2010. Том 51, № 2

Март – апрель

C. 272 – 279

УДК 544.118; 544.171.6

КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЕТ МЕТОДОМ ФУНКЦИОНАЛА ПЛОТНОСТИ РЕНТГЕНОВСКИХ ФЛУОРЕСЦЕНТНЫХ СПЕКТРОВ ДИМЕРНОГО КАРБОНИЛА МАРГАНЦА Mn₂(CO)₁₀

© 2010 В.Г. Власенко*, А.Т. Шуваев, И.А. Зарубин

Научно-исследовательский институт физики, Южный федеральный университет, Ростов-на-Дону

Статья поступила 28 апреля 2009 г.

На основе квантово-химических расчетов методом функционала плотности проведен анализ электронного строения биядерного декакарбонила марганца $Mn_2(CO)_{10}$. Полученные результаты расчетов использованы для интерпретации рентгеновских флуоресцентных CK_{α} -, OK_{α} -, MnL_{α} - и MnK_{β_5} -спектров $Mn_2(CO)_{10}$. Построенные на основе этих расчетов теоретические флуоресцентные спектры находятся в хорошем согласии с экспериментом.

Ключевые слова: рентгеновская флуоресцентная спектроскопия, теория функционала плотности, декакарбонил марганца.

введение

Интерпретация результатов исследования различных свойств соединений на основе квантово-химических расчетов является хорошо апробированным и признанным методом. Ограничиваясь исследованиями электронного строения комплексных соединений металлов различными спектроскопическими методами (рентгеновская и ультрафиолетовая фотоэлектронная спектроскопия, оптическое поглощение, рентгеновская флуоресцентная спектроскопия, рентгеновская спектроскопия поглощения и т.д.), можно отметить, что современные квантово-химические методы позволяют дать не только достоверную качественную интерпретацию полученных экспериментальных результатов, но и получать количественные характеристики электронного строения (энергию молекулярных орбиталей (МО), заселенность уровней, спиновые состояния и др.), которые находятся в хорошем соответствии с экспериментом. В качестве примера такого хорошего соответствия расчетных и экспериментальных результатов можно привести полученные в [1] теоретические значения первых ионизационных потенциалов для двух десятков металлоорганических комплексов. Расчеты, проводимые методами теории функционала плотности (ТФП) и Хартри—Фока, показали, что в рамках использования стандартных функционалов B3LYP, B3PW91, B3P86 и при выборе достаточно широких базисных наборов (LanL2DZ, 6-311G**, TZVP) можно получить значения первых ионизационных потенциалов, отличающиеся от экспериментальных результатов не более чем на 0,2 эВ. Успешные расчеты структуры оптических спектров поглощения комплексов рения методом ТФП выполнены в [2, 3]. Расчеты рентгеновских спектров поглошения и флуоресценции для бис-β-ликетоната меди(II) методом ТФП (функционал B3LYP, базис LACVP) выполнены в [4], а для различных малых молекул, образующих комплексы с металлическими поверхностями, — в [5] (функционалы РW86, PW91, базис TZVP). В этих и других подобных работах успешно продемонстрировано, что полученные характеристики МО можно использовать для расчета рентгеновских энергий перехо-

^{*} E-mail: vlasenko@ip.rsu.ru

Рис. 1. Атомная структура молекулы Mn₂(CO)₁₀ [15—18]

дов (в приближении теоремы Купманса) и построения теоретических рентгеновских эмиссионных и абсорбционных спектров. Причем во многих случаях не только особенности тонкой структуры, но и форма экспериментальных рентгеновских спектров хорошо воспроизводятся при построении теоретических спектров. На основе анализа результатов таких расчетов можно сделать вывод об особой важности выбора метода расчета и его параметров (подбор функционала

и базисных функций), причем установленных рекомендаций для такого выбора в общем случае не существует.

В настоящей работе проведена интерпретация рентгеновских флуоресцентных CK_{α} -, OK_{α} -, MnL_{α} - и MnK_{β_5} -спектров декакарбонила марганца $Mn_2(CO)_{10}$ на основании квантово-химических расчетов с использованием метода ТФП. Рассчитанные теоретические рентгеновские флуоресцентные спектры сопоставлены с экспериментом, и описаны особенности электронного строения исследованного комплекса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1. Рентгеноспектральные исследования. Рентгеновские флуоресцентные MnK_{β_5} -спектры получены на длинноволновом рентгеновском спектрографе ДРС-2М [6] с кварцевым кристалла анализатором с плоскостью отражения (1340), которая находится под углом 14° к поверхности кристалла (1010). В качестве источника рентгеновского излучения использовали рентгеновскую трубку БХВ-7Си (V = 50 kV, I = 60 mA). Спектры регистрировали на фотопленку РТ-3. Время экспозиции MnK_{β_5} -спектров составляло 5—8 ч. В качестве линий-реперов взяты $FeK_{\alpha_{1,2}}$ -спектры металлического железа, а также MnK_{β_1} - и MnK_{β_5} -спектры металлического марганца. L_{α} -спектры марганца, OK_{α} - и CK_{α} -спектры для комплекса $Mn_2(CO)_{10}$ получены на рентгеновском спектрометре "Стеарат" с использованием кристалл-анализаторов RbAP и стеарата свинца.

2. Методы расчета электронного строения. Квантово-химические расчеты электронного строения $Mn_2(CO)_{10}$ проводили методом ТФП с использованием программного комплекса Gaussian-03 [7]. Использовали гибридный корреляционный функционал Ли—Янга—Парра [8] ВЗLYP с градиентными поправками Бекке [9], стандартный расширенный валентно-расщепленный базис TZVP [10, 11] для атомов С, О и эффективные остовные псевдопотенциалы (effective-core potential) LANL2DZ [12, 13] и SDD [14] для Мп. Использование такой схемы расчета было успешно применено в [1] для получения значений потенциалов ионизации в большом количестве карбонилов 3*d*-металлов.

Координаты атомов молекулы $Mn_2(CO)_{10}$, необходимые для квантово-химических расчетов, взяты из рентгеноструктурных исследований [15—18]. Молекула $Mn_2(CO)_{10}$ (рис. 1) имеет близкую к D_{4d} симметрию, в которой экваториальные лиганды СО каждого атома металла повернуты относительно друг друга примерно на 45°. Расстояние Mn—Mn равно 2,895 Å. Расстояния Mn— C_{ax} в аксиальных группах СО 1,815 Å короче среднего расстояния Mn— C_{eq} экваторальных групп СО, которое равно 1,856 Å. Экваториальные группы СО имеют наклон около 5° по отношению к связи Mn—Mn в направлении друг к другу.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Электронная структура Mn₂(CO)₁₀ в основном состоянии. Рассмотрим детали электронного строения Mn₂(CO)₁₀ на основе проведенных квантово-химических расчетов методом ТФП. Теоретическое рассмотрение электронного строения димерных карбонильных комплек-

Рис. 2. Энергетическая корреляционная диаграмма и пространственное распределение электронной плотности для ВЗМО и НСМО фрагмента Mn(CO)₅ и димерной молекулы Mn₂(CO)₁₀

сов M₂(CO)₁₀ на основе квантово-химических расчетов различного уровня приведено в многочисленных работах, например, для Mn₂(CO)₁₀ [19—24].

Электронное строение димерных карбонильных комплексов $Mn_2(CO)_{10}$ можно рассмотреть исходя из взаимодействия двух фрагментов $Mn(CO)_5$ с образованием MO биядерного комплекса. Энергетическая корреляционная диаграмма MO фрагмента $Mn(CO)_5$, обладающего симметрией $C_{4\nu}$, имеет верхние заполненные MO с преимущественными вкладами *d*-AO металла (рис. 2). Верхняя занятая MO (B3MO) a_1 -типа представляет собой гибридную связующую орбиталь $3d_{z^2} + 4p_z$. Нижележащие MO *e*-типа (d_{xz} , d_{yz} -B3MO-1) и b_2 -типа (d_{xy} -B3MO-2) образуют тесную группу t_{2g} -подобных орбиталей и представляют собой комбинации между Mn $d\pi$ -AO и $2\pi^*$ -орбиталями лигандов CO, включенных в обратную дотацию электронов при взаимодействии атома металла с лигандами.

Образование системы МО для $Mn_2(CO)_{10}$ (симметрия D_{4d}) при взаимодействии двух фрагментов $Mn(CO)_5$ показано на рис. 2, количественные характеристики МО (энергии и вклады АО атомов в МО) в виде анализа заселенностей Mn, CO_{eq} (CO_{eq} — экваториальные лиганды) и CO_{ax} (аксиальные лиганды) приведены в таблице. Всю совокупность представленных в таблице МО можно разбить на 4 группы.

1. Это семь наивысших заполненных орбиталей $Mn_2(CO)_{10}$: дважды вырожденные $8e_2$, $11e_1$, $11e_3$ и $17a_1$, которые лежат значительно выше (на 3—5 эВ) других заполненных орбиталей и имеют преимущественный (>55 %) вклад АО Мп. Всю эту серию МО формально можно отнести к орбиталям, образованным в результате $\sigma(d_{x^2} + p_z)$, $\pi(d_{xz} + d_{yz})$ и $\delta(d_{xy}, d_{y^2} - d_{y^2})$ свя-

зывания Мп—Мп в молекуле Мп₂(CO)₁₀. ВЗМО 17 a_1 характеризует σ -связь Мп—Мп, которая осуществляется как $4p_z - 4p_z$, так и $d_{x^2} - d_{y^2}$ -взаимодействиями. Соответствующая разрых-

ляющая орбиталь 17 b_2 является нижней свободной МО (НСМО), энергетическая щель $\Delta(\sigma - \sigma^*)$ составляет 4,38 эВ. Нижележащая серия $8e_2$, $11e_1$ и $11e_3$ образована на базе t_{2g} -подобных орбиталей фрагментов Mn(CO)₅ и отображает сильное связывание $3d(Mn) - 2\pi(CO)_{eq}$. МО $11e_1$ и $11e_3$ являются связующей и разрыхляющей орбиталями соответственно, образованными при π -взаимодействии фрагментов Mn(CO)₅. Расщепление между результирующими $11e_1$ и $11e_3$ MO со-

MO	ε (эВ)	Mn, C_i^2 (%) AO	$\begin{array}{c} \operatorname{CO}_{\mathrm{ax}}, \ C_i^2 \ (\%) \\ p(s) \ \mathrm{AO} \end{array}$	$\begin{array}{c} \operatorname{CO}_{eq}, \ C_i^2 \ (\%) \\ p(s) \ \operatorname{AO} \end{array}$	мо	ε (эВ)	Mn, C_i^2 (%) AO	$\begin{array}{c} \operatorname{CO}_{\mathrm{ax}}, \ C_i^2 \ (\%) \\ p(s) \ \mathrm{AO} \end{array}$	$\begin{array}{c} \operatorname{CO}_{eq}, \ C_i^2 \ (\%) \\ p(s) \ \mathrm{AO} \end{array}$
Свободные МО									
14 <i>e</i> ₃	0,18	$5,2(2,7d_{\pi}+2,5p_{x,y})$	15,2	79,6(1,8 <i>s</i>)	$18a_1$	-0,92	$39,8(13,1d_{z^2}+0,2p_z)$	32,9(29,9s)	27,1(3,8 <i>s</i>)
11 <i>e</i> ₂	-0,31	$20,5d_{\delta}$	0	79,5(72,2 <i>s</i>)	$13e_1$	-1,11	$24,5(20,8d_{\pi} + 3,7p_{rv})$	22,8	52,7(9,9 <i>s</i>)
18 <i>b</i> ₂	-0,37	$32,0(18,4d_{z^2}+1,6p_z)$	35,6(32,2s)	32,5(7,1s)	12 <i>e</i> ₁	-1,40	$4,0(3,3d_{\pi} + 0,7p_{x,v})$	1,1	94,9(12,6s)
$14e_1$	-0,53	$0,2p_{x,y}$	47,0	52,9(7,0s)	$9e_2$	-1,53	$17,0d_{\delta}$	0	83(13 <i>s</i>)
13 <i>e</i> ₃	-0,82	$15,7(14,5d_{\pi} + 1,2p_{xy})$	59,9	24,4(6,6 <i>s</i>)	12 <i>e</i> ₃	-1,63	$6,1(1,3d + 4,8p_{x,y})$	1,5	92,4(13,8s)
10 <i>e</i> ₂	-0,84	$8,8d_{\delta}$	0	91,2(0,7 <i>s</i>)	17 <i>b</i> ₂	-2,29	$29,4(19,2d_{z^2}+9,7p_z)$	8,3(3,9 <i>s</i>)	62,3(16,9 <i>s</i>)
17 <i>a</i> .	-6.67	55 6(27 6 1 2 +	5 1(1 8s)	Занят 37 7	7_{ρ}	_14 04	13(221 +	17	93.9
1741	-0,07	$+26,3p_z)$	5,1(1,05)	57,7	701	-14,04	$(4,5)(2,2a_{\pi}+2,1p_{x,y})$	1,7);;,) 0.: -
$11e_{3}$	-7,51	$72,3(71,4d_{\pi} + 0,9p_{x,y})$	11,9	15,8(2,2s)	5e ₂	-14,04	$3,3d_{\delta}$	0	96,7
$11e_1$	-8,03	$65,1(61,7d_{\pi}+3,3p_{x,y})$	10,7	24,3(2,4 <i>s</i>)	14 <i>b</i> ₂	-14,28	$27,4(1d_{z^2} + 26s)$	15,5	57,2(9,3 <i>s</i>)
8 <i>e</i> ₂	-8,12	$65,8d_{\delta}$	0	34,2	14 <i>a</i> ₁	-14,52	$23,2(0,6d_{z^2}+22,6s)$	5,3	72,8(12,2 <i>s</i>)
10 <i>e</i> ₃	-11,73	$12,7(0,3d_{\pi}+12,3p_{x,y})$	4,8	82,5(34,3 <i>s</i>)	13 <i>b</i> ₂	-15,90	$2,2(1,3d_{z^2}+$ + 0,9pz)	76,1(54,3 <i>s</i>)	21,7(14,4 <i>s</i>)
$10e_1$	-12,13	$10,1(0,7d_{\pi}+$ + 9,4 $p_{x,y}$)	6,5	83,4(24,8s)	13 <i>a</i> ₁	-15,97	$2,6(1,2d_{z^{2}}++1,3p_{z})$	84,7(61,6s)	12,6(8s)
16 <i>b</i> ₂	-12,53	$19,2(11,1d_{z^2} + 6,6p_z)$	53,3(18,7 <i>s</i>)	27,6(2,9 <i>s</i>)	4 <i>e</i> ₂	-16,00	$2d_{\delta}$	0	98(68s)
16 <i>a</i> ₁	-12,60	$20,9(15,5d_{z^2} + 4,8p_z)$	59,5(21,3 <i>s</i>)	19,6(4,7 <i>s</i>)	6e ₃	-16,01	$1,4p_{x,y}$	0	98,4(67,5 <i>s</i>)
9e ₃	-12,91	$0,3(0,3p_{x,y})$	37,0	62,6	$6e_1$	-16,24	$2,2p_{x,y}$	0	97,7(70,8s)
7 <i>e</i> ₂	-12,94	$20,4d_{\delta}$	0	79,6(25,2 <i>s</i>)	12 <i>b</i> ₂	-17,04	$17,1(0,4p_z + 16,2s)$	17,4	65,5(65,3 <i>s</i>)
$1a_{2}$	-12,94	0	0	100	$12a_1$	-17,53	21,7(21,4s)	8,8	69,4(60,6 <i>s</i>)
$9e_1$	-12,99	0,1 <i>d</i>	55,3	44,6	$11b_{2}$	-31,67	$0,3(0,1p_z)$	99,5(86,3 <i>s</i>)	0
15 <i>b</i> ₂	-13,10	$9,6(5d_{z^2} + 2,6p_z)$	12,5(3,6s)	77,9(4,8 <i>s</i>)	$11a_1$	-31,67	$0,2(0,1p_z)$	99,7(86,5 <i>s</i>)	0
$1b_1$	-13,19	0	0	100	$5e_3$	-31,96	$0, 1p_{x,y}$	0	99,9(86,3 <i>s</i>)
$6e_2$	-13,22	$6d_{\delta}$	0	94(5,4 <i>s</i>)	$10b_2$	-31,97	$1,1(0,1p_z)$	0	98,7(85,6 <i>s</i>)
$8e_3$	-13,28	$1,3d_{\pi}$	38,5	60,2	$3e_2$	-31,98	0	0	100(86,5s)
$8e_1$	-13,61	$5,6(0,7d_{\pi}+4,9p_{xv})$	29,9	64,5(4,6 <i>s</i>)	5 <i>e</i> ₁	-32,03	0	0	100(86,4 <i>s</i>)
7 <i>e</i> ₃	-13,80	$4,1(0,6d_{\pi} + 3,5p_{r,v})$	13,7	82,3(5,2 <i>s</i>)	$10a_1$	-32,06	0	0	100(85,7s)
$15a_1$	-13,97	$6,5(2,3p_z)$	20,8	72,7					

Симметрия, энергия ε (эВ) и орбитальные заселенности C_i^2 (%) AO в MO Mn₂(CO)₁₀ (симметрия D_{4d}), полученные методом ТФП B3LYP/TZVP

ставляет только 0,5 эВ из-за малого d_{π} — d_{π} -перекрытия. Последняя из этой серии МО 8 e_2 характеризует δ-связь Мп—Мп. Отсутствие расщепления для δ-связи при взаимодействии двух фраг-

ментов Mn(CO)₅ в этом случае не происходит, в отличие от σ — σ^* и π — π^* -орбиталей, что обусловлено геометрической конфигурацией молекулы, когда фрагменты Mn(CO)₅ повернуты на 45° вокруг связи Mn—Mn. В связи с этим d_{δ} -орбитали d_{xy} (Mn₁) и $d_{x^2} - d_{y^2}$ (Mn₂) имеют нуле-

вое перекрытие.

2. Ниже на 3—5 эВ (в интервале от –11,73 до –14,52 эВ) этой группы "металлических" МО лежит большая группа орбиталей, некоторые из которых образованы смешиванием (d_{z^2}) , (d_{xz}, d_{yz}) и $(d_{xy}, d_{x^2} - d_{y^2})$ АО марганца с орбиталями CO_{ax} и CO_{eq} (16b₂, 16a₁, 15b₂; 10e₃, 10e₁; 7e₂, 6e₂), другие являются практически чистыми π -орбиталями CO_{eq} (1a₂, 1b₁).

3. Следующая группа орбиталей в интервале (от –15,90 до –17,53 эВ) имеет большие вклады АО С(2*s*)-лигандов СО_{ах} и СО_{ед}. Примешивание *d*-орбиталей металла очень незначительно.

4. В интервале (от –31,67 до –32,06 эВ) лежит группа практически чистых АО О(2*s*)-лигандов CO_{ax} и CO_{eq}.

2. Анализ рентгеновских флуоресцентных спектров Mn₂(CO)₁₀. Полученные расчеты электронного строения методом ТФП использованы для интерпретации результатов рентгеноспектрального исследования электронного строения Mn₂(CO)₁₀. Ранее подобные рентгеноспектральные исследования для Mn₂(CO)₁₀ описаны в [25—28], однако в них полученные рентгеновские флуоресцентные спектры интерпретировали либо на основе сравнения с рентгеновскими флуоресцентными спектрами родственных моноядерных карбонилов металлов, например Cr(CO)₆, либо сопоставляли с теоретическими расчетами, выполненными с более грубыми приближениями.

Известно [29], что тонкая структура рентгеновских флуоресцентных спектров формируется в результате разрешенных правилами отбора электронных переходов с верхних заполненных уровней или валентной полосы на внутреннюю вакансию и передает энергетическую структуру МО комплекса. Интенсивности компонентов рентгеновских флуоресцентных спектров пропорциональны C_i^2 квадратам коэффициентов соответствующих АО. На рис. 3 приведены рентгеновские флуоресцентные MnK_{β_5} -, MnL_{α} -, OK_{α} - и CK_{α} -спектры и фотоэлектронный спектр (ФЭС) [30] для комплекса $Mn_2(CO)_{10}$. Все спектры приведены к единой шкале энергий связи электронов. Необходимые для такого приведения экспериментальные энергии связи соответствующих внутренних уровней различных атомов, входящих в молекулу, получены из [31]: $E_{C1s} = 287,50$ эВ, $E_{O1s} = 533,60$ эВ, $E_{Mn2p3/2} = 641,60$ эВ. Точность такого приведения рентгеновских флуоресцентных спектров определяется экспериментальными погрешностями определения положений линий рентгеноэлектронным и рентгеноспектральным методами и соответствует ≈ 1 эВ.

На рис. 3 приведены теоретические рентгеновские флуоресцентные спектры, построенные на основе расчетов методом ТФП (B3LYP/TZVP). Энергии рентгеновских переходов E_{ij} вычисляли как разность между энергиями валентных (ε_i) и внутренних уровней (ε_j) $E_{ij} = \varepsilon_i - \varepsilon_j$ в приближении теоремы Купманса. При построении теоретических спектров интенсивности рентгеновских переходов принимали равными $I_i \sim \sum_i |C_i|^2$, C_i — коэффициенты разложения MO(*i*)

по АО. Предполагалось, что рентгеновские линии имели лоренцеву форму полушириной 0,7— 1,0 эВ в зависимости от получаемого спектра. Теоретический спектр представлял собой сумму рассчитанных рентгеновских электронных переходов с занятых МО комплекса на внутренние 1*s*- или 2*p*-уровни.

Теоретические рентгеновские спектры, полученные на основе расчетов ТФП, в основном хорошо передают энергетическую структуру и интенсивности отдельных компонент экспериментальных флуоресцентных спектров комплекса $Mn_2(CO)_{10}$ (см. рис. 3). Исключение составляет CK_{α} -спектр, что обусловлено сложностью его экспериментального получения и отсутствием структурных особенностей.

Рис. 3. Рентгеновские флуоресцентные спектры: CK_{α} , OK_{α} , MnL_{α} , MnK_{β_5} и ФЭС [30] для $Mn_2(CO)_{10}$. Точками показаны экспериментальные спектры, пустыми кружками — расчет методом ТФП (B3LYP/TZVP)

Тонкая структура рентгеновского флуоресцентного MnK_{β_5} -спектра (электронный переход $4p \rightarrow 1s$) определяется распределением 4p-электронной плотности в валентной полосе молекулы, а форма и энергетические характеристики компонент спектра отвечают проявлению уровней лигандов с учетом возмущающего взаимодействия с АО металла [29]. Рентгеновский флуоресцентный спектр MnL_{α} (электронный переход $3d \rightarrow 2p_{3/2}$) отражает характер распределения 3d-электронов по валентной полосе. Рентгеновские флуоресцентные CK_{α} - и OK_{α} -спектры дают информацию о распределении 2p-электронной плотности углерода и кислорода лигандов СО в валентной полосе комплекса $Mn_2(CO)_{10}$. Совокупное рассмотрение этих спектров дает возможность качественной интерпретации электронного строения исследуемого соединения. Из рис. 3 видно, что верхние MO имеют преимущественный вклад *d*-электронной плотности

марганца, на что указывает основной максимум MnL_{α} -спектра, находящийся при малых энергиях связи. Этому основному максимуму соответствуют два узких максимума в ФЭС, разрешение которого много выше, чем MnL_{α} -спектра. Длинноволновая структура рентгеновских флуоресцентных спектров MnL_{α} и MnK_{β_5} определяется в основном МО лигандов, на что указывает положение максимумов CK_{α} - и OK_{α} -спектров. Более детальную информацию о формировании тонкой структуры рентгеновских флуоресцентных спектров можно установить на основе приведенных выше квантово-химических расчетов.

Рентгеновский флуоресцентный спектр MnK_{β_5} имеет ряд явных максимумов (*A*, *B*, *C*, *D*). В силу правил отбора для комплекса $Mn_2(CO)_{10}$, обладающего D_{4d} -симметрией, MnK_{β_5} -спектр формируется в результате переходов электронов с $MO a_1$ и $b_2 (p_z)$, e_1 и $e_2 (p_{xy})$ на Mn (1s). Из таблицы видно, что максимум *A* спектра MnK_{β_5} обязан своим происхождением гибридизации *p*—*d*-электронных состояний атомов марганца, которая характерна для комплексов металлов с симметрией ниже октаэдрической или имеющих прямые связи металл—металл. На большой вклад *d*-электронов в формирование валентной полосы в этой области также указывает наличие максимума *A*' спектра MnL_{α} . Присутствие небольшого примешивания валентных орбиталей лигандов CO к "металлическим" орбиталям проявляется в появлении в спектрах CK_{α} и OK_{α} незначительных по интенсивности максимумов, которые накладываются на область сателлитных линий *W*", *W*'''. Тем не менее наличие этих максимумов характеризует важный с точки зрения координационной химической связи процесс обратного донирования электронной плотности с атома металла на вакантную разрыхляющую $2\pi^*$ -орбиталь лигандов CO.

Максимумы *B*—*B*^{'''} всех рентгеновских флуоресцентных спектров соответствуют электронным переходам с большой группы MO с преимущественными вкладами орбиталей лигандов CO (генетически связанных с 5 σ - и 1 π -орбиталями свободной молекулы CO) и характеризуют σ - и π -взаимодействие атомов металла и групп CO. Принципиально важным является сопоставление рассчитанных и экспериментальных флуоресцентных спектров MnK_{β5} и OK_α. Их одинаковая структура подтверждает выводы [29], что энергетические характеристики компонент спектра MnK_{β5} определяются уровнями лигандов, слабовозмущенных взаимодействиями с AO металла. Компонент *B*' MnL_α-спектра отражает электронный переход, в основном, с MO 7*e*₂, образованной за счет δ-связи Mn—Mn (*d*_{xy}).

Природа максимумов *C* (Мп K_{β_5} -спектр) и *C'* (О K_{α} -спектр) также не является однозначной. С одной стороны, они определяются МО (13 b_2 , 13 a_1 , 12 b_2 , 12 a_1), генетически связанными с 4 σ -связью лигандов СО, с другой стороны, являются проявлением гибридизации АО групп СО (С(2s)+O(2p)).

Электронные переходы с более глубоких уровней D (Мп K_{β_5} -спектр) и E (С K_{α} -спектр) осуществляются с МО, состоящих практически из чистых O(2s) и C(2s) АО, с небольшой примесью 2p соответствующих АО.

ЗАКЛЮЧЕНИЕ

Проведен квантово-химический расчет методом функционала плотности электронного строения биядерного декакарбонила марганца $Mn_2(CO)_{10}$ в основном состоянии. Полученные результаты расчета использованы для интерпретации экспериментальных рентгеновских флуоресцентных CK_{α} -, OK_{α} -, MnL_{α} - и MnK_{β_5} -спектров. Теоретические рентгеновские спектры, полученные на основе расчетов ТФП, в основном, хорошо передают энергетическую структуру и интенсивности отдельных компонент экспериментальных флуоресцентных спектров комплекса $Mn_2(CO)_{10}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Gengeliczki Z., Pongor C.I., Sztaray B. // Organometallics. 2006. 25. P. 2553.
- 2. Machura B., Kruszynski R., Kusz J. // Polyhedron. 2007. 26. P. 1590.
- 3. Michalik S., Machura B., Kruszynski R., Kusz J. // J. Coord. Chem. 2008. 61, N 7. P. 1066.

- 4. Мазалов Л.Н., Трубина С.В., Фомин Э.С. и др. // Журн. структур. химии. 2004. 45, № 5. С. 844.
- 5. Triguero L., Pettersson L.G.M., Agren H. // J. Phys. Chem. A. 1998. 102. P. 10599.
- 6. Блохин М.А. Методы рентгеноспектральных исследований. М.: Физматгиз, 1956.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh PA. 2003.
- 8. Lee C., Yang W., Parr R.G. // Phys. Rev. 1988. B37. P. 785.
- 9. Becke A.D. // J. Chem. Phys. 1993. 98. P. 5648.
- 10. Schaefer A., Horn H., Ahlrichs R. // Ibid. 1992. 97. P. 2571.
- 11. Schaefer A., Huber C., Ahlrichs R. // Ibid. 1994. 100. P. 5829.
- 12. Hay P.J., Wadt W.R. // Ibid. 1985. 82. P. 270.
- 13. Wadt W.R., Hay P.J. // Ibid. P. 284.
- 14. Fuentealba P., Preuss H., Szentpaly L.V. // Chem. Phys. Lett. 1982. 89. P. 418.
- Martin M., Rees B., Mitschler A. // Acta Crystallogr., Sect. B.: Struct. Crystallogr. Cryst. Chem. 1982.
 38. P. 6.
- 16. Churchill M.R., Amoh K.N., Wasserman H.J. // Inorg. Chem. 1981. 20. P. 1609.
- 17. Bianchi R., Gervasio G., Marabello D. // Ibid. 2000. 39. P. 2360.
- 18. Farrugia L.J., Mallinson P.R., Stewart B. // Acta Crystallogr., Sect. B.: Struct. Sci. 2003. 59. P. 234.
- 19. Brown D.A., Chambers W.J., Fitzpatrick N.J., Rawlinson R.M. // J. Chem. Soc. A. 1971. P. 720.
- 20. Elian M., Hoffmann R. // Inorg. Chem. 1975. 14. P. 1058.
- 21. Heijser W., Baerends E.J., Ros P. // Discuss. Faraday Soc. (Symp.) 1980. 14. P. 211.
- 22. Nakatsuji H., Hada M., Kawashima A. // Inorg. Chem. 1992. **31**. P. 1740.
- 23. Mirquez A., Sanz J.F., Geliz C.M., Dargelos A. // J. Organomet. Chem. 1992. 434. P. 235.
- 24. Rosa A., Ricciardi G., Baerends E.J., Stufkens D.J. // Inorg. Chem. 1995. 34. P. 3425.
- Зарубин И.А., Шуваев А.Т., Тяжкороб В.В., Данюшин В.М. // Изв. АН СССР. Сер. физ. 1976. 40, № 2. – С. 340.
- 26. Шуваев А.Т., Зарубин И.А., Уваров В.Н. и др. // Координац. химия. 1977. **3**, № 5. С. 690.
- 27. Зарубин И.А., Шуваев А.Т., Уваров В.Н., Колобова Н.Е. // Изв. СО АН СССР. 1975. В4, № 9. С. 37.
- 28. Зарубин И.А. Рентгеноспектральное исследование электронного строения комплексных соединений марганца и железа: Дисс. ... канд. физ.-мат. наук. Ростов н/Д.: РГУ, 1983.
- 29. Нефедов В.И., Курмаев Э.З., Порай-Кошиц М.А. и др. // Журн. структур. химии. 1972. 13, № 4. С. 637.
- 30. Hu Y.F., Bancroft G.M., Tan K.H. // Inorg. Chem. 2000. 39, N 6. P. 1255.
- 31. van der Vondel D.F., Wuyts L.F., van der Kelen G.P., Bevenage L. // J. Electron Spectr. Relat. Phenom. 1977. 10, N 4. P. 389.