УДК 546.16:550.42(571.55) DOI: 10.15372/KhUR20170502

Уран, литий и мышьяк в соленых озерах Восточного Забайкалья

С. В. БОРЗЕНКО^{1, 2}, Л. В. ЗАМАНА¹, В. П. ИСУПОВ³, С. С. ШАЦКАЯ³

¹Институт природных ресурсов, экологии и криологии Сибирского отделения РАН, Чита, Россия

E-mail: svb_64@mail.ru

²Томский филиал Института нефтегазовой геологии и геофизики им. А. А. Трофимука, Томск, Россия

³Институт химии твердого тела и механохимии Сибирского отделения РАН, Новосибирск, Россия

E-mail: isupov@solid.nsc.ru

(Поступила 23.05.17; после доработки 01.06.17)

Аннотация

Выполнен анализ распределения лития, урана и мышьяка в водах минеральных озер Восточного Забайкалья с различной степенью минерализации, макрокомпонентным составом и величиной рН вод. Установлено, что литий концентрируется преимущественно в более минерализованном хлоридном типе озер, а мышьяк и уран - в менее соленом содовом. Согласно термодинамическим расчетам, литий присутствует в озерах в основном в виде простого иона Li⁺, вторым по значимости в содовых водоемах выступает LiCO₃, а в хлоридных – LiCl. Уран находится преимущественно в формах трикарбонат- $[UO_2(CO_3)_3]^{4-}$ и дикарбонат-уранилов $[UO_2(CO_3)_2]^{2-}$. Мышьяк в окислительной обстановке озер представлен гидроарсенатом $HASO_4^{2-}$, а в восстановительной сероводородной – дигидроарсенитом $H_2ASO_3^{-}$. Собственных минералов в озерах литий не образует. Геохимическим барьером для урана может служить восстановительная обстановка, в которой он осаждается в виде гидроксида U(OH)₄, а в окислительных условиях возможно образование натриевого ураноспинита NaUO₂AsO₄, который может ограничивать содержание в воде и мышьяка. Для лития и хлора прослеживается единая направленность в распределении их содержаний в хлоридных озерах. Прямая зависимость концентраций урана и мышьяка от содержания гидрокарбонат- и карбонат-ионов выявлена для содовых озер. Отсутствие специализации на водосборах большинства озер при широком диапазоне содержаний в них лития, урана и мышьяка, также их зависимость от содержания в водах основных макрокомпонентов указывают на превалирующую роль геохимической среды в накоплении исследованных элементов. Формирование среды определяется преимущественно испарительным концентрированием вод и гидролизом алюмосиликатных пород. В зависимости от доминирования того или иного процесса формируются определенный химический тип озер и соответствующий набор микроэлементов.

Ключевые слова: литий, уран, мышьяк, взаимодействие в системе "вода – горная порода", испарительное концентрирование, соленые озера Восточного Забайкалья

введение

В последние годы соленые озера все чаще рассматриваются в качестве источников минеральных возобновляемых ресурсов, эксплуатация которых не требует дорогостоящих технологий и считается экологически безопасной [1, 2]. Ранее соленые озера изучались преимущественно как объекты возможной добычи солей, в основном соды, мирабилита, галита [3, 4]. В Восточном Забайкалье в промышленных масштабах добыча поваренной соли

© Борзенко С. В., Замана Л. В., Исупов В. П., Шацкая С. С., 2017

велась на оз. Борзинское, мирабилит добывали на оз. Шихалин-Нор, соду – на оз. Баин-Цаган и Доронинское. Между тем, многие минеральные озера Восточного Забайкалья, наряду с озерами России (Алтай), Китая, Монголии и других стран, аккумулируют ряд химических элементов (в том числе редкие и редкоземельные) и потому могут рассматриваться как перспективные на промышленные воды [5–7]. Подробно исследованы формы нахождения лития и урана в озерах Западной Монголии, определены основные факторы, способствующие их накоплению в водах [8]. По озерам Восточного Забайкалья такого рода информация представлена только в работе [9].

Цель данного исследования – выделение ключевых факторов, обеспечивающих накопление урана и часто сопутствующего ему мышьяка, а также лития в соленых озерах Восточного Забайкалья.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Соленые озера Восточного Забайкалья расположены в регионе с выраженным резко континентальным климатом. С запада и востока территория ограничена координатами 115- 116° в. д., с севера – широтой $50^{\circ'}$, с юга – государственной границей; с широко проявленными процессами континентального засоления по днищам котловин. В геологическом строении котловин участвуют разновозрастные породы, чаще с поверхности они представлены осадочными отложениями мощностью до 1700 м (Читино-Ингодинская, Ононская). В обрамлениях впадин наибольшим распространением пользуются граниты и гнейсы, в районе Торейских озер на дневную поверхность выходят базальты, по левобережью р. Борзи возвышается выступ терригенно-карбонатных пород девона, к северу от р. Онон распространены магматические породы мезозоя и метаморфические толщи палеозоя [11]. Общая площадь водного зеркала наиболее крупных, соединяющихся между собой в многоводные периоды озер Барун-Торей и Зун-Торей достигает 850 км². Остальные озера отличаются малыми размерами, а глубина их редко превышает первые метры от зеркала воды. В годы засухи они, как правило, пересыхают до дна, а в увлажненные периоды вновь наполняются водой. Все озера бессточные, имеют небольшие водосборы, водное питание основной массы их атмосферное (непосредственно на акватории) и подземное, а при ливнях и частых дождях обеспечивается поверхностным стоком.

Отбор проб на озерах осуществляли в 2013-2015 гг. в ходе экспедиционных исследований в бассейнах рек Шилка, Аргунь и Улдза (на территории РФ) (рис. 1). Всего отобрано и проанализировано 90 проб озерной воды. Вода на месте фильтровалась через мембранный фильтр с диаметром пор 0.45 мкм и подкислялась особо чистой концентрированной азотной кислотой квалификации "ос. ч." (1:1) до pH < 2, сразу после фильтрации. Пробы для подачи в прибор разбавляли деионизованной водой с сопротивлением 18.2 мОм/см до общего содержания солей менее 0.01 г/л. Определение микрокомпонентов в озерных водах выполнено в Аналитических центрах Института геохимии им. А. П. Виноградова СО РАН (Иркутск) и Института химии твердого тела и механохимии СО РАН (Новосибирск) методом ИСП МС. В первом случае - с использованием прибора Element 2 (фирма Finnigan MAT) по методике HCAM № 480X с применением в качестве стандартов сертифицированных растворов ICP Multi Element Standard Solution Sol XII, Sol X CertiPUR (Merck) и Combined Quality Control Standart IQC-026 (NIST, США); во втором - с использованием прибора Inductively Coupled Plasma Mass Spectrometer Agilent 7500a. Масс-спектрометр настраивали по Tuning Solution Agilent Part No. 5184-3566. Содержание микроэлементов определяли по многоэлементным эталонным растворам (Multi-Element Calibration Standard-2A Agilent Part Number 8500-8940.)

Химический анализ макрокомпонентного состава вод проведен стандартными методами в аттестованной лаборатории Института природных ресурсов, экологии и криологии СО РАН (Чита). Концентрации Са и Mg определялись методом атомной абсорбции в пламени оксид азота (I)-ацетилен на спектрофотометре SOLAAR 6M. Для определения Na и K использован пламенно-эмиссионный метод. Потенциометрически с применением ионосе-

Рис. 1. Схема расположения минеральных озер Восточного Забайкалья по выделенным речным бассейнам (I – р. Шилка, II – р. Аргунь, III – р. Улдза) по Егидареву [10].

лективных электродов определяли содержание O_2 , F, Cl, а также величины pH, E_h . Титрование применялось для определения содер-

жания CO₃²⁻ и HCO₃⁻. Сульфат-ион анализировался турбидиметрическим методом в виде сернокислого бария.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Минеральные озера представлены в основном содовым типом; хлоридный тип встречается гораздо реже, преобладание сульфатов установлено в единичных случаях (табл. 1). Соленость рапы озер достигает 343 г/л (оз. Борзинское). При солености до 15 г/л в озерных водах в основном доминируют карбонаты, а в более соленых – хлор. В катионном составе преобладает натрий. Величина рН воды достигает 10.7 (оз. Куджертай), при среднем значении для содовых озер рН 9.54, для хлоридных — pH 8.4. Окислительно-восстановительный потенциал вод E_h содовых озер изменялся от —380 до 380.7 мВ, хлоридных — от —36.3 до 97.7 мВ. Отрицательные значения E_h обусловлены развитием преимущественно сульфатредукции.

Высокие значения pH определяют поведение многих элементов, в том числе кальция и магния, содержание которых в среднем на порядок ниже в содовых озерах. По сравнению с хлоридными содовые озера отличаются более высокими концентрациями U, V, Mo, Zr и As, тогда как Li содержится в меньших коли-

ТАБЛИЦА 1

Физико-химические характеристики минеральных озер Восточного Забайкалья

Показатели	Гидрогеохимический тип озер					
	Содовый Содержание			Хлоридный Содержание		
				мг/л		
CO_2	< 0.44	<0.44	<0.44	144.0	< 0.44	156.0
$\mathrm{CO}_3^{2^-}$	1186	16.0	18 600	232.0	< 0.30	840.0
HCO_{3}^{-}	1657	24.4	7930	625.9	61.2	2025
${ m SO}_4^{2^-}$	1860	10	62 340	3208	210	13 680
Cl^-	4164	28.2	$133\ 740$	$16\;531$	1196	101 088
\mathbf{F}^{-}	14.0	< 0.19	131.4	7.07	0.27	37.1
Ca^{2+}	13.6	0.8	80.0	93.1	6.19	617.5
Mg^{2+}	53.3	1.08	291.4	575.8	9.95	3795
Na ⁺	4853	272	124 800	$11\ 662$	1348	65 000
K^+	55.8	2.3	440.8	72.3	7.5	237.6
M^*	$14\ 195$	1174	343 227	$32\ 989$	4632	184 650
Si	2.2	0.3	17.7	0.7	0.4	2.0
			мкг/л			
Li	87.6	2.0	3263	208.7	62.1	675.1
V	77.0	0.02	420.3	23.8	5.99	119.1
As	414.4	25.2	6007	102.9	13.6	278.9
Sr	335.9	0.04	1576	4097	129.5	18 506
Br	$29\ 936$	30.0	$624\ 292$	78 096	$10\;580$	368 586
U	156.7	2.5	2818	75.6	15.6	246.1
Zr	41.3	0.12	1105	9.06	0.14	47.5
Мо	124.0	3.0	2987	88.1	15.4	378.9
E_h , мВ	100	-380	381	44	-36	98
pH	9.54	9.02	10.7	8.40	7.40	9.66

Примечание. Для содового типа озер среднее значение рассчитано по данным 77 проб, для хлоридного - 13 проб.

*М – минерализация.

Рис. 2. Зависимость содержания лития от хлорид- (а) и гидрокарбонат-ионов (б).

чествах. В самом соленом содовом оз. Борзинское отмечаются максимальные содержания As (6 мг/л), U (2.8 мг/л), однако концентрация Li (173 мкг/л) незначительно превышает среднее по всей выборке (123 мкг/л). Среди хлоридных озер выделяется оз. Горбунка с максимальной минерализацией вод 184.4 г/л и с относительно высокими содержаниями Cl, Br, Sr, Li, в то время как содержание U не превышает 59 мкг/л.

Для выявления причин различного поведения микроэлементов проведен анализ равновесий в системе "вода - горная порода соли", который показал, что все озерные воды насыщены такими карбонатными минералами, как кальцит, доломит, несквегонит, но равновесие с содой, галитом и гипсом, как правило, не достигается. Исключение составляет озеро хлоридного типа Бильчир-Нур, воды которого равновесны с гипсом. При этом содержание в них сульфатов равно 13680 мг/л, а кальция - всего 160 мг/л. По некоторым содовым озерам воды равновесны с гейлюсситом, формирование которого возможно на определенной стадии процесса содообразования [12]. Достигается равновесие воды и с глинистыми минералами, преимущественно с монтмориллонитами, иллитами, а в отдельных случаях с альбитом и анальцимом, но не равновесны с первичными минералами, например с анортитом [13].

Понятно, что кальций и магний связываются преимущественно карбонатами и алюмосиликатами, а калий и натрий – алюмосиликатами, причем последний еще и гейлюсситом. Содержание остальных элементов, не связанных вторичной фазой, например, хлора, растет по мере увеличения минерализации воды. Следовательно, процесс накопления хлора можно связать с испарительной концентрацией вод, а значит, чем выше степень испарения воды (при отсутствии дополнительного источника хлора), тем больше накапливается его в озерах [14].

Единая направленность в распределении содержаний Cl и Li фиксируется исключительно в случае хлоридных озер (рис. 2, а). Отсутствует зависимость в содовых водоемах Li с основным ионом HCO_3^- (см. рис. 2, б). В водах литий мигрирует преимущественно в форме собственного иона Li⁺ с превалированием его доли в хлоридных озерах (рис. 3, а). Вторым по значимости в содовых озерах выступает LiCO₃, а в хлоридных – LiCl. При этом молярная доля соответствующего ассоциата растет с повышением концентраций основных лигандов. Ввиду высокого значения произведения растворимости солей лития - хлорида LiCl и карбоната Li₂CO₃ (цзабуелит) - насыщение воды этими солями не отмечается (см. рис. 3, б, в). Очевидно, отсутствие геохимических барьеров позволяет литию, как и хлору, концентрироваться в растворе, и чем выше концентрация хлора и степень концентрирования воды, тем выше содержание лития в озерах. Влияние испарительных процессов на концентрирование в водах лития подтверждается многочисленными примерами: салары Аргентины, Китая, Чили, Красное море, соленые озера Алтая с содержанием лития в их водах до нескольких граммов на литр [2, 15].

В единичных случаях не исключено наличие дополнительного источника лития: например, редкометальные гранитные пегматиты, отдельные проявления которых фиксируются на рассматриваемой территории повышенными концентрациями лития в маломинерализованных озерах. Так, в оз. Цаган-Нур с

Рис. 3. Основные формы миграции лития в хлоридных и содовых озерах (*a*) и равновесие вод с цзабуелитом Li₂CO₃ (*б*), LiCl (*в*), сподуменом LiAl[Si₂O₆] (*c*), эвкриптитом LiAl[SiO₄] (*d*).

минерализацией вод всего 4388 мг/л содержание Li достигает 3263 мкг/л. Согласно расчетам, равновесие воды с основными литиевыми алюмосиликатными минералами эвкриптитом LiAl[SiO₄] и сподуменом LiAl[Si₂O₆] не достигается, поэтому гипотетически они могут растворяться и служить дополнительным его источником (см. рис. 3, ϵ , ∂).

Концентрации U варьируют в диапазоне в несколько математических порядков – от 2.55 до 2819 мкг/л, что указывает на определяющую роль геохимических характеристик среды в распределении U в водах озер. Повышенные содержания урана обнаружены в озерах содового типа, с относительно высоким значением pH вод (рис. 4, *a*). Отсюда можно заключить, что имеющиеся аномалии урана в водах минеральных озер региона не связаны с рудной минерализацией, в отличие, к примеру, от одного из озер Северо-Западной Монголии, где концентрация урана в 1.1 мг/л выступает показателем ураноносности пород [15, 16]. В то же время на рассматриваемой территории широко распространены редкометальные гранитоиды, определенные интрузивные комплексы которых обладают повышенной радиоактивностью. Естественно ожидать, что в ряде случаев воды минеральных озер могут отличаться высокими концентрациями урана.

В водных растворах уран, согласно [17] и другим источникам, может находиться в виде аква-уранила $[\rm UO_2(H_2O)_6]^{2+}$, а при наличии других лигандов – в виде комплексов с ними. В частности, при высоком значении рН – в

Рис. 4. Содержание урана в зависимости от рН и E_h среды (a) (1 – менее 50, 2 – 50–100, 3 – свыше 100 мкг/л), основные его формы миграции (б) и зависимость между содержаниями урана и карбонатного комплекса $\text{HCO}_3^- + \text{CO}_3^{2-}$ (e) в водах соленых озер.

форме гидроксиуранилов, а в случае карбонатных ионов - в форме карбонат-уранилов. Из последних в водной среде устойчивы трикарбонат-уранил [UO₂(CO₃)₃]⁴⁻ и дикарбонатуранил $[UO_2(CO_3)_2]^{2-}$ (см. рис. 4, б). Трикарбонатный комплекс преобладает при концентрации карбонат-иона $10^{-4.5}$ моль/л, а при концентрации карбонат-иона более $10^{-3.0}$ моль/л его доля близка к 100 %. Содержание карбонат-иона в озерах достигает 18 600 мг/л $(3.1 \cdot 10^{-1} \text{ моль/л})$, что указывает на возможность образования здесь карбонат-ураниловых ионов. Выполненные термодинамические расчеты с использованием программного комплекса HydroGeo [18] подтверждают это предположение. Отсюда четко прослеживается прямая связь урана с карбонат- и гидрокарбонат-ионами, при этом устойчивость образованных комплексов находится в прямой зависимости от pH раствора (см. рис. 4, *в*). Снижение величины pH вод способствует образованию в хлоридных озерах дикарбонат-уранилионов, наличие которых напрямую зависит от присутствия в водах лиганда CO_3^{2-} .

Накопление урана на стадии содообразования подтверждается связью урана с натрием (r = 0.95), так как превалирование концентраций натрия по сравнению с остальными катионами (кальция, магния и калия) в водах начинается с момента осаждения карбонатных минералов и глин [14].

В ряде случаев в водах содовых озер (оз. Доронинское, оз. Куджертай и др.) отмечается снижение концентраций урана при высоком содержании $CO_3^{2^-}$ в восстановительной обстановке ($E_h = -380$ мВ, в толще воды оз. Доронинское) и вызвано, очевидно, переходом

Рис. 5. Основные формы миграции As в зависимости от условий pH и E_h (a) и содержания HCO_3^- в озерах (б).

 ${\rm U}^{6+}$ в ${\rm U}^{4+}$ с дальнейшим выпадением его в осадок в форме гидроксида U(OH)₄ (произведение растворимости этой формы, согласно [19], ПР = 1.1 · 10⁻⁵²) или оксида UO₂. Осаждение оксида урана (4+) возможно в результате разрушения карбонатных комплексов и в зависимости от общей минерализации и состава воды, величины рН и содержания карбоната начинается при понижении Е_h до диапазона 0...-0.2 мВ [20]. По шестивалентному урану озерные воды равновесны с натриевым ураноспинитом NaUO₂AsO₄, для которого $\Pi P = 1.33 \cdot 10^{-22}$ [19]. По расчету насыщения по отениту $Ca(UO_2)_2(PO_4)_2$ не достигается (ПР = 5.5 · 10⁻⁴⁶ по [20]). Возможность восстановления U⁶⁺ в хлоридных озерах в рассматриваемых случаях маловероятна, так как здесь чаще превалируют окислительные условия, а значения Е_h не опускаются ниже -35 мВ (оз. Большая Булугунда).

В содовых озерах поступление урана за счет растворения водой вмещающих пород на водосборных площадях и в озерах подтверждается высокой корреляционной связью U с сопутствующими ему Zr (0.90), Mo (0.84), V (0.87), содержания которых, как по средним, так и по максимальным оценкам, здесь существенно выше. Для хлоридных озер такие зависимости отсутствуют.

Согласно [14], чем более интенсивно идет процесс гидролиза алюмосиликатных пород, тем выше щелочность воды и тем больше поступает в раствор химических компонентов. Однако в содовых озерах при относительно высоком значении pH с ростом минерализации повышается и содержание хлора, и испарение также вносит дополнительный вклад в накопление урана.

Аналогично урану ведет себя мышьяк, хотя в обоих типах вод он содержится преимущественно в одной форме $HAsO_4^{2-}$, за исключением озер с сероводородной обстановкой водной толщи, где мышьяк восстанавливается до As^{3+} и присутствует уже в форме $H_2AsO_3^{-}$ (рис. 5, *a*). Связь мышьяка с геохимической средой проявляется через согласованный рост содержаний As и HCO_3^{-} (см. рис. 5, б) и высокий

◆ Содовые озера □ Хлоридные озера

Рис. 6. Распределение мышьяка и урана (a), а также равновесие вод с натриевым ураноспинитом NaUO₂AsO₄ (б) в содовых и хлоридных озерах.

коэффициент корреляции (r = 0.66). Учитывая, что присутствие производных углекислоты (карбонат- и гидрокарбонат-ионов) в водах обеспечивается реакцией взаимодействия ОН⁻ + $CO_2 \rightarrow HCO_3^-$, а источником ОН⁻ по реакции гидролиза с алюмосиликатами (основными минералами пород) является сама вода [14], то чем интенсивнее идет растворение минералов (при условии поступления в систему CO₂), тем больше накапливается HCO_3^- . Очевидно, что такие зависимости свидетельствуют о большей роли реакций гидролиза в накоплении As.

В отдельных случаях можно рассматривать процессы десорбции, в результате которых частичное растворение оксигидроксидов железа на границе смены условий с окислительных на восстановительные приводит к освобождению связанных с ними химических элементов, в том числе и мышьяка. Однако, как правило, концентрации мышьяка в сероводородной обстановке не превышают первые десятки микрограммов на литр, поэтому существенного вклада в его накопление этот процесс не дает. Единая направленность в распределении урана и мышьяка в содовых озерах (рис. 6, а) может объясняться также возможностью формирования совместных минералов, например натриевого ураноспинита, равновесие вод с которым достигается в выделенных типах озер (см. рис. 6, б).

ЗАКЛЮЧЕНИЕ

Анализ распределений концентраций лития, урана и мышьяка показал, что содержания этих элементов в озерах Восточного Забайкалья достигают нескольких миллиграммов на литр раствора и близки к промышленным концентрациям для их извлечения. В более минерализованных хлоридных озерах накапливается литий, а в содовых, более щелочных водах, - уран и мышьяк. Хотя Забайкалье представляет собой крупнейшую литиеносную (Завитинское, Этыкинское и др. месторождения) и ураноносную (Стрельцовское, Березовое, Оловское и др.) провинции России, рассматриваемый район лежит за пределами этих месторождений. На значительном удалении от объектов исследований расположены также месторождения мышьяка (Запокровское, Кличка). Ввиду отсутствия урановой, литиевой и мышьяковой специализации по большинству водосборных территорий озер ее нельзя считать основной причиной повышенных содержаний этих элементов. Существенные вариации их концентраций в выделенных типах озер свидетельствуют о значимой роли гидрогеохимической среды в накоплении этих элементов. В то же время формирование самой среды определяется доминированием испарительного процесса для хлоридных озер, а гидролиза алюмосиликатных минералов - для содовых, отсюда различие в накоплении определенных микроэлементов.

Исследования выполнены при финансовой поддержке РНФ (проект № 17-17-01158 "Механизмы взаимодействия, состояние равновесия и направленность эволюции системы "соленые воды и рассолы – основные и ультраосновные породы" (на примере регионов Сибирской платформы)").

СПИСОК ЛИТЕРАТУРЫ

- 1 Moores S. // Ind. Minerals. 2007. Vol. 477. P. 58-69.
- 2 Zheng Mianping // Saline Lakes and Salt Basin Deposits in China. Beijing: Science Press, 2014. 321 p.

- 3 Дзенс-Литовский А. И. Соляные озера СССР и их минеральные богатства. Л.: Недра, 1968. 117 с.
- 4 Гладцин И. Н. // Тр. 1-й конф. по изучению производительных сил Бурят-Монгольской АССР. М.–Л., 1935. Т. 1. С. 10–20.
- 5 Склярова О. А., Скляров Е. В., Федоровский В. С., Санина Н. Б. // География и природные ресурсы. 2004. № 4. С. 44–49.
- 6 Волкова Н. И., Владимиров А. Г., Исупов В. П., Мороз Е. Н. // Химия уст. разв. 2011. Т. 20, № 1. С. 21–26.
- 7 Garrett D. Handbook of Lithium and Natural Calcium Chloride. Their Deposits, Processing, Uses and Properties. Elsevier, 2004. 457 p.
- 8 Шварцев С. Л., Исупов В. П., Владимиров А. Г., Колпакова М. Н., Ариунбилэг С., Шацкая С. С., Мороз Е. Н. // Химия уст. разв. 2012. Т. 21, № 2. С. 43–48.
- 9 Склярова О. А., Скляров Е. В., Меньшагин Ю. В., Данилова М. А. // Химия уст. разв. 2012. Т. 21, № 2. С. 35–41.
- 10 Егидарев Е. Г., Симонов Е. А. // Геоэкология. Инженерная геология. Гидрогеология. Геокриология. 2014. № 5. С. 429–441.
- 11 Геологическая карта Читинской области масштаба 1:500 000 / под ред. В. В. Старченко, И. Г. Рутштейн. М.: Мингео России, 1998.

- 12 Борзенко С. В. // Геохимия. 2014. № 7. С. 662-667.
- 13 Борзенко С. В. // Фундаментальные и прикладные проблемы гидрогеологии: матер. Всерос. совещания по подземным водам Востока России (XXI Совещание по подземным водам Сибири и Дальнего Востока с междунар. участием), Якутск: Изд-во Института мерзлотоведения им. П. И. Мельникова СО РАН, 2015. С. 255-258.
- 14 Шварцев С. Л. // Фундаментальные проблемы гидрогеохимии. Томск: Изд. НТЛ. 2004. С. 70–75.
- 15 Шварцев С. Л., Колпакова М. Н., Исупов В. П., Владимиров А. Г., Ариунбилэг С. // Геохимия. 2014. № 5. С. 432–449.
- 16 Исупов В. П., Владимиров А. Г., Ляхов Н. З. // ДАН. 2010. Т. 437, № 1. С. 85–89.
- 17 Основные черты геохимии урана / под ред. акад. А. П. Виноградова. 2-е изд., стереотипное и исправленное. Томск: STT, 2013. 374 с.
- 18 Букаты М. Б. // Изв. ТПУ. 2002. Т. 305, № 6. С. 348–365.
- 19 Лисицын А. П. // Геохимия. 1962. № 9. С. 763-769.
- 20 Белова Л. Н. Зоны окисления гидротермальных месторождений урана. М.: Недра, 1975. 158 с.