh),∇φ)

=
(
A∇(ỹ − yh),∇(φ− φI)

)
+

∫ t

0

(
B(t, s)∇(ỹ(s)− yh(s)),∇φI

)
ds

=
(
A∇(ỹ − yh),∇(φ− φI)

)
+

∫ t

0

(
B(t, s)∇(ỹ(s)− yh(s)),∇(φI − φ)

)
ds+∫ t

0

(
B(t, s)∇(ỹ(s)− yh(s)),∇φ

)
ds

=

∫ t

0

(
B(t, s)∇yh(s),∇(φ−φI)

)
ds−

(
A∇yh,∇(φ−φI)

)
+ (f+uh−yht, φ−φI) +∫ t

0

(
B(t, s)∇(ỹ(s)− yh(s)),∇φ

)
ds

=
∑
τ∈Th

∫
τ

(
div(A∇yh)−

∫ t

0
div(B(t, s)∇yh(s)) ds+ f + uh − yht

)
(φ− φI) +

∑
l∈∂Th

∫
l

[∫ t

0
B(t, s)∇yh(s) ds · n−A∇yh · n

]
(φ− φI)−∫ t

0

(
ỹ(s)− yh(s), div(B∗(t, s)∇φ)

)
ds

≤ C
δ
η2

1 +
C

δ

∫ t

0
‖ỹ(s)− yh(s)‖2ds+ δ‖φ‖22 . (3.12)

Здесь мы использовали (3.1), (3.5), (3.9), формулу Грина, неравенство Коши и лем-
мы 3.1 и 3.2.

Полагая δ =
1

2C2
1

и используя (3.10) в (3.12), можно легко получить

‖ỹ − yh‖2 ≤ 4CC1η
2
1 + 4CC1

∫ t

0
‖ỹ(s)− yh(s)‖2ds,

что, вместе с неравенством Гронуолла, позволяет получить

‖ỹ − yh‖2 ≤ Cη2
1.

Аналогичным образом мы имеем

‖p̃− ph‖2 ≤ Cη2
2,

что завершает доказательство леммы.

Лемма 3.5. Пусть (ỹ, p̃) и (yh, yh) удовлетворяют (3.1), (3.2). Тогда

‖(ỹ − yh)t‖2 + ‖(p̃− ph)t‖2 ≤ C
4∑
i=1

η2
i + C

∫ t

0
η2

1(s) ds+ C

∫ T

t
η2

2(s) ds, (3.13)

где η1 и η2 определены в лемме 3.4,
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η2
3 =

∑
τ∈Th

h4
τ

∥∥∥∥ div(A∇yht −B(t, t)∇yh)−
∫ t

0
div(Bt(t, s)∇yh(s)) ds+ ft + uht − yhtt

∥∥∥∥2

L2(τ)

+

∑
l∈∂Th

∫
l
h3
l [A∇yht · n ]2 +

∑
l∈∂Th

∫
l
h3
l

[∫ t

0
Bt(t, s)∇yh(s) ds · n

]2

+

∑
l∈∂Th

∫
l
h3
l [B(t, t)∇yh · n ]2,

η2
4 =

∑
τ∈Th

h4
τ

∥∥∥∥ div(A∇pht +B∗(t, t)∇ph)−
∫ T

t
div(B∗t (s, t)∇ph(s)) ds+ yht − ydt + phtt

∥∥∥∥2

L2(τ)

+

∑
l∈∂Th

∫
l
h3
l [A∇pht · n ]2 +

∑
l∈∂Th

∫
l
h3
l

[∫ T

t
B∗t (s, t)∇ph(s) ds · n

]2

+

∑
l∈∂Th

∫
l
h3
l [B
∗(t, t)∇ph · n ]2.

Доказательство. Пусть φ — решение (3.9) с F = (ỹ−yh)t. Мы приходим к выводу, что

‖(ỹ −yh)t‖2 =
(
(ỹ − yh)t, F

)
=
(
A∇(ỹ − yh)t,∇φ

)
=
(
A∇(ỹ − yh)t,∇(φ− φI)

)
+

∫ t

0

(
Bt(t, s)∇(ỹ(s)− yh(s)),∇φI

)
ds+(

B(t, t)∇(ỹ − yh),∇φI
)

=
(
A∇(ỹ − yh)t,∇(φ− φI)

)
−
∫ t

0

(
Bt(t, s)∇(ỹ(s)− yh(s)),∇(φ− φI)

)
ds−(

B(t, t)∇(ỹ − yh),∇(φ− φI)
)

+
(
B(t, t)∇(ỹ − yh),∇φ

)
+∫ t

0

(
Bt(t, s)∇(ỹ(s)− yh(s)),∇φ

)
ds

=

∫ t

0

(
Bt(t, s)∇yh(s),∇(φ− φI)

)
ds+

(
B(t, t)∇yh −A∇yht,∇(φ− φI)

)
+

(ft + uht − yhtt, φ− φI) +
(
B(t, t)∇(ỹ − yh),∇φ

)
+∫ t

0

(
Bt(t, s)∇(ỹ(s)− yh(s)),∇φ

)
ds

=
∑
τ∈Th

∫
τ

(
div(A∇yht)−

∫ t

0
div
(
Bt(t, s)∇yh(s)

)
ds− div

(
B(t, t)∇yh

))
(φ−φI) +

∑
l∈∂Th

∫
l

[
B(t, t)∇yh · n +

∫ t

0
Bt(t, s)∇yh(s) ds · n−A∇yht · n

]
(φ− φI)−∫ t

0

(
ỹ(s)− yh(s), div

(
B∗t (t, s)∇φ

))
ds−

(
ỹ − yh, div(B∗(t, t)∇φ)

)
+

(ft + uht − yhtt, φ− φI)

≤ C
δ
η2

3 +
C

δ

∫ t

0
‖ỹ(s)− yh(s)‖2ds+

C

δ
‖ỹ − yh‖2 + δ‖φ‖22, (3.14)

где использовались (3.3), (3.7), (3.9), формула Грина, неравенство Коши и леммы 3.1, 3.2.
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Аналогично оценке для ‖ỹ − yh‖ находим, что

‖(ỹ − yh)t‖2 ≤ C
(
η2

1 + η2
3

)
+ C

∫ t

0
η2

1(s) ds.

Кроме того, мы имеем

‖(p̃− ph)t‖2 ≤ C
(
η2

2 + η2
4

)
+ C

∫ T

t
η2

2(s) ds.

Доказательство леммы завершено.

4. Апостериорные оценки ошибок

В этом пункте мы рассмотрим апостериорные оценки ошибок для переменной состо-
яния, переменной сопряженного состояния и переменной управления.

Далее мы будем использовать следующие непрерывные решения состояния, связан-
ные с uh, которые удовлетворяют

(yt(uh), v) + (A∇y(uh),∇v) =

∫ t

0
(B(t, s)∇y(uh)(s),∇v)ds+ (f + uh, v) ∀ v ∈ V, (4.1)

y(uh)(x, 0) = y0(x) ∀x ∈ Ω, (4.2)

−(pt(uh), q)+(A∇p(uh),∇q) =

∫ T

t

(
B∗(s, t)∇p(uh)(s),∇q

)
ds+(y(uh)−yd, q) ∀ q ∈ V, (4.3)

p(uh)(x, T ) = 0 ∀x ∈ Ω. (4.4)

Лемма 4.1. Пусть (yh, ph) и (y(uh), p(uh)) — решения (2.12)–(2.16) и (4.1)–(4.4) соот-
ветственно. Тогда имеем

‖y(uh)− yh‖L∞(L2) + ‖p(uh)− ph‖L∞(L2) ≤ C
4∑
i=1

max
t∈[0,T ]

ηi + C‖y0 − yh0‖,

где η1 и η2 определены в лемме 3.4, а η3 и η4 — в лемме 3.5.

Доказательство. Определим ошибки следующим образом:

ry := y(uh)− ỹ, rp := p(uh)− p̃.

В соответствии с (3.1), (3.2), (4.1) и (4.3) получим

(ryt, v) + (A∇ry,∇v) =

∫ t

0

(
B(t, s)∇ry(s),∇v

)
ds+ (ỹt − yht, v) ∀ v ∈ V, (4.5)

−(rpt, q)+(A∇rp,∇q) =

∫ T

t

(
B∗(s, t)∇rp(s),∇q

)
ds+ (y(uh)−yh+pht−p̃t, q) ∀ q ∈ V. (4.6)

Выбирая v = ry в (4.5) и используя неравенство Коши–Шварца, получаем
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1

2

d

dt
‖ry‖2 + ‖A

1
2∇ry‖2 =

∫ t

0

(
B(t, s)∇ry(s),∇ry

)
ds+ (ỹt − yht, ry)

≤C
∫ t

0
‖∇ry(s)‖2ds+

c1

2
‖∇ry‖2 + ‖ỹt − yht‖2 + ‖ry‖2. (4.7)

Интегрируя (4.7) от 0 до t, а затем используя предположение относительно A, имеем

‖ry‖2 +

∫ t

0
‖∇ry(s)‖2 ds ≤ C

∫ t

0

∫ λ

0
‖∇ry(s)‖2 ds dλ+ C

∫ t

0
‖ỹt − yht‖2 ds+

C

∫ t

0
‖ry‖2 ds+ C‖ry(0)‖2.

Из неравенства Гронуолла следует, что

‖ry‖2 +

∫ t

0
‖∇ry(s)‖2 ds ≤ C

∫ t

0
‖ỹt − yht‖2 ds+ C‖ry(0)‖2,

где
‖ry(0)‖ = ‖y0 − yh0 + yh(0)− ỹ(0)‖ ≤ ‖y0 − yh0‖+ ‖ỹ(0)− yh(0)‖.

Из неравенства треугольника следует, что

‖y(uh)− yh‖ ≤ ‖ry‖+ ‖ỹ − yh‖ ≤ max
t∈[0,T ]

η1 + max
t∈[0,T ]

η3 + C‖y0 − yh0‖. (4.8)

Затем, выбрав q = rp в (4.6) и используя неравенство Коши–Шварца, мы получим

−1

2

d

dt
‖rp‖2 +

∥∥A 1
2∇rp

∥∥2
=

∫ T

t

(
B∗(s, t)∇rp(s),∇rp

)
ds+

(
y(uh)− yh + pht − p̃t, ry

)
≤ C

∫ T

t
‖∇rp(s)‖2 ds+

c1

2
‖∇rp‖2 + ‖p̃t − ypt‖2 + ‖rp‖2 +

‖y(uh)− yh‖2. (4.9)

Пусть t = T в (3.6). Тогда мы легко получим rp(T ) = 0. Интегрируя (4.9) от t до T и
используя предположение относительно A, имеем

‖rp‖2 +

∫ T

t
‖∇rp(s)‖2 ds ≤ C

∫ T

t

∫ T

λ
‖∇rp(s)‖2 ds dλ+ C

∫ T

t
‖p̃t − pht‖2 ds+

C

∫ T

t
‖rp‖2 ds+ C

∫ T

t
‖y(uh)− yh‖2 ds. (4.10)

Применим неравенство Гронуолла к (4.10) для получения

‖rp‖2 ≤ C‖p̃t − pht‖L∞(L2) + C‖y(uh)− yh‖L∞(L2). (4.11)

Объединив (4.8), (4.11), леммы 3.4 и 3.5 с неравенством треугольника, мы завершаем
доказательство леммы.

Пусть
ey := y − y(uh), ep := p− p(uh).

На основании (2.4)–(2.8) и (4.1)–(4.4) приведенные выше ошибки удовлетворяют следу-
ющим уравнениям:
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(eyt, v) + (A∇ey,∇v) =

∫ t

0

(
B(t, s)∇ey(s),∇v

)
ds+ (u− uh, v) ∀ v ∈ V, (4.12)

ey(x, 0) = 0 ∀x ∈ Ω, (4.13)

−(ept, q) + (A∇ep,∇q) =

∫ T

t

(
B∗(s, t)∇ep(s),∇q

)
ds+ (ey, q) ∀ q ∈ V, (4.14)

ep(x, T ) = 0 ∀x ∈ Ω. (4.15)

Мы можем легко получить следующую лемму:

Лемма 4.2. Пусть (y, p) и (y(uh), p(uh)) — решения (2.4)–(2.8) и (4.1)–(4.4) соответ-
ственно. Тогда

‖y − y(uh)‖+ ‖p− p(uh)‖ ≤ C‖u− uh‖L2(L2).

Теперь получим оценку ошибки для переменной управления.

Лемма 4.3. Пусть (y, p, u) и (yh, ph, uh) — решения (2.4)–(2.8) и (2.12)–(2.16) соответ-
ственно. Тогда

‖u− uh‖L2(L2) ≤ C‖p(uh)− ph‖L2(L2).

Доказательство. Исходя из (2.8) и (2.16),

‖u− uh‖2L2(L2) =

∫ T

0
(u− uh, u− uh) dt

=

∫ T

0
(u+ p, u− uh) dt+

∫ T

0
(uh + ph, uh − u) dt+∫ T

0
(ph − p(uh), u− uh) dt+

∫ T

0
(p(uh)− p, u− uh) dt

≤
∫ T

0
(ph − p(uh), u− uh) dt+

∫ T

0
(p(uh)− p, u− uh) dt. (4.16)

Из неравенства Коши следует, что∫ T

0

(
ph − p(uh), u− uh

)
dt ≤ C‖p(uh)− ph‖2L2(L2) +

1

2
‖u− uh‖2L2(L2). (4.17)

Теперь, интегрируя (4.12) и (4.14) от 0 до T , используя (4.13), (4.15) и∫ T

0

∫ t

0

(
B(t, s)∇ey(s),∇ep

)
ds dt =

∫ T

0

∫ T

t

(
B∗(s, t)∇ep(s),∇ey

)
ds dt,

мы заключаем, что∫ T

0

(
p(uh)− p, u− uh

)
dt =

∫ T

0

(
y(uh)− y, y − y(uh)

)
dt ≤ 0. (4.18)

Таким образом, используя (4.16)–(4.18), мы завершаем доказательство леммы.

Из лемм 4.1–4.3 и неравенства треугольника мы имеем следующий основной резуль-
тат:
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Теорема. Пусть (y, p, u) и (yh, ph, uh) — решения (2.4)–(2.8) и (2.12)–(2.16) соответ-
ственно. Тогда мы имеем

‖u− uh‖L2(L2) + ‖y − yh‖L∞(L2) + ‖p− ph‖L∞(L2) ≤ C
4∑
i=1

max
t∈[0,T ]

ηi + C‖y0 − yh0‖,

где η1 и η2 определены в лемме 3.4, а η3 и η4 — в лемме 3.5.

5. Выводы

В этой статье мы получили апостериорные оценки ошибок для полудискретных ко-
нечно-элементных решений задач оптимального управления, описываемых линейными
параболическими интегро-дифференциальными уравнениями. Наши апостериорные
оценки ошибок для этого класса задач оптимального управления и их приближенные
решения методами конечных элементов представляются новыми. В своей будущей рабо-
те мы рассмотрим полностью дискретную аппроксимацию на основе обратного метода
Эйлера и разработаем адаптивный конечно-элементный алгоритм. Кроме того, мы рас-
смотрим апостериорные оценки ошибок для задач оптимального управления, описывае-
мых гиперболическими интегро-дифференциальными уравнениями.
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