УДК 53.092

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ХАРАКТЕРА ДЕФОРМАЦИИ СФЕРОПЛАСТИКОВ ПРИ УДАРНОМ СЖАТИИ

В. С. Зиборов, Г. И. Канель, Т. А. Ростилов

Объединенный институт высоких температур РАН, 125412 Москва ziborov.vs@yandex.ru, t.rostilov@yandex.ru

Представлены результаты экспериментального исследования ударного сжатия образцов, моделирующих среды с заданной пористостью на примере сферопластиков на эпоксидной основе с наполнителем из стеклянных микросфер с объемными концентрациями 0.27 и 0.55. Получены ударные адиабаты в диапазоне давления ударного сжатия $0.1 \div 1.2$ ГПа. Оценено давление ударного сжатия, при котором начинается разрушение используемых микросфер. Обнаружена зависимость характера деформации от концентрации микросфер в образце.

Ключевые слова: сферопластик, микросферы, волна ударного сжатия, предвестник, средняя массовая скорость, ударная адиабата, VISAR.

DOI 10.15372/FGV20200215

ВВЕДЕНИЕ

Развитие универсальных моделей для расчета свойств перспективных материалов сложного состава, в том числе пористых, в условиях ударного сжатия требует надежных экспериментальных данных для верификации. Примером вещества, относительно простого и пригодного для моделирования, являются сферопластики, легкие композитные материалы на полимерной основе, содержащие полые микроразмерные сферы. К тому же эти вещества нашли широкую область применения [1]. Ввиду многообразия полимерных матриц, микросфер, их покрытий и концентраций в образце, свойства материалов, полученных на их основе, сильно различаются. Структурные и деформационные свойства сферопластиков хорошо изучены в условиях малых напряжений [2]. Гораздо меньше данных об их свойствах в условиях ударного сжатия. Известно, что в области относительно невысоких давлений фронт волны сжатия, распространяющейся в сферопластиках, имеет сложную структуру [3, 4], в которой выделяют первичную и вторичную волны. Первую связывают с распространением упругого сжатия, вторую — с передачей пластических напряжений в результате удара, приводящего к разрушению микросфер. В этой связи вопросы о диапазоне давления, в котором наблюдается сложная волновая структура, и влияние изменения концентрации микросфер на характер волн ударного сжатия являются актуальными для экспериментального исследования.

ЭКСПЕРИМЕНТ

Исследованы образцы из эпоксидной смолы Этал-370 и отвердителя Этал-45М в качестве основы. В качестве наполнителя выбраны стеклянные микросферы (МС) среднего диаметра 83 мкм с толщиной стенки порядка 1 мкм. Эпоксидная смола смешивалась с отвердителем в объемном соотношении 2:1 и с микросферами до получения однородной среды. Затем образец более 24 ч затвердевал при комнатной температуре. Особое внимание уделено равномерному распределению микросфер по объему. Объемные доли микросфер составили $\varphi = 0.27$ и 0.55, плотность образцов — 0.90 и 0.64 г/см³ соответственно, плотность образцов, не содержащих MC, -1.15 г/см³. Характеристики образцов и параметры экспериментов представлены в таблице.

Образец помещался в сборку. Сборка состояла из экрана, датчика, регистрирующего время входа волны в образец, собственно образца, фольги, отражающей луч лазера и водяного окна. Материал экрана — сплав алюминия Д16Т, его толщина во всех экспериментах — $1.80 \div 2.00$ мм. Толщина образцов составляла $h_s = 3.5 \div 5.3$ мм, диаметр — 40 мм. Сборка крепилась в монтажном кольце, которое служило опорой при размещении в камере измере-

[©] Зиборов В. С., Канель Г. И., Ростилов Т. А., 2020.

		1					1	
Номер опыта	φ , объемная доля	v_i , км/с	h_s , мм	u, км/с	$p,\Gamma\Pi {\rm a}$	D, км/с	$D_{\pi p}, \kappa M/c$	$\dot{\varepsilon}_x$, мкс ⁻¹
1	0.27	0.776	3.51	0.699	1.19	1.890	2.772	12.58
2		0.749	5.17	0.677^{*}	1.10^{*}	1.811^{*}	—	46.16
3		0.719	4.75	0.652	1.02	1.740	2.626	11.31
4		0.557	5.33	0.511	0.69	1.479	3.189	8.17
5		0.508	4.79	0.471	0.56	1.320	3.039	5.25
6		0.450	5.14	0.422	0.43	1.142	3.091	0.50
7		0.306	4.94	0.287	0.29	1.119	3.728	_
8		0.749	5.02	0.677	1.11	1.822	2.690	—
9		0.504	4.00	0.467^{*}	0.55^{*}	1.317^{*}		_
10		0.462	4.25	0.430	0.48	1.246	2.554	
11	0.55	0.760	4.97	0.722	0.57	1.234	2.415	27.76
12		0.568	5.09	0.548	0.31	0.883	2.319	5.90
13		0.425	4.78	0.413	0.17	0.640	2.867	2.21
14		0.319	4.90	0.313	0.10	0.485	3.523	2.20
15		0.419	5.29					

Результаты экспериментов

^{*}Значения, рассчитанные по измеренной в других экспериментах адиабате.

ний. Камера вакуумировалась до остаточного давления воздуха менее 0.1 Торр. Это позволило практически исключить влияние головной ударной волны, возникающей на поверхности ударника при движении в атмосфере, на измеряемый профиль скорости поверхности образца. Эксперименты проведены при комнатной температуре.

В каждом опыте измеряли параметры, позволяющие определить скорость ударника, скорость распространения волны ударного сжатия в образце, получен профиль скорости поверхности образца. Есть опыты, в которых один из параметров не удавалось измерить по техническим причинам.

Для ускорения плоских ударников толщиной 10 мм из сплава алюминия Д16Т до скоростей 320 ÷ 780 м/с использовалась метательная установка калибром 57 мм. Скорость определялась с помощью двух пар контактных игольчатых датчиков, которые ударник замыкал последовательно при движении к экрану сборки. Датчики размещались по периметру монтировочного кольца, в котором установлена сборка.

Профили скорости границы образец/вода и образец/вакуум получены с помощью интерферометра VISAR [5]. Скорость распространения волны сжатия в образце определялась по измеренному интервалу времени от момента входа до момента выхода волны из образца и известной толщине образца. Момент времени входа волны в образец определялся по сигналу с датчика из алюминиевой фольги, расположенному между экраном и образцом. Момент выхода волны на исследуемую поверхность определялся по появлению сигнала в каналах измерения VISAR. Общая схема эксперимента и состав сборки показаны на рис. 1.

РЕЗУЛЬТАТЫ

Полученные профили скорости поверхности v показаны на рис. 2, 3 (номер профиля соответствует номеру эксперимента в таблице). Хорошо видно, что профили скорости поверхности образцов из сферопластика, за исключением эксперимента 7, в котором скорость ударника наименьшая, имеют двухволновую структуру в отличие от профиля в образце из эпоксидной смолы (рис. 3). Профиль начинается с резкого роста скорости, называемого первой волной или предвестником. За ним следует пологий участок, отделяющий первую вол-

Рис. 1. Схема экспериментов:

1 — ударник, 2 — монтировочное кольцо, 3 — датчики, 4 — экран, 5 — датчик измерения времени входа волны в образец, 6 — образец, 7 — отражающая фольга, 8 — водяное окно, 9 — крышка окна из ПММА, 10 — луч VISAR

ну от второй, называемой основной волной. На профилях 1, 3-6 и 11-14 явно присутствует еще один скачок скорости (отмечен стрелками), следующий после выхода основной волны на границу образец/окно, связанный с отражением ударной волны от границы образец/окно внутрь образца, которая, отразившись затем от экрана, возвращается на границу [4]. В экспериментах 9, 10 без водяного окна и крышки из ПММА подобная картина не наблюдается (рис. 4). На этих профилях хорошо различается ступенчатый характер возрастания амплитуды при выходе основной волны с ярко выраженной ступенькой при $v = 300 \div 350$ м/с. Подобная структура связана с циркуляцией предвестника между свободной поверхностью образца и фронтом основной волны [4].

Амплитуда скорости предвестника достигала $80 \div 140 \text{ м/с}$ и $30 \div 80 \text{ м/с}$ для образцов с объемной долей микросфер 0.27 и 0.55 соответственно. В эксперименте 7 наблюдалась следующая ситуация: при давлении ударного сжатия p = 0.29 ГПа основная пластическая волна плохо различима на фоне предвестника. Осцилляции этого профиля могут быть связаны с порчей отражающей фольги микросферами. Эти обстоятельства позволяют измерить скорость основной волны лишь приближенно и не позволяют оценить максимальную скорость де-

Рис. 2. Профили скорости границы образец/водяное окно для образцов с содержанием микросфер 0.27 (*a*) и 0.55 (*б*):

цифры около кривых соответствуют номерам экспериментов в таблице

формации в ней в этом эксперименте В эксперименте 12 наблюдалось практически полное затухание предвестника начиная от значения 50 до 20 м/с, при этом его общая длительность составила 3.7 мкс.

По результатам измерений скорости распространения предвестника и основной волны построены ударные адиабаты в координатах массовая скорость u — скорость ударной волны D, [км/c]. Массовую скорость рассчитывали методом отражений с помощью известных характеристик материала ударника и экрана [7]. Результаты представлены на рис. 5. Отметим, что для наглядности скоростям предвестников соответствуют массовые скорости в основной волне, а не в нем самом. Хорошо видно, что

Рис. 3. Профиль скорости границы образец/водяное окно для образца из эпоксидной смолы, не содержащего стеклянных микросфер (эксперимент 15)

Рис. 4. Профили скорости свободной поверхности образцов без водяного окна ($\varphi = 0.27$)

ударная адиабата основной волны в образцах с меньшим содержанием микросфер лежит существенно выше и имеет больший угол наклона, чем адиабата образцов с большим содержанием микросфер. Зависимости скорости волныпредвестника имеют отрицательный угол наклона, и, если экстраполировать в область более высоких давлений сжатия, они будут касаться адиабат своих основных волн при u > 1 км/с, что соответствует p > 2 ГПа для образцов с $\varphi = 0.27$ и p > 1 ГПа для образцов с $\varphi = 0.55$. Данные по скорости основной ударной волны аппроксимируются линейными зависимостями

Рис. 5. Ударные адиабаты сферопластиков, предвестника (2, 4) и основной волны (1, 3): 1, 2 — $\varphi = 0.27, 3, 4 - \varphi = 0.55$

$$D = 0.21 + 2.35u \, [\text{km/c}],\tag{1}$$

$$D = 0.01 + 1.60u \, [\text{km/c}], \tag{2}$$

для образцов с $\varphi = 0.27$ и 0.55 соответственно. Адиабата для образцов с $\varphi = 0.27$ разумно согласуется с результатами похожего исследования [3].

Скорость ударного сжатия образцов оценивалась по формуле

$$\dot{\varepsilon}_x = \dot{u}_p / D \ [\mathrm{c}^{-1}],\tag{3}$$

где \dot{u}_p — максимальный градиент скорости на участке возрастания амплитуды основной волны, рассчитываемый по профилю с учетом различия динамических импедансов материалов образца и окна, м/c².

Длительность участков профилей, взятых для определения максимальных градиентов скорости, во всех экспериментах была больше предела разрешающей способности интерферометра VISAR, составляющей 1 нс. Для давлений больших, чем в данном исследовании, применяется модифицированная методика с переходом к ступенчатому ударному сжатию, поскольку описанный выше способ оценки максимальной скорости сжатия становится некорректным [8].

Расчет обобщающей зависимости измеренных значений скорости ударного сжатия от давления проводился только для экспериментов с водяным окном (рис. 6). Полученные дан-

ления ударного сжатия

ные можно аппроксимировать степенными зависимостями для образцов с $\varphi = 0.27$ и 0.55 соответственно:

$$\dot{\varepsilon}_x = 1.58 \cdot 10^7 p^{3.2} \ [c^{-1}],$$
 (4)

$$\dot{\varepsilon}_x = 4.46 \cdot 10^7 p^{1.5} \ [c^{-1}],$$
 (5)

где размерность числового коэффициента перед давлением — $[1/(c \cdot \Gamma \Pi a^n)]$.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По данным [3] в сферопластиках упругий предвестник возникает из-за способности стенок микросфер упруго деформироваться. При достижении предела упругости, соответствующего максимальной амплитуде предвестника на профиле скорости, микросферы начинают разрушаться. Волна пластической деформации распространяется по веществу с частично или полностью разрушенными микросферами.

Для исследованных в работе сферопластиков порог разрушения микросфер составляет 0.10 ± 0.04 ГПа ($\varphi = 0.27$) и 0.04 ± 0.02 ГПа ($\varphi = 0.55$). Таким образом, порог разрушения при ударном сжатии образцов с $\varphi = 0.27$ оказывается выше на порядок, чем при статическом нагружении [9], а для образцов с $\varphi =$ 0.55 выше в несколько раз. Наблюдаемое понижение порога разрушения микросфер с ростом их концентрации в образце согласуется с $p-\alpha$ -моделью Херманна [10]. Аналогичная (4) и

(5) зависимость для сплошных металлов имеет четвертую степень [11]. Для жидкости на примере глицерина получена степень 2.1 [8]. В [12] для технического глицерина показано снижение степени зависимости с 1.5 до 1.1 при уменьшении начальной температуры с 18.5 до 6.5 °C, а для воды была получена степень 3.2, которая оказалась близка к степени для металлов. По-видимому, процесс сжатия при высокоскоростном ударе в образцах, содержащих полые микросферы, изменяет свой характер с ростом их концентрации. Образцы с меньшей объемной долей микросфер сжимаются схожим со сплошными металлами образом, а с большей долей микросфер — близки по свойствам к жидкостям. При этом скорость сжатия тем выше, чем выше содержание микросфер. Полученные различия обусловлены тем, что количество дефектов — «носителей пластической деформации», возникающих на границе матрицы и осколков микросфер, больше при большей изначальной концентрации микросфер. Необходимо отметить, что в сферопластиках с увеличением концентрации микросфер до определенного значения может образовываться квазинепрерывный объемный каркас из микросфер [2]. Однако для исследованных в данной работе наполнителя и микросфер такое значение концентрации не было исследовано. Это не позволяет однозначно связать возможное качественное различие в образцах до ударного сжатия с результатами экспериментов.

ЗАКЛЮЧЕНИЕ

1. Проведенное исследование показало, что сложная структура волны ударного сжатия в образцах, содержащих стеклянные микросферы, наблюдается в конечном диапазоне давления. Точно определить его верхнюю границу и как оно зависит от объемной доли микросфер в компаунде, можно в экспериментах при более высоких давлениях сжатия. Экстраполяция полученных данных позволяет оценить границу как лежащую выше давления 2 ГПа для образцов с $\varphi = 0.27$ и 1 ГПа в случае $\varphi = 0.55$. Анализ зависимостей скорости ударного сжатия от давления за фронтом волны ударного сжатия показал, что с увеличением объемной доли микросфер в образцах их свойства при ударном сжатии становятся ближе к свойствам вязких жидкостей. При этом скорость деформации ударного сжатия выше в образцах с большей долей микросфер, что в общем случае характерно для вещества с большим количеством дефектов.

2. С ростом концентрации микросфер одинакового типа в эпоксидной матрице порог начала их разрушения при ударном сжатии понижается, что согласуется с модельными представлениями.

ЛИТЕРАТУРА

- Budov V. V. Hollow glass microspheres. Use, properties, and technology (review) // Glass and Ceramics. — 1994. — V. 51, N 7-8. — P. 230–235.
- 2. Трофимов А. Н., Зарубина А. Ю., Симонов-Емельянов И. Д. Структура, обобщенные параметры и реологические свойства эпоксидных сферопластиков // Пластические массы. — 2014. — № 11-12. — С. 3–8.
- Weirick L. J. Shock characterization of epoxy 42 volume percent glass microballoons // Shock Compression of Condensed Matter. — 1992. — P. 99–102.
- Зубарева А. Н., Уткин А. В., Ефремов В. П. Ударно-волновые свойства сферопластиков // Конструкции из композиционных материалов. — 2016. — № 3. — С. 45–50.
- Barker L. M., Hollenbach R. E. Laser interferometer for measuring high velocities of any reflecting surface // J. Appl. Phys. — 1972. — V. 43, N 11. — P. 4669–4675.

- Dolan D. H. Foundations of VISAR analysis //Sandia National Laboratories, Tech. Rep. N SAND2006-1950. — 2006.
- Альтшулер Л. В., Крупников К. К., Бражник М. И. Динамическая сжимаемость металлов при давлениях от четырехсот тысяч до четырех миллионов атмосфер // ЖЭТФ. — 1958. — Т. 34, вып. 4. — С. 874–885.
- Канель Г. И., Савиных А. С., Гаркушин Г. В., Разоренов С. В. Оценка вязкости глицерина по ширине слабой ударной волны // Теплофизика высоких температур. — 2017. — Т. 55, № 2. — С. 380–385.
- 9. Будов В. В. Прочность полых стеклянных микросфер разного типа // Проблемы прочности. — 1991. — № 5. — С. 68–70.
- Herrmann W. Constitutive equation for the dynamic compaction of ductile porous materials // J. Appl. Phys. — 1969. — V. 40, N 6. — P. 2490– 2499.
- Swegle J. W., Grady D. E. Shock viscosity and the prediction of shock wave rise times // J. Appl. Phys. — 1985. — V. 58, N 2. — P. 692–701.
- Банникова И. А., Зубарева А. Н., Уткин А. В., Уваров С. В., Наймарк О. Б. Метастабильные состояния, релаксационные механизмы и разрушение жидкостей при интенсивных воздействиях // Физ. мезомеханика. — 2016. — Т. 19, № 3. — С. 69–77.

Поступила в редакцию 15.01.2019. После доработки 15.02.2019. Принята к публикации 06.11.2019.