Сu-Fe-Au-РЗЭ МЕСТОРОЖДЕНИЕ СИНКУЕН: ОСОБЕННОСТИ СОСТАВА И УСЛОВИЯ ФОРМИРОВАНИЯ (Северный Вьетнам)

И.В. Гаськов, Чан Туан Ань*, Чан Чонг Хоа*, Фам Тхи Зунг*, П.А. Неволько, Фам Нгок Кан*

Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090, Новосибирск, просп. Академика Коптюга, 3, Россия

* Institute of Geological Sciences, Vietnam Academy of Science and Technology, 84 Chua Lang, Dong Da, Hanoi, Vietnam

Си-Fe-Au-P3Э месторождение Синкуен локализуется в протерозойских отложениях зоны Фансипан Северного Вьетнама. Оруденение слагают линзовидные и пластообразные тела, залегающие согласно с вмещающими породами. На месторождении выделено 17 рудных тел, которые образуют единый
рудный горизонт общей мощностью до 140 м и протяженностью около 2 км по простиранию и до 350 м
по падению. Руды имеют простой минеральный состав, представленный сульфидами меди и железа
(халькопирит, пирит, пирротин) совместно с оксидами железа (магнетит, гематит) и характеризуются
повышенной золотоносностью. Золото и серебро в рудах распределены чрезвычайно неравномерно, их
содержания изменяются от сотых и десятых долей до 1.8 г/т. Главным концентратором золота и серебра
являются медные сульфидные руды. Для всех руд типичны повышенные концентрации редкоземельных
элементов, превышающие в десятки и сотни раз кларковые величины. Наиболее высокие содержания
среди РЗЭ имеют Се и La. Главным носителем РЗЭ является ортит. Корреляционная связь между РЗЭ
и рудными элементами сульфидно-оксидных руд не установлена, что указывает на самостоятельный ее
этап формирования.

Рудные тела совместно с вмещающими породами испытали метаморфогенные преобразования при температуре, по оценкам разными методами, от 500—600 до 630—685 °C и давлении 3—7 кбар.

Пространственная связь оруденения с амфиболитами (метаморфизованными базитами) и минеральный состав руд, представленный сульфидами меди и железа (халькопирит, пирит, пирротин) совместно с оксидами железа (магнетит), дают основание предварительно отнести месторождение Синкуен к кипрскому вулканогенному типу.

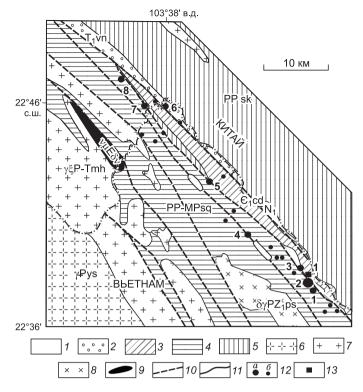
Медно-колчеданные руды, золоторудная и редкоземельная минерализация, халькопирит, магнетит, Северный Вьетнам.

THE SIN QUYEN Cu-Fe-Au-REE DEPOSIT (northern Vietnam): COMPOSITION AND FORMATION CONDITIONS

I.V. Gas'kov, Tran Tuan Anh, Tran Trong Hoa, Pham Thi Dung, P.A. Nevol'ko, and Pham Ngoc Can

The Sin Quyen Cu-Fe-Au-REE deposit is localized in the Proterozoic deposits of the Phan Xi Pang zone, northern Vietnam. The mineralization is formed by lenticular and sheet-like bodies occurring concordantly with the host rocks. Seventeen orebodies have been recognized in the deposit, which form an ore horizon up to 140 m in total thickness, about 2 km in strike, and up to 350 m in dip. The ores are of simple mineral composition: Au-rich copper and iron sulfides (chalcopyrite, pyrite, pyrrhotite) and iron oxides (magnetite, hematite). Gold and silver are distributed unevenly in the ores: Their contents vary from hundredths and tenths of ppm to 1.8 ppm. Copper sulfide ores are the main concentrator of gold and silver. All ores are characterized by high REE contents, tens and hundreds of times exceeding the element clarkes. The highest contents have been revealed for Ce and La. Orthite is the main carrier of REE. No correlation between REE and ore elements of sulfide-oxide ores has been revealed, which points to the independent formation of the mineralization.

Orebodies together with the host rocks underwent metamorphism at 500-600 to 630-685°C and 3-7 kbar.


The spatial association of the mineralization with amphibolites (metamorphosed basites) and the mineral composition of ores suggest that the Sin Quyen deposit is of Cyprus volcanogenic type.

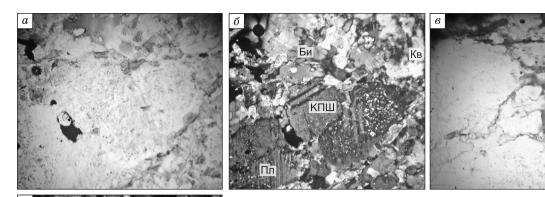
Chalcopyrite ores, gold and REE mineralization, chalcopyrite, magnetite, northern Vietnam

ВВЕДЕНИЕ

Cu-Fe-Au-P3Э месторождение Синкуен (Sin Quyen) является одним из основных объектов горнодобывающей промышленности Северного Вьетнама. Оно расположено в провинции Лаокай (Lao Cai), локализуется в протерозойских отложениях зоны Фансипан (Phansipan) и приурочено к юго-западному борту крупной сдвиговой системы Шонгхонг (Song Hong), по [Leloup et al., 1995]. Совместно с другими

© И.В. Гаськов, Чан Туан Ань, Чан Чонг Хоа, Фам Тхи Зунг, П.А. Неволько, Фам Нгок Кан, 2012

Рис. 1. Схема геологического строения территории Северного Вьетнама и Южного Китая.


1—5 — отложения: 1 — неогенового возраста (N_1): конгломераты, песчаники, известковистые сланцы; 2 — триасового возраста (T₁vn): базальты, базальтовые порфириты и туфы, андезитобазальты, мощность толщи 350 м; 3 — нижнекембрийского возраста (€1cd): конгломераты, крупнозернистые песчаники, глинистые сланцы, известняки, мощность толщи 400 м; 4, 5 — докембрийские: 4 — верхняя формация (PP-MPsq): биотитовые и двуслюдяные сланцы, амфиболиты и кварциты, мощность толщи 1200—1450 м; 5 — нижняя формация (PPsk): биотитовые сланцы, гранат-биотитовые гнейсы, амфиболиты и амфиболовые сланцы, мощность толщи 650-720 м; 6—9 — интрузивные образования: 6 — лейкократовые биотитовые граниты, граносиениты, аплиты, пегматиты ($\gamma \mathbf{P} \mathbf{y} \mathbf{s}$); 7 — щелочные граниты, сиениты, кварц-серицитовые гранодиориты, амфиболовые граниты ($\gamma \xi P$ -Tmh); δ — биотитовые граниты, гранодиориты, кварцевые диориты ($\delta \gamma PZ_1 ps$); 9 — габбро, габбродиабазы (уµ $E\delta v$); 10 — геологические разломы; 11 — геологические границы; 12 — медьсодержащие месторождения (*a*) и рудопроявления (δ): 1 — Банвуок, 2 — Синкуен, 3 — Тонгкаочай, 4 — Суйтау, 5 — Намчаг, 6 — Лунгпо, 7 — Тонгчанг, 8 — Лонгбое; 13 — редкоземельное рудопроявление Викем.

медными месторождениями Тафой (Тарhoi), Банвуок (Ban Vuoc), Тонгкаочай (Tong Cao Chay), Суйтау (Suoi Thau), Намчаг (Nam Chac), Лунгпо (Lung Po) Синкуен входит в состав металлогенического медного пояса, прослеживающегося в северо-западном направлении параллельно зоне Шонгхонг на юг Китая в провинцию Юнань (Yunnan), где установлены подобного типа месторождения Лонгбое (Longbohe), Тонгчанг (Tongchang), Лалачанг (Lalachang), Даогшан (Dahogshan) (рис. 1) [Yinling Cui et al., 2005; Lianxing Gu et al., 2007]. Главная особенность месторождения Синкуен, отличающая его от других подобных объектов, — необычный состав руд, включающий помимо медных (халькопиритовых) и железных (магнетитовых) руд золоторудную и редкоземельную минерализацию [МсLean, 2001]. Такой комплексный состав оруденения является не характерным для подобного типа месторождений и вызывает интерес у исследователей. На вопрос, с чем связано повышенное содержание РЗЭ в сульфидных и магнетитовых рудах месторождения, пока нет однозначного ответа. Поэтому в статье делается попытка подойти к решению этого вопроса.

ОБЩАЯ СТРУКТУРНО-ТЕКТОНИЧЕСКАЯ ПОЗИЦИЯ И ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ МЕСТОРОЖЛЕНИЯ СИНКУЕН

Месторождение Синкуен приурочено к северо-восточной части зоны Фансипан, протягивающейся в виде полосы шириной до 50 км в северо-западном направлении. Эта зона древних протерозойских пород, по данным французских исследователей, является фрагментом платформы Янцзы (Yangtze) в Южном Китае, сдвинутой на юго-восток на 700 км по мощной сдвиговой системе Шонгхонг [Leloup et al., 1995]. В составе этой толщи в районе месторождения выделяются две формации: нижняя Суочинг (Suoi Chieng — PPsk) мощностью 650—720 м, сложенная биотитовыми сланцами, гранат-биотитовыми гнейсами, амфиболитами, амфиболовыми сланцами, и верхняя Синкуен (PP-MPsq), представленная биотитовыми и двуслюдяными сланцами, амфиболитами и кварцитами, мощностью 1200—1450 м, соответствующая в Южном Китае формации Аилаошан (Ailaoshan). Породы сильно дислоцированы и метаморфизованы вплоть до биотит-плагиоклаз-амфиболовых гнейсов и мигматитов. Среди этих пород широко развиты гранитоидные интрузии различного возраста, образующие тела, вытянутые в северозападном направлении (см. рис. 1).

Участок месторождения сложен породами формации Синкуен, состоящими из интенсивно дислоцированных, разгнейсованных и метаморфизованных образований. В целом в строении месторождения отмечается довольно однообразный состав пород, представленный в основном чередованием более светлых (лейкократовых) и темных (меланократовых) горизонтов, разбитых многочисленными нару-

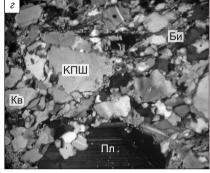


Рис. 2. Лейкократовые породы биотит-плагиоклаз-калиево-шпат-кварцевого состава.

a— г — фото образцов: $a,\, \delta$ — SQ-8, $s,\, \varepsilon$ — SQ-10, увел. 120. $a,\, s$ — николи $\parallel,\, \delta,\, \varepsilon$ — николи \times . Кв — кварц, Пл — плагиоклаз, КПШ — калиевый полевой шпат, Би — биотит.

шениями и пронизанных маломощными (до 1 м) линзовидными телами пегматоидных образований кварц-полевошпатового состава и кварцевыми жилами мощностью до 40 см. В разрезе месторождения распределение лейко- и меланократовых разновидностей неравномерное: нижняя подрудная пачка характеризуется приблизительно равными содержаниями тех и других пород; рудовмещающие отложения отличаются более широким развитием меланократовых разновидностей, а надрудная пачка, напротив, имеет более лейкократовый состав. Лейкократовые породы близки по составу гранитным образованиям и сложены в основном кварцем (35—40 %), КПШ (15—20 %), кислым плагиоклазом (20—25 %) и биотитом (2—5%). В небольших количествах (1—3%) в этих породах постоянно присутствуют мусковит, кальцит, рудные минералы, сфен и апатит. Структура породы преимущественно порфировидная, где основная масса сложена мелкозернистым агрегатом полевошпат-кварцевого состава, среди которого выделяются крупные (до 2.5 мм) таблички кислого тонкосдвойникованного плагиоклаза и калиевого полевого шпата (рис. 2). Акцессорные минералы апатит и сфен образуют зерна (< 0.1 мм) и агрегаты неправильной формы в виде включений в кварце, плагиоклазе и в их межзерновом пространстве. Вторичные изменения развиваются в основном по краям зерен и по трещинкам первичных минералов и представлены мелкими включениями серицита, пелита, кальцита и светло-зеленого хлорита. В составе меланократовых пород преобладают темноцветные минералы — амфибол (роговая обманка) (до 65—70 %) и биотит (до 15 %). Также в них присутствуют кварц (до 35 %), плагиоклаз (до 30 %), эпидот (до 45 %), в меньших количествах отмечается ортит (1—3 %) и рудные минералы (3—5 %). Из акцессорных минералов установлены сфен, циркон, апатит. Структура породы — лепидогранобластовая, текстура — грубополосчатая за счет чередования полос, обогащенных амфиболом и биотитом и полос преимущественно плагиоклаз-кварцевого состава. В разрезе месторождения по преобладанию в составе породы того или иного минерала или минеральной ассоциации можно выделить биотит-кварц-амфиболовые, кварц-полевошпат-амфиболовые и кварц-амфибол-эпидотовые разновидности (рис. 3). Более широкое развитие на месторождении имеют биотит-кварц-амфиболовая и кварц-полевошпат-амфиболовая разновидности, представляющие собой взаимопереходные разности. В пределах рудовмещающего горизонта в этих породах установлены зерна ортита размером до 1—1.5 мм, образующие линзообразные и цепочечные агрегаты, иногда секущие крупные зерна амфибола (см. рис. 3, в, г). Кварц-амфибол-эпидотовая порода имеет подчиненное развитие и встречена лишь в пределах рудовмещающей пачки. Главными ее минералами являются эпидот (35—45 %), амфибол (10—20 %) и кварц (до 20 %), в небольших количествах (до 2—3 %) установлены хлорит, биотит, кальцит и рудные минералы. Структура породы гранолепидобластовая. Главная особенность меланократовых пород — достаточно высокое (до 5—7 %) содержание редкоземельного минерала — ортита (см. рис. 3, ∂ , e).

Cu-Fe-Au-P3Э оруденение месторождения Синкуен образует единый рудный горизонт общей мощностью до 140 м и протяженностью около 2 км по простиранию (рис. 4) и до 350 м по падению (рис. 5). В пределах этого рудного горизонта установлено 17 рудных тел линзовидной и пластообразной

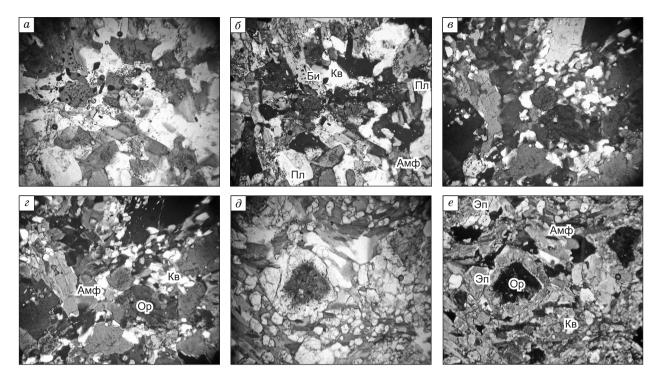
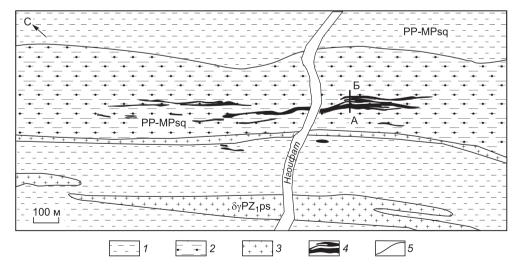
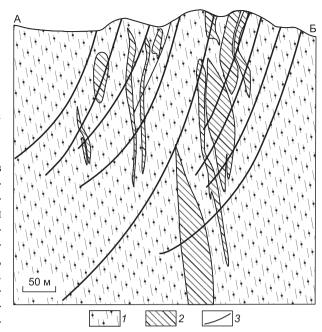


Рис. 3. Меланократовые породы.

 a, δ — биотит-кварц-амфиболовые (обр. SQ-13); s, ε — кварц-полевошпат-амфиболовые с ортитом (обр. SQ-35); δ, ε — кварц-амфибол-эпидотовые с ортитом (обр. SQ-7), увел. 120. a, s, δ — николи \parallel ; $\delta, \varepsilon, \varepsilon$ — николи \times Амф — амфибол, Ор — ортит, Эп — эпидот. Остальные усл. обозн. см. на рис. 2.

формы, залегающих субсогласно и согласно с вмещающими породами. Мощность отдельных рудных тел изменяется от первых десятков сантиметров до 25 м, а протяженность достигает 400 м. Нередко рудные тела под воздействием стресс-метаморфизма зоны Шонгхонг подроблены, разбиты на фрагменты и будинированы (рис. 6). Общие запасы руды составляют около 50 млн т со средним содержанием меди около 1 %, железа 14 % и золота 0.5 г/т. Основные запасы месторождения (96 %) сосредоточены в семи рудных залежах, которые имеют мощность от 3 до 25 м и образуют компактную зону. Главными минералами руд являются халькопирит, магнетит, пирит и пирротин. Распределение рудных минералов




Рис. 4. Геологическая схема месторождения Синкуен.

I — лейкократовые биотит-плагиоклаз-калиевошпат-кварцевые породы (PP-MPsq); 2 — меланократовые разгнейсованные и рассланцованные биотит-кварц-амфиболовые и кварц-полевошпат-амфиболовые породы (PP-MPsq); 3 — биотитовые граниты и гранодиориты ($\delta\gamma$ PZ₁ps); 4 — пирит-пирротин-халькопиритовые и пирит-халькопирит-магнетитовые руды; 5 — геологическая граница. АБ — линия разреза центральной части месторождения Синкуен.

Рис. 5. Геологический разрез центральной части месторождения Синкуен.

1 — разгнейсованные и рассланцованные биотит-кварц-амфиболовые, кварц-полевошпат-амфиболовые и кварц-амфиболэпидотовые породы; 2 — пирит-пирротин-халькопиритовые и пирит-халькопирит-магнетитовые руды; 3 — геологическая граница.

неравномерное, и содержания каждого минерала в разных пробах могут изменяться от единичных выделений до практически мономинеральных образований. По преобладанию в рудах сульфидной или оксидной составляющей можно выделить две группы руд: существенно-сульфидные пирит-пирротинхалькопиритового состава и сульфидно-оксидные, сложенные халькопирит-магнетитовым агрегатом. Руды часто имеют взаимопереходы, но в целом отмечается некоторое пространственное обособление. Оба типа руд характеризуются преимущественно гнездово-вкрапленными текстурами, реже

отмечаются полосчатые и пятнисто-массивные разновидности (рис. 7). Структурные особенности выделений минералов в обеих группах руд близки и представлены в большей степени мелко- и среднезернистыми агрегатами с гипидиоморфно-зернистой структурой.

Пирит-пирротин-халькопиритовые руды слагают большую часть рудных тел и представляют главную ценность месторождения. Они более широко развиты в его центральной и восточной частях и в подчиненном количестве отмечаются на западном фланге. Основными рудными минералами в них являются халькопирит, пирротин и пирит (рис. 8, *a*). Эти минералы слагают до 90 % рудной массы и характеризуются широкими вариациями содержаний в разных участках рудной зоны. В качестве второстепенных минералов в рудах установлены магнетит, гематит, халькозин, валлериит. В протолочках этих руд выявлены единичные знаки самородного золота неправильной формы и размером < 0.1 мм (рис. 9). Под электронным сканирующим микроскопом в пирите установлены микроскопические включения сфалерита и галенита (рис. 10).

Халькопирит-магнетитовые руды также широко распространены на месторождении и развиты преимущественно на западном участке. В центральной и восточной частях они имеют подчиненное распространение и встречаются в основном в виде отдельных обособлений и скоплений. Главными рудными минералами в этих рудах являются магнетит, пирит, халькопирит и пирротин (см. рис. 8, θ , ϵ). Содержание этих минералов непостоянное и меняется от первых процентов до $50\,\%$ и более. Преобла-

дают магнетит и халькопирит, образующие часто совместные срастания. В качестве второстепенных минералов в рудах установлены марказит, кубанит, блеклые руды, золото, а также гематит и лимонит.

Золото и серебро в рудах имеют чрезвычайно неравномерное распределение, изменяющееся от сотых и десятых долей до 1.8 г/т. Эти элементы концентрируются в основном в пирит-пирротинхалькопиритовых рудах. Золоторудная минерализация представлена мелкими и тонкими выделениями, преимущественно пластинчатой, крючковатой и реже комковатой формы ярко-желтого цвета (см. рис. 9). Золото по своему составу и формам выделения относится к одной генерации.

Рис. 6. Кварц-сульфидные прослои и жилы, превращенные в будины.

Уменьшено в 2 раза.

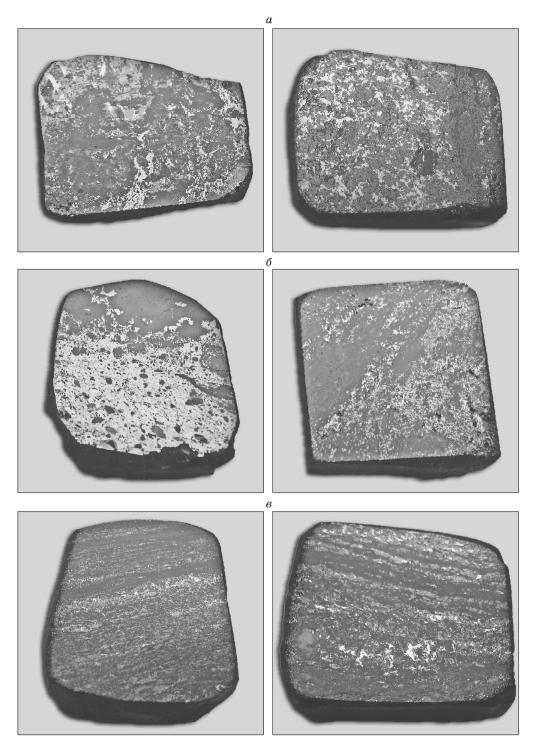


Рис. 7. Текстуры пирит-пирротин-халькопиритовых (a, δ) и халькопирит-магнетитовых (s) руд месторождения Синкуен.

a — гнездово-вкрапленные, δ — пятнисто-массивные, ϵ — полосчатые. Натуральная величина.

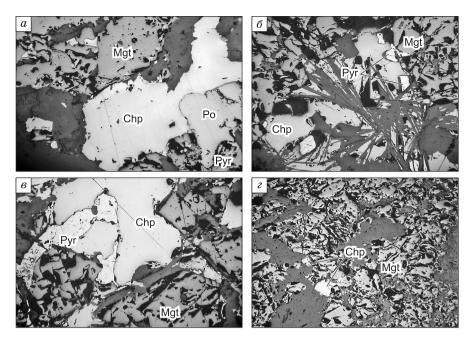


Рис. 8. Структуры главных рудных минералов в пирит-пирротин-халькопиритовых (a — обр. SQ-16, δ — обр. SQ-15) и халькопирит-магнетитовых (ϵ — обр. SQ-29, ϵ — обр. SQ-49) рудах.

a—
 — увел. 120, г — 80. Руг — пирит, Ро — пирротин, Сh
р — халькопирит, Mgt — магнетит.

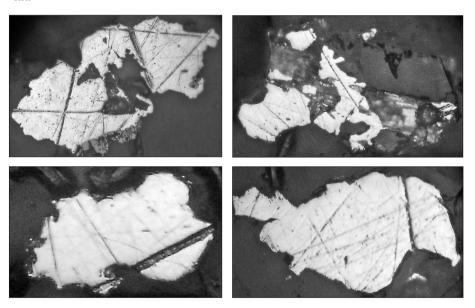


Рис. 9. Морфология выделений самородного золота на месторождении Синкуен.

Увел. 150.

Кроме того, на месторождении Синкуен установлено развитие редкоземельной минерализации. Она проявлена в пределах рудовмещающего горизонта и ассоциирует с Cu-Fe сульфидными и оксидными рудными телами. Эта минерализация представлена редкоземельными минералами, среди которых более широко развит ортит (Ca,Ce,La,Y) $_2$ (Al,Fe) $_3$ [SiO $_4$](OH) и редко встречаются бастнезит (Ce,La)[CO $_3$]F и монацит (Ce,La)[PO $_4$]. Ортит развивается в ассоциации с метаморфическими минералами и в большей степени проявлен в амфиболитах, где тяготеет к выделениям амфибола и эпидота. С последним он часто образует совместные зональные срастания, где ортит, как правило, слагает центральные части совмест-

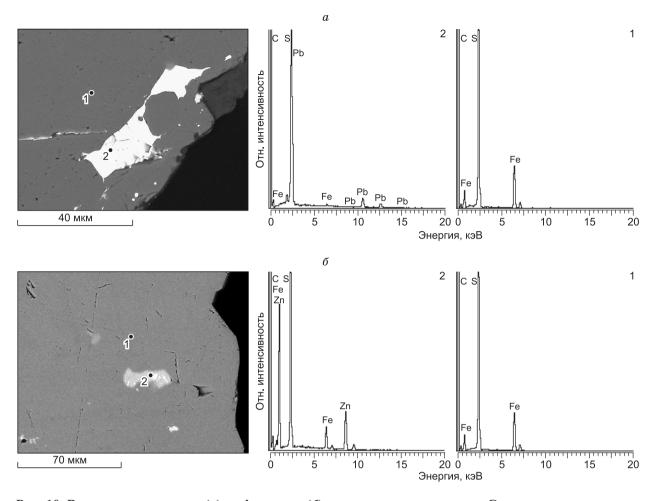


Рис. 10. Включения галенита (а) и сфалерита (б) в пирите месторождения Синкуен.

ных зерен и агрегатов (см. рис. 3, δ , e). Наблюдаются участки мелкозернистого эпидота, в которых зерна ортита в ассоциации с рудными минералами концентрируются по контакту зерен эпидота.

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ РУД И ГЛАВНЫХ РУДНЫХ МИНЕРАЛОВ МЕСТОРОЖДЕНИЯ СИНКУЕН

Как видно из характеристики минерального состава руд месторождения Синкуен, главными рудными минералами являются халькопирит, магнетит, пирит и пирротин, а также золото и минералы РЗЭ (ортит, бастнезит, монацит). Основную промышленную ценность представляют халькопирит, магнетит и золото. Установленные в рудах минералы редкоземельных элементов пока практического использования не получили. Слабо изучен их состав и пространственное распределение, а также недостаточно исследованы элементы-примеси в разных типах руд и рудных минералах. Поэтому в своей работе мы уделили основное внимание изучению содержания и особенностей распределения редких, редкоземельных элементов, золота и серебра в разных типах руд, в продуктах переработки руд (халькопиритовый и магнетитовый концентраты, флотационные хвосты) и рудных минералах (табл. 1—3). Анализы руд и пород выполнены методами ICP MS в лаборатории LTD (Онтарио, Канада) и атомно-абсорбционным методом в Аналитическом центре ИГМ СО РАН (г. Новосибирск), а состав минералов и элементы-примеси в них определены с помощью сканирующего электронного микроскопа и рентгеноспектрального метода на микроанализаторе Сатевах-Місго (табл. 4—6). Кроме того, сцинтилляционным эмиссионным спектральным анализом проведено определение платиноидов в рудах, но значимых содержаний не установлено.

В целом в рудах месторождения Синкуен, помимо главных рудных компонентов (Си и Fe), выявлены повышенные концентрации элементов, типичных для колчеданных и медно-колчеданных месторождений Zn, Pb, Au, Ag, Co, Ni. Также в рудах постоянно отмечаются высокие концентрации РЗЭ и V,

Таблица	ı 1.		Содер	жание	элемеі	нтов-пј	римесе	ей в руд	дах ме	сторо	ждени	ія Син	ікуен (г/т)			
Образец	Sn	Cd	Zn	Pb	Au	Ag	Mo	Ga	Ge	Sb	Bi	Se	Те	As	Co	Ni	V
					П	ирит-пі	ирроти	н халы	копири	товы	е руды	1					
KC105	Не обн.	0.61	130	60	0.13	0.76	3.3	27	89	Не обн.	2.2	Не обн.	Не обн.	Не обн.	50	28	115
KC108	20	1	156	79.1	Не опр.	1.0	54.8	23.1	1.5	»	0.9	1.6	0.3	15.7	51.5	24	137
KC109	Не опр.	0.13	88	28	1.5	6.3	1.2	27	17.5	»	38	Не обн.	Не обн.	Не обн.	47	14.4	143
KC111	Не обн.	0.27	72	54	0.09	0.17	1.42	26	31	»	1.51	»	»	»	37	14	94
KC112-1	75	1	235	68.6	0.13	0.6	1.1	35.2	2.5	0.7	1.8	3.4	0.2	7.3	141.0	35	142
KC112-2	36	1	86	49.6	Не опр.	0.6	1.5	29.3	1	0.9	0.3	1.5	1.1	19.0	42.4	15	86
KC122-1	124	1	164	49.8	»	0.4	0.9	38.9	2.3	0.6	0.1	2.1	1.1	24.3	44.6	15	91
KC122-2	62	1	154	51.7	»	0.3	1.5	22.5	1.9	0.5	0.4	3.6	0.5	< 0.1	120.0	69	113
KC122-3	Не обн.	0.96	94	146	1.77	1.98	7.3	23	34	Не обн.	2.5	Не обн.	Не обн.	Не обн.	66	31	108
KC126	>>	< 0.1	81	78	0.52	0.73	2.07	21	12	»	17.8	»	»	»	34	< 5	81
KC117	>>	0.54	52	23	0.062	0.27	1.82	22	14.9	»	0.9	»	>>	»	44	< 5	176
SQ-15	Не опр.	1.56	90	303	0.89	1.69	6.4	16.9	29	»	0.87	Не опр.	Не опр.	Не опр.	68	49	33
SQ-16	>>	0.97	88	122	0.13	1.06	5.5	16.8	38	»	3	»	»	»	150	138	55
SQ-21	>>	0.53	117	98	0.1	0.99	4.7	29	49	>>	0.89	»	>>	»	46	19.8	132
SQ-9	>>	1.39	134	39	0.1	0.49	4.5	25	39	»	3.2	>>	»	»	84	44	91
КС-355 Среднее	» 63.4	3.9 0.99	444 136.54	34 80.24	2.4 1.02	8.0 2.43	9.2 6.7	3.6 24.14	9.1 23.23	1.4	6.1 5.03	» 2.44	» 0.64	» 16.58	198 76.47	80 41.13	10.6 100.48
Среднее	03.4	0.77	130.34	00.24	1.02	1	1	24.14 т-магн	ı	1	ı	2.77	0.04	10.30	70.47	41.13	100.40
	Не		1		l	I				 	ĺ	Не	Не	Не			
SQ-35	опр.	0.4	118	16.1	0.33 He	1.90	1.16	26	40		0.75	опр.	опр.	опр.	108	58	112
KC118-1	52	0	79	45.3	опр.	0.2	0.4	33.5	3.5	0.5	1.1	2.3	2.1	18.1	108.0	51	242
KC118-2	55	2	247	47.6	»	0.4	1.2	36.2	7.8	0.7	0.1	3.7	1.1	88.4	71.2	32	200
KC118-3	Не обн.	0.78	99	60	0.38	0.77	1.55	18.8	18.2	Не обн.	2.2	Не обн.	Не обн.	Не обн.	18.9	10.4	57
KC121	>>	0.89	174	617	< 0.1		16.6	26	9	»	1.18	»	»	»	41	74	208
KC353	>>	< 0.1	40	11	< 0.1	< 0.1	1.45	35	40	»	0.52	»	»	»	39	18.8	115
KC354	>>	0.21	20	3.2	0.12	< 0.1	6.5	25	13.6	»	0.69	>>	>>	»	38	22	279
KC357	»	0.47	141	21	0.1	0.41	2.5	29	8.2	»	1.19 0.96	»	»	»	30 60	57 27	151
KC362 SQ-27	He	0.65	115 121	86 8.5	0.26	1.87	1.17	26 21	72 14.3	» »	< 0.1	He	He	He	54	6.8	106 83
KC106	опр. Не обн.	0.95	170	22	< 0.1	< 0.1	0.99	75	149	»	0.45	опр. Не обн.	опр. Не обн.	опр. Не обн.	58	15	189
KC108	»	< 0.1	48	9.5	< 0.1	< 0.1	1.43	33	42	»	0.98	» »	»	»	43	< 5	166
SQ-29	Не опр.	0.13	138	18.2	1.80	2.20	0.98	40	44	»	0.6	Не опр.	Не опр.	Не опр.	85	31	245
S Q = 2	P.			(0)	0.15	< 0.1	1.19	19.2	21	»	0.74	Не обн.	Не обн.	Не обн.	30	< 5	62
KC112-3	Не обн.	0.13	78	69	0.13												
	Не обн. »	0.13	78 44	42	< 0.13	< 0.1	0.58	18.7	< 1	»	< 0.1	»	»	»	7.5	< 5	45
KC112-3 KC116	обн.			42		< 0.1				» 0.60	0.1						
KC112-3	обн. »	< 0.1	44		< 0.1		0.58 2.89 0.1	18.7 30.83 0.1	< 1 34.47 0.1			»	»	»	7.5 52.77 0.1	< 5 33.57 0.5	45 150.67

Таблица 2. Среднее содержание элементов-примесей в рудах западного и восточного участков и в продуктах переработки руд месторождения Синкуен (г/т)

				родук				10	•				` ′				
Участок, про- дукт	Sn	Cd	Zn	Pb	Au	Ag	Mo	Ga	Ge	Sb	Bi	Se	Те	As	Co	Ni	V
					Пири	т-пир	ротин	хальк	опири	говые	руды						
Восточный (11) Западный (5)	43.67	0.77	113.43	84.03	0.72	1.26	7.84	25.21	28.40	1.97	4.87	2.17	0.53	14.00	69.17	38.05	109.45
Западный (5)	93.00	1.59	187.4	71.90	2.09	2.67	4.19	21.80	11.86	0.55	5.37	2.85	0.80	24.30	92.52	48.83	80.72
					X	алько	пирит	-магне	титові	ые руд	ы						
Восточный (4) Западный (11)	Не обн.	0.54	85.00	35.62	0.15	Не обн.	1.05	36.48	70.67	Не обн.	0.72	Не обн.	Не обн.	Не обн.	34.63	15.00	115.50
Западный (11)	53.50	0.61	117.41	84.90	0.22	0.63	3.56	28.77	24.60	0.60	0.93	3.00	1.60	53.25	59.37	35.25	163.45
						Прод	дукты	перер	аботки	г руд							
Медный кон- центрат (3)	57.50	5.75	667.5	94.00	4.55	9.35	10.15	3.25	14.25	2.30	7.15	10.30	10.30	Не обн.	227.00	116.50	14.10
Железный концентрат (2)	8.50	0.20	50.50	77.65	0.02	0.17	5.00	29.85	24.50	2.40	1.65	1.10	0.10	2.7	30.75	17.60	205.00
Флотационные хвосты (2)	Не обн.	0.41	667.5 50.50 123.00	12.90	0.06	0.09	0.92	48.00	78.00	Не обн.	0.53	Не обн.	Не обн.	Не обн.	75.00	41.00	158.00

Примечание. В скобках — количество проб.

а такие элементы, как Ga, Ge, Bi, As, имеют часто содержания в 5—10 раз выше кларка (см. табл. 1). Концентрации элементов-примесей и их набор заметно различаются в разных типах руд. Существенно-медные (пирит-пирротин-халькопиритовые) руды характеризуются более широким спектром элементов-примесей и более высокими их концентрациями. В них отчетливо фиксируются повышенные содержания Zn, Pb, Au, Ag, Co, Ni, Bi и U (см. табл. 1, 3). В то же время в железных (халькопирит-магнетитовых) рудах отмечаются более высокие содержания P3Э и V. Эти же тенденции сохраняются и в соответствующих концентратах. Медному концентрату свойственно повышенное содержание (г/т) Zn (667.5), Pb (94.0), Au (4.55), Ag (9.35), Co (227.00), Ni (116.50), а также в нем накапливаются такие малые элементы, как Bi (7.15), Se (10.30) и Te (10.30). В магнетитовом концентрате, в свою очередь, повышенные содержания имеют V (205 г/т) и P3Э (4164.67 г/т) (см. табл. 2).

Сопоставление разных типов руд западного и восточного участков месторождения показывает некоторое их различие по содержанию выявленных элементов-примесей, что, вероятно, отражает специфику их рудоотложения. В целом на западном участке отмечается более широкий спектр и более высокие содержания элементов-примесей в обоих типах руд (см. табл. 2). В пирит-пирротин-халькопиритовых рудах наиболее значимые отличия фиксируются по Sn, Cd, Zn, Au, Ag, As, Co, Ni, а в халькопирит-магнетитовых рудах дополнительно еще по V.

Анализ флотационных хвостов обогатительной фабрики показывает несколько повышенные в них содержания главных рудных компонентов — Cu (224.50 г/т) и Fe (11.79 мас. %), а также некоторых элементов-примесей — Zn, Pb, V и P3Э (см. табл. 2, 3). Концентрации главных рудных компонентов и ассоциирующих с ними элементов-примесей в хвостах связаны с частичной потерей при флотации халькопирита и магнетита в виде тонких сростков с породообразующими минералами. Установленные же в хвостах повышенные содержания редкоземельных элементов связаны с тем, что главный их минералконцентратор (ортит) уходит при флотации в хвосты вместе с другими породообразующими минералами.

Анализ распределения величин концентраций различных редкоземельных элементов в рудах показывает, что содержания, превышающие в десятки и сотни раз кларк гранитов (один из наиболее высоких), имеют Се и La. Также повышенные концентрации имеют празеодим (Pr), неодим (Nd), самарий (Sm), европий (Eu), гадалиний (Gd) и тербий (Tb) (см. табл. 3). Высокие содержания редкоземельных элементов в хвостах после флотационного обогащения руд сопоставимы со значениями в первичных рудах, что свидетельствует об отсутствии связи основной массы редкоземельных элементов с главными сульфидными минералами руд. Главным носителем редкоземельных элементов на месторождении Синкуен является минерал ортит (см. табл. 4). Наряду с главными редкоземельными катионами — церием (Се) и лантаном (La) — в его составе установлены повышенные содержания Pr, Nd и на уровне десятых долей процента — Sm, Eu и Gd.

Таблица 3					Содерж	Содержание Ү, U и РЗЭ	О и РЗЭ		место	ожден	в рудах месторождения Синкуен (г/т)	суен (г/	(T)						
Образец	Y	U	La	Ce	Pr	Nd	Sm	Eu	РÐ	Tb	Dy	Но	Er	Tm	Yb	Lu	LREE	HREE	R_2O_3
						Пи	Пирит-пирротин		халькопиритовые рудь	гритовь	ые руды								
KC105	106	100	12868	17953	1591	3572	241	46	283	13.9	28	4.1	13	1.59	10.2	1.33	34680	355.12	35035.12
KC108	32.4	39.6	904	1450	133	317	24.2	5.25	16	1.5	9	1.3	3.5	0.5	3	0.4	2833.45	32.2	2865.65
KC109	27	42	298	1233	119	294	22	4.1	14.2	1.33	6.1	1.08	3.1	0.44	3	0.44	2539.1	59.69	2568.79
KC111	34	62	1908	2724	253	588	41	7.1	24	1.92	7.8	1.35	4	0.58	3.8	0.58	5521.1	44.03	5565.13
KC112-1	73.5	70.1	2790	4360	395	950	70.5	13.2	47.6	3.9	14.4	2.9	7.8	1.1	7.1	_	8578.7	85.8	8664.5
KC112-2	29	12.6	1396	1894	180	432	33	5.2	18.6	1.65	6.5	1.08	3.1	0.44	2.9	0.44	3940.2	34.71	3974.91
KC122-1	58.6	81.8	2360	3610	324	791	52.9	20.4	33.4	2.4	7.6	2.1	6.2	6.0	5.1	9.0	7158.3	60.4	7218.7
KC122-2	88.3	55.4	2640	3950	349	849	62.1	19.1	1.44	3.8	16	3.5	6.6	1.4	8.5	1.1	7869.2	88.3	7957.5
KC122-3	40	9.7	3426	4627	381	890	63	11.7	61	3.3	8.6	1.59	5.5	99.0	4.6	0.73	9398.7	87.18	9485.88
KC126	32	77	089	696	6	237	19.7	3.6	13.1	1.4		1.27	3.8	0.57	3.7	0.51	2006.3	31.35	2037.65
KC117	17.9	49	998	1221	119	273	19.9	3.2	11.7	1.02	4.1	0.7	2	0.32	1.72	0.25	2502.1	21.81	2523.91
SQ-15	77	29	1574	2002	173	415	35	14.9	41	3.3	13.1	2.3	7.1	1.01	6.2	0.78	4303.9	74.79	4378.69
SQ-16	123	42	2838	3967	330	734	62	20	83	5.2	18.7	3.6	13.3	1.85	12.3	1.85	7951	139.8	8.0608
SQ-21	38	26	3931	9205	447	666	9/	13.7	26	5.1	10.8	1.5	4	0.41	2.4	0.29	10542.7	121.5	10664.2
6-OS	24	73	1 495	2026	170	406	28	5	37	1.95	5.1	8.0	7	0.36	2.5	0.36	2635	50.07	2685.07
KC355	6	17	374	504	46	112	8.2	1.76	6.2	0.45	1.77	0.31	96.0	0.15	96.0	0.14	1045.96	10.94	1056.9
Среднее	50.61	49.14	2628.13	3603.50	234.40	741.19	53.66	12.14	51.93	3.26	10.30	1.84	5.58	0.77	4.87	0.68	7094.11	79.23	7173.34
							Халько	Халькопирит-магнети		говые р	руды								
SQ-35	83	52	2653	3527	314	773	59	15.3	38	3.7	17.7	3.2	9.3	1.39	8.6	1.14	7341.3	83.03	7424.33
KC118-1	54.6	36.3	9995	8770	755	1770	111	22.2	71.6	4.2	12.9	2.5	9.9		5.9	6.0	17088.2	105.6	17193.8
KC118-2	107	29.1	11500	17800	1520	3360	193	37.4	120	6.9	21.3	4.2	11.2	1.6	10.1	1.4	34410.4	176.7	34587.1
KC118-3	46	8.6	1500	2064	183	444	39	11.3	31	2.5	10.3	1.68	4.9	0.74	4.5	99.0	4241.3	56.28	4297.58
KC121	33	9.5	131	214	25	80	12.3	3.2	11.2	1.34	7.4	1.27	3.5	0.57	3.4	0.51	465.5	29.19	494.69
KC353	49	89	2728	3678	344	792	58	12.3	35	3.1	13.4	2.5	7.2	1.02	9.9	0.89	7612.3	69.71	7682.01
KC354	10.9	51	466	1115	94	226	15.8	3	12.7	0.78	2.5	4.0	1.29	0.16	1.07	0.14	2252.8	19.04	2271.84
KC357	28	8.7	282	444	45	134	18.5	4.2	15.2	1.54	7.1	1.11	2.9	0.44	2.9	0.39	927.7	31.58	959.28
KC362	83	42	4381	6027	524	1297	96	17.9	89	4.6	18.2	3	9.3	1.4	9.1	1.32	12342.9	114.92	12457.82
SQ-27	19.9	2.8	591	834	87	221	19.6	4.4	11.5	1.15	4.7	0.77	2.1	0.32	1.92	0.26	1757	22.72	1779.72
SQ-29	53	35	3152	4334	397	926	64	18.5	37	2.8	11.1	1.97	6.4	1.02	9	0.76	8891.5	67.05	8958.55
KC106	92	31	10735	14772	1379	3037	187	29	109	7	22	3.6	11.2	1.54	9.6	1.28	30139	165.22	30304.22
KC108	32.4	39.6	904	1450	133	317	24.2	5.25	16	1.5	9	1.3	3.5	0.5	3	0.4	2833.45	32.2	2865.65
KC112	59	12.6	1396	1894	180	432	33	5.2	18.6	1.65	6.5	1.08	3.1	0.44	2.9	0.44	3940.2	34.71	3974.91
KC116	17.9	5.6	31	53	6.7	23	4.3	89.0	3.6	0.58	3.4	0.7	7	0.32	2.4	0.38	118.68	13.38	132.06
Среднее	50.25	28.87	3096.20	4465.07	399.11	922.13	62.31	12.66	39.89	2.89	10.97	1.95	5.63	0.83	5.20	0.72	8957.48	68.09	9025.57
Чувствит.	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			I

Обра-	SiO ₂	TiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	H ₂ O	La ₂ O ₃	Ce ₂ O ₃	Pr_2O_3	Nd_2O_3	Sm_2O_3	Eu_2O_3	Gd_2O_3	Ho ₂ O ₃	Lu ₂ O ₃	Сумма
зец				мас	. %								Γ/T					мас. %
SQ-6-1	31.20	0.29	12.44	18.01	0.05	0.88	8.97	0.50	8.48	13.43	1.00	2.57	0.25	0.96	0.24	0.00	0.12	99.58
SQ-6-2	31.54	0.33	11.84	18.52	0.03	1.02	8.83	0.50	8.54	13.74	1.13	2.55	0.26	0.66	0.66	0.16	0.01	100.37
SQ-6-3	31.47	0.38	12.71	17.88	0.04	0.90	9.33	0.50	8.88	13.51	1.15	2.50	0.16	0.12	0.00	0.03	0.09	99.83
SQ-6-4	34.48	0.11	18.91	13.59	0.11	0.07	15.03	0.50	4.54	7.84	0.69	1.81	0.20	0.30	0.18	0.11	0.20	98.91
SQ-6-5	31.56	0.42	11.82	18.57	0.05	1.00	8.96	0.50	8.52	13.60	1.15	2.72	0.10	0.98	0.19	0.20	0.05	100.64
SQ-7-1	33.09	0.90	15.64	14.33	0.14	0.69	12.35	0.50	6.86	10.64	0.91	1.91	0.10	1.44	0.00	0.06	0.18	100.15
SQ-7-2	33.22	0.85	15.66	14.35	0.07	0.80	12.23	0.50	6.64	10.99	0.89	2.01	0.15	0.54	0.71	0.00	0.02	99.68
SQ-7-3	32.95	0.86	15.45	14.11	0.05	0.73	11.70	0.50	7.46	11.67	1.05	2.20	0.23	0.79	0.24	0.01	0.04	100.65
SQ-7-4	33.16	1.01	15.35	14.33	0.06	0.78	11.95	0.50	7.41	11.51	0.98	2.03	0.10	0.12	0.91	0.00	0.29	100.60
SQ-8-1	33.59	0.55	16.26	15.22	0.06	0.37	13.81	0.50	6.09	9.33	0.70	1.70	0.27	0.03	0.00	0.00	0.15	98.77
SQ-8-2	33.90	0.60	15.94	15.26	0.04	0.41	13.77	0.50	5.89	9.30	0.74	1.68	0.12	0.00	0.30	0.04	0.00	98.67
SQ-8-3	33.96	0.47	16.78	15.38	0.12	0.16	14.39	0.50	5.45	8.48	0.58	1.69	0.15	0.56	0.00	0.03	0.03	99.03
SQ-8-4	34.59	0.42	17.39	15.05	0.05	0.20	14.69	0.50	5.57	8.18	0.63	1.59	0.18	0.42	0.00	0.02	0.00	99.60
SQ-8-5	34.07	0.42	17.37	14.51	0.12	0.15	14.32	0.50	5.67	8.69	0.75	1.72	0.15	0.88	0.18	0.01	0.07	99.90
SQ-11-1	34.10	0.29	17.02	15.14	0.08	0.15	14.22	0.50	5.05	8.56	0.69	1.82	0.20	0.06	0.45	0.00	0.00	98.52
SQ-11-2	31.80	0.72	12.65	17.37	0.17	0.72	9.79	0.50	8.33	13.00	1.05	2.39	0.15	1.66	0.00	0.13	0.00	100.56
SQ-11-3	31.74	0.62	13.02	16.88	0.14	1.05	9.29	0.50	8.32	13.44	1.10	2.65	0.30	0.20	0.12	0.10	0.18	99.89
SQ-11-4	31.93	1.16	11.24	17.94	0.08	1.36	9.62	0.50	8.10	13.54	1.34	2.89	0.25	0.11	0.45	0.07	0.16	100.78
Макси- мум	34.59	1.16	18.91	18.57	0.17	1.36	15.03	0.50	8.88	13.74	1.34	2.89	0.30	1.66	0.91	0.20	0.29	_
Мини- мум	31.20	0.11	11.24	13.59	0.03	0.07	8.83	0.50	4.54	7.84	0.58	1.59	0.10	0.00	0.00	0.00	0.00	_
Сред- нее	32.91	0.58	14.86	15.93	0.08	0.63	11.85	0.50	6.99	11.05	0.92	2.14	0.19	0.57	0.28	0.06	0.09	_

Таблица 5. Состав золота месторождения Синкуен (мас. %)

Образец	№ зерна	Cu	Au	Hg	Ag	Сумма
	3K	0.03	94.43	0.04	5.98	100.48
	3C	0.02	94.42	0.00	5.56	100.00
	2K	0.00	94.46	0.00	5.69	100.15
	»	0.00	93.33	0.01	6.35	99.68
GONT 40	2C	0.00	94.35	0.05	5.93	100.32
SQN-40	»	0.00	93.53	0.00	6.37	99.9
	1K	0.00	93.36	0.00	6.89	100.25
	»	0.00	88.9	0.00	10.11	99.01
	1C	0.03	88.94	0.00	10.1	99.07
	»	0.01	89.22	0.02	9.97	99.22
CON 22	3K	0.01	94.39	0.00	6.01	100.41
SQN-33	3C	0.07	93.74	0.02	5.37	99.20
	2K	0.00	89.69	0.00	10.69	100.39
	2C	0.00	85.19	0.03	13.87	99.08
SQN-39	»	0.00	85.43	0.00	13.41	98.84
	1K	0.00	95.27	0.00	5.25	100.52
	1C	0.01	94.89	0.01	5.65	100.56
	1K	0.02	91.93	0.00	7.13	99.07
SQ-7	1C	0.01	92.45	0.02	7.2	99.67
	1K	0.00	91.27	0.00	7.84	99.11

Таблица 6. Содержание элементов-примесей в главных рудных минералах месторождения Синкуен (мас. %)

Содержание элемента	Число проб	Ag	As	S	Fe	Ni	Sn	Se	Bi	Со	Cu	Au	Mo
					Хал	ькопир	ит						
Минимум		0.01	0.00	33.76	29.87	0.00	0.00	0.00	0.00	0.00	34.18	0.00	0.00
Максимум	24	0.03	0.05	35.21	30.96	0.02	0.03	0.03	0.01	0.04	35.48	0.03	0.08
Среднее		0.02	0.01	34.72	30.22	0.01	0.01	0.00	0.00	0.02	34.78	0.01	0.02
				•	·	Пирит		•					
Минимум		0.00	0	52.32	46.08	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Максимум	14	0.00	0.09	54.85	47.69	0.13	0.00	0.00	0.00	0.27	0.02	0.00	0.00
Среднее		0.00	0.02	53.36	46.97	0.05	0.00	0.00	0.00	0.10	0.01	0.00	0.00
				•	П	ирротин	I	•					
Минимум		0.00	0.00	38.23	59.06	0.03	0.00	0.00	0.00	0.05	0.00	0.00	0.00
Максимум	15	0.08	0.03	40.07	61.32	0.08	0.03	0.02	0.00	0.22	0.08	0.03	0.08
Среднее		0.01	0.01	39.33	60.19	0.05	0.00	0.01	0.00	0.11	0.03	0.01	0.03

Золото и серебро в рудах имеют чрезвычайно неравномерное распределение, изменяющееся от сотых и десятых долей до 1.8 г/т. В процессе флотационного обогащения руд золото и серебро накапливаются в основном в халькопиритовом концентрате в количествах 4.55 и 9.6 г/т соответственно. В магнетитовом же концентрате и хвостах обогащения руд установлены минимальные содержания этих элементов (см. табл. 2), что явно свидетельствует о связи их с медной минерализацией. Золото по своему составу и формам выделения относится к одной генерации и характеризуется высокой пробностью, изменяющейся в пределах 851.9—952.7 ‰ (см. табл. 5).

ХИМИЧЕСКИЙ СОСТАВ И ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ РУДНЫХ МИНЕРАЛОВ

Проведенные геохимические исследования руд месторождения Синкуен выявили спектр элементов-примесей (Zn, Pb, Au, Ag, Co, Ni), имеющих повышенные концентрации. Кроме того, в рудах установлен ряд элементов (Bi, Se, In, V), незначительно превышающих кларковые величины, но имеющих тенденцию накапливаться в продуктах переработки руд — медном и железном концентратах. Как было показано, минералогические исследования на сканирующем микроскопе выявили самостоятельные минеральные фазы цинка и свинца — это сфалерит (ZnS) и галенит (PbS). Все другие элементы-примеси самостоятельных минералов не образуют. Поэтому для установления связи этих элементов-примесей с выявленными минералами руд с помощью микроанализатора Сатевах-Місго были изучены состав и элементы-примеси главных минералов — халькопирита, магнетита, пирита и пирротина.

Таблица 7. Химический состав магнетита месторождения Синкуен (мас. %)

Образец	№ зерна	FeO	TiO ₂	Cr ₂ O ₃	NiO	MnO	MgO	Al ₂ O ₃	Сумма
	1	92.64	0.24	0.02	0.00	0.06	0.01	0.15	93.12
SQ-28	2	92.82	0.23	0.01	0.00	0.04	0.02	0.17	93.29
	3	93.07	0.26	0.01	0.02	0.02	0.01	0.22	93.61
90.27	1	92.21	0.23	0.00	0.00	0.01	0.02	0.18	92.65
SQ-27	2	89.67	0.13	0.02	0.00	0.06	0.01	0.21	90.09
CO 20	1	93.69	0.27	0.00	0.00	0.07	0.02	0.10	94.15
SQ-20	2	92.73	0.29	0.00	0.00	0.07	0.02	0.08	93.20
	1	92.73	0.21	0.00	0.00	0.00	0.02	0.17	93.14
CO 10	2	92.41	0.19	0.00	0.00	0.00	0.02	0.07	92.69
SQ-10	3	92.84	0.15	0.00	0.00	0.00	0.02	0.12	93.14
	4	92.60	0.28	0.00	0.00	0.00	0.03	0.16	93.07

Халькопирит на месторождении является наиболее распространенным минералом. Он характеризуется постоянством состава, отвечающим стехиометрии (CuFeS $_2$). Значимых величин концентраций каких-либо элементов-примесей в халькопирите этим методом не установлено. На уровне чувствительности анализа (0.01 %) в нем отмечаются следы целого ряда элементов (см. табл. 6), которые устойчиво фиксируются в медном концентрате с помощью анализа (ICP MS) (см. табл. 2). Пириту свойствен состав, отвечающий формуле FeS $_2$. В нем установлена примесь Со (0.1 мас. %) и следы меди, никеля и мышьяка (см. табл. 6). Примесь Со (0.11 мас. %) также присутствует в пирротине. Здесь же отмечаются следы Сu, As, Ni, Se, Ag, Au и Mo (см. табл. 6). В магнетите выявлена устойчивая примесь TiO_2 (0.23 мас. %), следы Cr_2O_3 и ряда породообразующих элементов (табл. 7).

Таким образом, проведенные геохимические исследования руд, продуктов их переработки и рудных минералов месторождения Синкуен выявили достаточно широкий спектр элементов-примесей, представленный Zn, Pb, Au, Ag, Co, Ni, V. Кроме того, в процессе обогащения в медном концентрате установлено накопление (г/т) Ві (7.15), Se (10.30), Те (10.30.) и Іп (3.8), а в магнетитовом концентрате — V (205).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ

Общее согласное положение Cu-Fe оруденения с вмещающими породами месторождения, линзовидная и пластообразная форма рудных залежей и 2-3-уровневое распределение рудных тел с образованием единого рудного горизонта, протягивающегося практически на 2 км, свидетельствуют, по всей видимости, о синхронном формировании оруденения с рудовмещающей толщей. Участие рудных тел в складчатости совместно с вмещающими породами также говорит о раннем доскладчатом их образовании. Широкое развитие в составе рудовмещающего разреза амфиболитов, отвечающих по химическому составу (табл. 8) метаморфизованным вулканогенным породам основного состава, и пространственная связь оруденения с этими амфиболитами, минеральный состав руд, представленный сульфидами меди и железа (халькопирит, пирит, пирротин) совместно с оксидами железа (магнетит), дает основание предварительно отнести это месторождение к кипрскому вулканогенному медно-колчеданному типу. В пользу последнего также может указывать повышенная золотоносность руд, характерная для многих колчеданных месторождений России и мира [Магquis et al., 1990; Tourigny et al., 1993; Викентьев, 2004; Ковалев и др., 2004; Зайков, 2006], и состав элементов-примесей, главными из которых являются Zn, Pb,

Таблица 8. Химический состав кварц-биотит-амфиболовых пород и сосуществующих в них минералов амфибола-биотита (обр. SQ-15, 20, 28) и плагиоклаза-амфибола (обр. SQ-10, 26, 29, 49) месторождения Синкуен

Образец	SiO_2	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Сумма
			Б	биотит-ква	рц-амфибол	ювые поро	ды			
SQ-29	48.30	0.14	11.51	26.17	0.25	2.05	8.66	1.78	1.09	99.55
SQ-49	57.55	0.30	14.33	9.71	0.06	3.36	6.65	5.57	1.43	98.96
					Амфибол					
SQ-15	48.47	0.08	4.03	24.62	0.00	8.90	10.37	1.21	0.40	98.07
SQ-20	47.51	0.08	4.83	25.07	0.02	7.74	10.85	0.85	0.68	97.63
SQ-28	41.76	0.14	10.34	27.75	0.00	4.75	10.19	1.92	0.93	97.78
					Биотит					
SQ-15	36.65	1.67	13.89	26.91	0.00	7.66	0.01	0.00	8.83	95.62
SQ-20	38.98	0.93	11.94	26.01	0.00	9.26	0.01	0.00	8.51	95.64
SQ-28	37.20	0.97	13.06	27.87	0.00	7.88	0.00	0.00	8.46	95.85
					Плагиокла	13				
SQ-10	68.90	0.02	19.45	0.04	0.01	0.01	0.61	10.75	0.07	99.92
SQ-26	69.39	0.01	19.33	0.02	0.00	0.01	0.52	10.66	0.08	100.05
SQ-29	69.41	0.01	19.47	0.04	0.00	0.01	0.64	10.27	0.05	99.89
SQ-49	68.98	0.01	19.51	0.03	0.00	0.00	0.61	10.75	0.06	100.02
					Амфибол					
SQ-10	40.96	0.18	12.03	23.57	0.20	7.11	10.33	2.23	0.66	97.29
SQ-26	38.97	0.30	14.55	25.83	0.25	4.19	10.44	1.86	0.84	97.26
SQ-29	37.93	0.16	12.36	30.79	0.33	2.41	10.03	2.10	1.28	97.40
SQ-49	41.53	0.41	9.21	28.75	0.19	4.09	10.53	1.47	1.19	97.38

Со и Ni, часто фиксируемые в этом типе руд [Гаськов и Таблица 9. Изотопный состав серы сульфидов др., 2005]. Сульфидная сера основных минералов руд месторождения имеет устойчивый изотопный состав, изменяющийся в узких пределах от -2.5 до +1.3 ‰, отвечающий метеоритному стандарту, и указывает на глубинный источник серы (табл. 9). Характерное для многих вулканогенно-осадочных месторождений участие в рудообразовании тяжелой экзогенной серы морской воды [Дистанов и др., 1988; Peter, Shanks, 1992; Ohmoto, 1996; Ковалев и др., 2000] на месторождении Синкуен не установлено. Либо это связано с участием в процессе рудообразования лишь глубинной эндогенной серы, либо экзогенная сера морских вод в протерозое во время формирования месторождения имела низкие значения тяжелого изотопа, как отмечали [Eastoe et al., 1990; Solomon, Sun, 1997]. На ограниченное участие экзогенной серы в процессе рудообразования может косвенно указывать широкое развитие магнетита

руд месторождения Синкуен

		-
Образец	Минерал	δ ³⁴ S, ‰
SQ-10	Халькопирит	-0.2
SQ-11	Пирит	-0.9
SQ-11	Халькопирит	-2.5
SQ-12	Пирротин	0.4
SQ-19	Халькопирит	1.3
SQ-20	Пирротин	-1.2
SQ-21	»	-1.7
SQ-28	Халькопирит	-1.0
SQ-29	»	-1.0
SQ-35	Пирит	-0.8
КС232	»	3.5
		•

 (Fe_2O_4) в парагенезисе с халькопиритом и пиритом, который может свидетельствовать о дефиците серы при образовании этой ассоциации. Уменьшение доли медных сульфидных и увеличение железных оксидных руд с востока на запад месторождения по мере движения гидротермальных растворов также может указывать на возникновение дефицита серы в процессе рудообразования. В этом же направлении увеличивается в рудах спектр и содержание элементов-примесей в рудах, что обусловлено, вероятно, снижением температуры растворов по мере их движения и уменьшении растворимости большей части элементов.

Таблица	10.		Содерж	ание РЗ	Э в разі	ных тип	ах гран	итов зо	ны Фаі	нсипан	(г/т)			
Образец	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
					Гран	иты ком	мплекса	Посен	•					
H-900/1	47.99	91.6	11.08	38.39	6.76	0.438	5.18	0.819	4.31	0.815	2.41	0.403	3.35	0.617
H-901/1	20.53	45.28	5.809	21.66	4.03	1.097	3.403	0.512	2.922	0.566	1.725	0.276	1.828	0.3
H-901/2	36.2	71.5	8.55	30.28	5.03	1.077	3.74	0.555	2.94	0.538	1.47	0.216	1.42	0.208
H-901/4	11.94	21.08	2.266	7.41	1.479	0.297	1.381	0.235	1.546	0.338	1.199	0.226	1.79	0.351
H34/92	44.46	89.19	9.804	36.72	5.826	1.329	4.486	0.587	3.021	0.569	1.617	0.251	1.63	0.245
SH-1322	27.99	66.7	9.16	35.45	6.64	1.608	5.05	0.812	4.27	0.805	2.19	0.317	2.01	0.297
SH-1321	44.83	84.67	9.896	34.55	5.948	1.31	4.894	0.692	3.626	0.66	1.893	0.295	1.916	0.303
SH-1323	15.75	28.3	3.17	10.92	1.8	0.754	1.5	0.222	1.21	0.234	0.7	0.109	0.79	0.128
Среднее	31.21	62.29	7.47	26.92	4.69	0.99	3.70	0.55	2.98	0.57	1.65	0.26	1.84	0.31
				Щел	очные г	раниты	компле	кса Мы	онгхум					
H-902	503.6	891.9	98.31	379.3	64.03	4.35	55.91	8.9	50.41	9.82	26.54	4.12	23.93	3.58
H-903	205.1	374.5	42.51	141.8	20.7	2.25	16.84	2.39	12.6	2.37	6.87	1.09	6.81	1.14
H-906	127.6	226.2	20.83	71.07	10.03	1.46	7.64	0.97	4.83	0.86	2.33	0.34	2.08	0.32
H10/92	239.9	361.4	49.2	178.7	28.83	1.27	23.47	3.55	20.05	3.93	11.34	1.9	12.07	1.89
H12/92	212.3	364.8	40.13	147.1	24.63	1.9	20.98	3.27	18.63	3.74	10.62	1.75	10.57	1.58
H17/92	126.3	262	28.85	108	21.41	1.01	18.4	3.29	20.13	4.1	11.8	1.98	12.09	1.75
SH-1317	113.6	220.4	26.38	92.07	15.26	1.18	12.11	1.82	9.87	1.88	5.57	0.92	5.98	1.02
SH-1318	121.7	258.6	28.06	111.1	23.72	1.15	20.61	3.99	25.73	5.36	15.24	2.43	14.13	2.04
SH-1319	111.4	209.5	26.42	94.06	17.83	1	15.08	2.62	15.3	2.98	8.51	1.36	8.3	1.31
SH-1320	234.2	366.2	39.43	124.1	16.51	1.96	13.78	1.85	9.53	1.78	5.28	0.83	5.1	0.84
Среднее	199.57	353.55	40.01	144.73	24.30	1.75	20.48	3.27	18.71	3.68	10.41	1.67	10.11	1.55
				Ще	лочные	граниті	ы компл	екса Ие	ншун					
SH-1331	124.5	259.2	31.92	112.1	21.78	0.707	18.1	3.056	17.84	3.45	10.18	1.659	10.19	1.555
SH-1332	121.5	238.4	28.27	97.27	16.7	1.637	13.41	2.08	11.54	2.219	6.511	1.061	6.692	1.083
Среднее	123.00	248.80	30.10	104.69	19.24	1.17	15.76	2.57	14.69	2.83	8.35	1.36	8.44	1.32

Таблица 11. Коэффициенты парных корреляций рудных элементов и элементов-примесей в рудах месторождения Синкуен (31 проба)

					в руд	qua me	сторол	цения	Chink	yen (31	прооа	,					
Компо- нент	In	Sn	Cd	Zn	Pb	Cu	Fe	Au	Ag	Ga	Ge	Bi	Mn	Со	Ni	V	REE
In	1																
Sn	0.83	1.00															
Cd	0.33	0.17	1.00														
Zn	0.51	0.27	0.85	1.00													
Pb	-0.02	-0.34	0.15	0.06	1.00												
Cu	0.59	0.18	0.27	0.34	-0.09	1.00											
Fe	-0.31	-0.28	-0.31	-0.28	-0.23	-0.43	1.00										
Au	0.20	0.10	-0.11	-0.10	0.04	0.03	0.09	1.00									
Ag	-0.32	-0.47	-0.11	-0.09	-0.02	0.10	0.15	0.72	1.00								
Ga	0.46	0.67	-0.23	-0.04	-0.15	0.08	0.11	0.04	-0.05	1.00							
Ge	-0.02	0.06	-0.03	-0.04	-0.08	-0.11	-0.11	-0.02	0.07	0.59	1.00						
Bi	0.27	-0.16	-0.08	-0.03	-0.07	0.05	0.00	0.42	0.77	-0.12	-0.09	1.00					
Mn	0.48	0.59	0.04	0.16	-0.30	-0.27	-0.11	0.01	-0.50	-0.05	0.06	-0.41	1.00				
Co	0.52	0.07	0.65	0.65	-0.06	0.39	0.39	0.01	0.03	-0.17	-0.04	-0.03	0.15	1.00			
Ni	0.16	-0.09	0.45	0.35	0.34	0.01	0.49	-0.08	-0.01	-0.25	-0.05	-0.10	0.48	0.72	1.00		
V	-0.24	-0.25	-0.30	-0.13	0.02	-0.14	0.91	0.16	0.01	0.53	0.09	-0.06	-0.19	-0.11	-0.08	1.00	
REE	0.47	0.54	0.12	0.29	-0.09	0.39	0.16	-0.02	-0.16	0.25	-0.31	-0.18	0.98	0.32	0.16	0.25	1

Примечание. Жирным выделены значимые значения коэффициентов корреляции.

В отличие от типичных колчеданных месторождений, руды Синкуен характеризуются повышенными содержаниями РЗЭ, установленными лишь в пределах рудного горизонта, сложенного оксидносульфидными рудами. В то же время в подрудных и надрудных вмещающих породах, а также в дайковых телах гранитов, встречающихся на месторождении и относящихся к комплексу Посен (Ро Sen), фиксируется кларковый уровень РЗЭ (табл. 10). Поэтому для установления взаимоотношений редкоземельной минерализации с основным магнетит-халькопиритовым оруденением были изучены содержания РЗЭ в халькопиритовом и магнетитовом концентратах, проведен расчет парных коэффициентов корреляции редкоземельных элементов с рудными элементами и элементами-примесями в рудах и выявлены уровни содержаний РЗЭ в разных типах гранитов. Корреляции между РЗЭ и рудными элементами не установлено (табл. 11). Анализ халькопиритового и магнетитового концентратов показывает низкие величины в них редкоземельных элементов, что свидетельствует об обособленном развитии редкоземельной минерализации от сульфидных и оксидных руд месторождения. В то же время флотационные отвалы обогатительной фабрики обогащены этими элементами, что указывает на связь концентраций РЗЭ с породообразующими минералами, поступающими после флотации в отвалы. Главной минеральной фазой концентрации редкоземельных элементов, как было уже показано, является ортит, который в тесной ассоциации с эпидотом развит в амфиболитах рудного горизонта и образовался, по-видимому, при метаморфизме этих руд и пород. Наличие же концентраций РЗЭ, входящих в состав метаморфического минерала — ортита, указывает на дометаморфогенное или синхронное с метаморфизмом время привноса РЗЭ в толщу. Отсутствие генетических связей РЗЭ с сульфидными и оксидными рудами дает основание говорить о самостоятельном этапе формирования редкоземельной минерализации.

Анализ содержаний РЗЭ в разных типах гранитов, развитых в данном регионе, показывает (см. табл. 10), что редкоземельная минерализация месторождения Синкуен могла быть связана со щелочными гранитами и граносиенитами комплекса Мыонгхум (Muong Hum) пермотриасового возраста, отдельные мелкие тела которых наблюдались в рудном поле Синкуен, либо с гранитами комплекса Иеншун (Ye Yen Sum) палеогенового возраста. Щелочные граниты комплекса Мыонгхум обогащены РЗЭ в 200—1000 раз, а граниты комплекса Иеншун в 50—200 раз по сравнению с хондритовыми значениями [Чан Чонг Хоа, 2007]. С этими щелочными образованиями связано также формирование самостоятельных редкоземельных рудопроявлений Викем (Vi Kem) (см. рис. 1).

Рудные тела совместно с вмещающими породами испытали метаморфогенные преобразования. Руды как наиболее жесткие блоки часто разбиты на фрагменты, будинированы и подроблены, а вмещающие породы в большей степени рассланцованы, разгнейсованы и смяты в складки. Анализ парагенетических ассоциаций вмещающих пород и руд, представленных в лейкократовых породах ассоциацией

Таблица 12. **РТ-параметры метаморфизма, проявившегося на месторождении Синкуен,** по данным разных геотермометров

Парагенезис	T, °C	Р, кбар
Минеральный парагенезис (Амф + Эп + Пл + Би + Кв) [Добрецов и др., 1970]	520—620	3—6
Биотит-амфиболовый минеральный парагенезис [Перчук, 1970]	500—600	_
Плагиоклаз-амфиболовый минеральный парагенезис [Blundi, Holland, 1990; Holland, Blundi, 1994]	630—685	5.7—7.5

Приме чание. Данные расчетов приведены по химическим составам минералов табл. 8.

{КПШ + кислый плагиоклаз + кварц + биотит + (мусковит + кальцит + рудные минералы + сфен + апатит)}, а в амфиболитах — {роговая обманка + плагиоклаз + биотит + кварц + эпидот + (ортит + рудные минералы + апатит)}, свидетельствует об эпидот-амфиболитовой фации метаморфизма, отвечающей температуре 520—620 °С и давлению 3—6 кбар [Добрецов и др., 1970, 1972]. Исследование химического состава сосуществующих метаморфических минералов также позволило оценить температурные параметры метаморфизма. Анализ зерен амфибола из разных проб месторождения в целом показывает их устойчивый состав, отвечающий составу железистой роговой обманки (см. табл. 8). Состав биотита также характеризуется повышенной железистостью, а из катионов в нем резко преобладает калий. Используя равновесные диаграммы амфибола и биотита [Перчук, 1970; Перчук, Рябчиков, 1976], по средним значениям магнезиальности в пробах сосуществующих амфибола и биотита были определены температуры образования этих минералов на данном месторождении, которые составляют 500—600 °С (табл. 12). Расчет *РТ*-параметров по составам сосуществующих плагиоклаза и амфибола (см. табл. 8) в плагиоклазамфиболовом геотермометре, предложенном в работах [Blundi, Holland, 1990; Holland, Blundi, 1994], показал температуры их формирования в пределах 630—685 °С и давление выше 6 кбар.

выводы

Проведенные исследования выявили следующие основные особенности месторождения Синкуен.

- 1. Общее согласное положение железо-медного оруденения с вмещающими породами месторождения, линзовидная и пластообразная форма рудных залежей, пространственная связь оруденения с амфиболитами, а также минеральный состав руд, представленный сульфидами меди и железа (халькопирит, пирит, пирротин) совместно с оксидами железа (магнетит), дает основание предварительно отнести это месторождение к кипрскому вулканогенному медно-колчеданному типу.
- 2. Месторождение характеризуется повышенной золотоносностью руд. Золото и серебро в рудах имеют чрезвычайно неравномерное распределение, изменяющиеся от сотых и десятых долей до 1.8 г/т. Главным концентратором золота и серебра является халькопирит, что свидетельствует о связи этих элементов с формированием медного оруденения. Эта особенность типична для многих медно-колчеданных и колчеданно-полиметаллических месторождений России и мира.
- 3. Изотопный состав серы основных сульфидных минералов руд месторождения изменяется в узких пределах (–2.5...+3.5 ‰), отвечающий метеоритному стандарту, что указывает на глубинный источник серы.
- 4. Руды месторождения отличаются повышенными концентрациями редкоземельных элементов, превышающими в десятки и сотни раз кларковые величины. Наиболее высокие содержания среди РЗЭ имеют Се и La. Главным носителем РЗЭ на месторождении является ортит. Корреляционная связь между РЗЭ и рудными элементами сульфидно-оксидных руд не установлена, что указывает на самостоятельный этап формирования редкоземельной минерализации в связи с развитием щелочного гранитного магматизма, широко проявившегося в регионе в позднем мезозое и кайнозое и обладающего редкоземельной специализацией.
- 5. Рудные тела совместно с вмещающими породами испытали метаморфогенные преобразования при температуре (по оценкам разными методами) от 500—600 до 630—685 °C и давлении от 3—6 до 5.7—7.5 кбар.
- 6. Месторождение Синкуен, расположенное в Северном Вьетнаме, входит в состав медного пояса, протягивающегося в северо-западном направлении на территорию КНР, где расположены месторождения Лонгбое и Тонгчанг (см. рис. 1). На территории Вьетнама в пределах этого пояса выявлено еще одно подобное месторождение Лунгпо и ряд небольших медных рудопроявлений, что свидетельствует о масштабном проявлении рудообразующих процессов в этой зоне и указывает на хорошие перспективы выявления новых объектов в данном поясе.

Статья подготовлена при поддержке государственного научного проекта Вьетнама № КС 08.24/06-10.

ЛИТЕРАТУРА

- **Викентьев И.В.** Условия формирования и метаморфизм колчеданных руд. М., Научный мир, 2004, 338 с.
- **Гаськов И.В., Дистанов Э.Г., Ковалев К.Р.** Факторы концентрирования элементов-примесей в рудах колчеданных месторождений юга Сибири // Геология и геофизика, 2005,т. 46 (3), с. 303—317.
- **Дистанов Э.Г., Гаськов И.В., Гриненко Л.Н., Перцева А.П.** Изотопный состав серы руд и пород Холоднинского колчеданно-полиметаллического месторождения // Геология и геофизика, 1988 (7), с. 60—69.
- **Добрецов Н.Л., Ревердатто В.В., Соболев В.С., Соболев Н.В., Хлестов В.В.** Фации метаморфизма. М., Недра, 1970, 432 с.
- **Добрецов Н.Л., Соболев В.С., Хлестов В.В.** Фации регионального метаморфизма умеренных давлений. М., Недра, 1972, 284 с.
 - Зайков В.В. Вулканизм и сульфидные холмы палеоокеанических окраин. М., Наука, 2006, 426 с.
- **Ковалев К.Р., Гаськов И.В., Перцева А.П.** Изотопный состав серы колчеданно-полиметаллических руд месторождений азиатской части России // Геология рудных месторождений, 2000, т. 42, № 2, с. 83—112.
- **Ковалев К.Р., Дистанов Э.Г., Аношин Г.Н., Гаськов И.В., Акимцев В.А., Баулина М.В.** Золото и серебро в рудах вулканогенных гидротермальных и гидротермально-осадочных колчеданно-полиметаллических месторождений Сибири // Геология и геофизика, 2004, т. 45 (10), с. 1171—1185.
 - Перчук Л.Л. Равновесия породообразующих минералов. М., Наука, 1970, 391 с.
- **Перчук Л.Л., Рябчиков И.Д.** Фазовое соответствие в минеральных системах. М., Недра, 1976, 285 с.
- **Чан Чонг Хоа.** Внутриплитный магматизм Северного Вьетнама и его металлогения: Автореф. дис. ... д.г.-м.н., 2007, Новосибирск, ИГМ СО РАН, 48 с.
- **Blundi J.D., Holland T.J.B.** Calcic amphibole equilibrium and a new amphibole-plagioclase thermometer // Contr. Miner. Petrol., 1990, v. 104, p. 208—224.
- **Eastoe C.J., Gustin M.S., Hurlbut D.F., Orr R.L.** Sulfur isotopes in Early Proterozoic massive sulfide deposits: new data from Arizona and implication for ocean chemistry // Precam. Res., 1990, v. 46, p. 353—364
- **Holland T., Blundi J.** Non-ideal interactions in calcic amphiboles and their amphibole-plagioclase thermometry // Contr. Miner. Petrol., 1994, v. 116, p. 433—447.
- Leloup P.H., Lacassin R., Tapponnier P., Scharer U., Zhong Dalai, Liu Xiaohan, Zhang Liangshang, Ji Shaocheng, Phan Trong Trinh. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina // Tectonophysics, 1995, v. 251, p. 3—84.
- Lianxing Gu, Khin Zaw, Wenxuan Hu, Kaijun Zhang, Pei Ni, Jinxiang He, Yaotong Xu, Jianjun Lu, Chunming Lin. Distinctive features of Late Palaeozoic massive sulphide deposits in South China // Ore Geol. Rev., 2007, v. 31, p. 107—138.
- Marquis P., Hubert C., Brown A.C., Rigg D.M. Overprinting of early, redistributed Fe and Pb-Zn mineralization by late-stage Au-Ag-Cu deposition at the Dumagami mine, Bousquet district, Abitibi, Quebec // Canad. J. Earth Sci., 1990, v. 27, p. 1651—1671.
- **McLean R.N.** The Sin Quyen iron oxide-copper-gold-rare earth oxide mineralisation of North Vietnam // Hydrothermal iron oxide and copper-gold related deposits: a global perspektive. v. 2. Adelaide, PGCPubllishing, 2001, p. 293—301.
- **Ohmoto H.** Formation of volcanogenic massive sulfide deposits: the Kuroko perspective // Ore Geol. Rev., 1996, v. 10, p. 135—177.
- **Peter J.M., Shanks W.C.** Sulfur, carbon and oxygen isotope variations in submarine hydrothermal deposits of Guaymas basin, Gulf of California // Geochim. Cosmohim. Acta, 1992, v. 56, p. 2025—2040.
- **Solomon M., Sun S.S.** Earth's evolution and mineral resources, with particular emphasis on volcanic-hosted massive sulfide deposits and handed iron formations // AGSO J. Aust. Geol. Geophys., 1997, v. 17, p. 33—48.
- **Tourigny G., Doucet D., Bourget A.** Geology of the Bousquet 2 mine: an example of a deformed, gold-bearing, polymetallic sulfide deposit // Econ. Geol., 1993, v. 88, p. 1578—1597.
- **Yinling Cui, Dexian Qin, Yaoguang Chen.** Copper mineralization in the western Longbohe area, SE Yunnan, China a comparison with the Shengquan copper deposit, Vietnam // Miner. Depos. Res.: meeting the global challenge, 2005, v. 1, p. 369—371.