ЛЮДИКОВИЙ РААХЕ-ЛАДОЖСКОЙ ЗОНЫ ФЕННОСКАНДИНАВСКОГО ЩИТА - ИЗОТОПНО-ГЕОХИМИЧЕСКОЙ СОСТАВ И ГЕОДИНАМИЧЕСКАЯ ПРИРОДА

Вревский А. Б.

Аннотация

А.Б. Вревский «ЛЮДИКОВИЙ РААХЕ-ЛАДОЖСКОЙ ЗОНЫ ФЕННОСКАНДИНАВСКОГО ЩИТА - ИЗОТОПНО-ГЕОХИМИЧЕСКОЙ СОСТАВ И ГЕОДИНАМИЧЕСКАЯ ПРИРОДА»

В северном Приладожье в юго-восточной части Раахе-Ладожской зоны сочленения эпиархейского Фенно-Карельского кратона и раннепротерозойской Свекофеннской провинции для определения возраста пород сортавальской серии и характера ее соотношения с гранитоидами куполов, возраста источников области сноса и оценки времени проявления метаморфических процессов было проведено изучение изотопного состава Nd, геохимическое и изотопно-геохронологическое исследования акцессорных цирконов из гранито-гнейсов Кирьявалахтинского выступа, базальных граувакк нижней толщи и трахитов средней толщи сортавальской серии, а также, секущих вулканогенно-осадочные толщи сортавальской серии, даек плагио- и диорит-порфиров.

На основании полученных новых изотопно-геохимических данных для гранитоидов Киръявалахтинского выступа установлен их неоархейский возраст 2695±13 млн. лет и ювенильная природа (єNdT=+1.5). Гранитоиды испытали тектоно-метаморфические преобразования (реоморфизм) раннепротерозойского (сумийского) времени (2.45-2.50 млрд. лет), запечатленные в U-Th-Pb изотопной системе оболочек древних ядер кристаллов циркона.

Заложение вулканогенно-осадочного комплекса сортавальской серии происходило на гетерогенной и полихронной (3.1 -2.46 млрд. лет) континентальной коре Фенно-Карельского эпиархейского кратона. Исследование U-Th-Pb возраста детритовых цирконов из вулканомиктовых граувакк питкярантской свиты позволили принять с учетом ошибок определения возраста кластогенных цирконов минимальные конкордантные значения в интервале 1940- 1990 млн лет в качестве верхнего возрастного ограничения терригенных пород, что согласуется с оценкой максимального возраста пород сортавальской серии в целом по U-Th-Pb (SIMS) возрасту 1922±11 млн. лет диоритов "Терваоя".

Предложена тектоническая модель, согласно которой ко времени начала свекофеннской коллизии континент-островная дуга, субдукции и формирования бимодальных вулкано-плутонических комплексов юных островных дуг Пюхисалми и кислых вулканитов сланцевого пояса Саво (1920-1890 млн. лет), в перикратонной части Фенно-Карельского эпиархейского кратона уже произошло накопление вулканогенно-осадочного комплекса сортавальской серии, его метаморфизм, эрозия и несогласное перекрытие турбидитами ладожской серии.

15 рисунков, 8 таблиц

Ключевые слова: Фенноскандинавский щит, Раахе-Ладожская зона, Северное Приладожье, людиковий, сортавальская сери, Кирьявалахтинский выступ, U-Th- Pb геохронология, Sm-Nd изотопия, геохимия редкоземельных элементов.

A.B. Vrevskii. "Ludicovian of the Raahe-Ladoga zone, Fennoscandian Shield –geochemical and isotopic composition and geodynamic nature".

Based on the new isotopic-geochemical data obtained for the granitoids of the Kirjavolakhta protrusion (dome) (the north Priladozhye, the southeastern part of Raahe-Ladoga connection of the Fenno-Karelian epi-arhaean craton and the early proterozoic Svekofennian province), their neo-Archaean U-Th-Pb zircon age (2695 ± 13 Ma.) and juvenile nature (ϵ NdT=+1.5) was established. The granites have experienced tectonic-metamorphic transformations (reomorphism) in Early Proterozoic (Sumian) time (2.45-2.50 b. a.). Deposition of the Sortavala volcano-sedimentary complex took place on the heterogeneous and polychronic (3.1 -2.46 Ba.) continental crust of the Fenno-Karelian epi-arhaean craton. The age of detrital zircons from the volcanoclastic layers of the Pitkyaranta suite allowed accepting the youngest value of U-Th-Pb (SIMS) age (1958 ± 17 Ma) as the upper depositional age limit of the basal metasedimentary unites. This age corresponding with the maximum age of the basal metasediments of the Sortavala group, baized on the 1922 ± 11 Ma age of the "Tervaoya" diorite, which intrude them.

We propose a tectonic model where the formation of the Sortavala volcano-sedimentary complex, its metamorphism, erosion and overlaying by the tourbidites of the Ladoga series preceded the svecofennian initial continent-arc collision, formation of bimodal volcano-plutonic complexes of the young island arcs of Puhisalmi, the acid volcanics of the Savo schis belt (1920-1890 Ma).

15 pic., 8 tabl.

Keywords: Fennoscandian Shield, Raahe-Ladoga zone, north Priladozhye, ludicovian, Kirjavolakhta protrusion (dome), Sortavala Group, Sm-Nd isotopes, geochemistry of the rare earth elements.

Ключевые слова:

Фенноскандинавский щит, Раахе-Ладожская зона, Северное Приладожье, людиковий, сортавальская сери, Кирьявалахтинский выступ, U-Th- Pb геохронология, Sm-Nd изотопия, геохимия редкоземельных элементов

УДК 550.93:551.72(470.22)

ЛЮДИКОВИЙ РААХЕ-ЛАДОЖСКОЙ ЗОНЫ ФЕННОСКАНДИНАВСКОГО ЩИТА - ИЗОТОПНО-ГЕОХИМИЧЕСКОЙ СОСТАВ И ГЕОДИНАМИЧЕСКАЯ ПРИРОДА

А.Б. Вревский

Институт геологии и геохронологии докембрия РАН 199034, Санкт-Петербург, наб. Макарова, 2 e-mail: avrevsky@mail.ru

ВВЕДЕНИЕ

В тектоническом строении Фенноскандинавского щита северное Приладожье представляет собой юго-восточную часть Раахе-Ладожской зоны сочленения эпиархейского Фенно-Карельского кратона и раннепротерозойской Свекофеннской провинции (Рис. 1). Геологическое своеобразие северного Приладожья определяется структурно-тектоническим сочетанием изолированных выступов гранито-гнейсовых ареалов (т.н. "окаймленных гранито-гнейсовых куполов") и вулканогенно-осадочных и терригенно-флишоидных образований карелид (рис. 1). Эти супракрустальные образования на территории северного Приладожья представлены преимущественно палеопротерозойскими ассоциациями пород нижнекарельского комплекса (2300-1650 млн. лет). Здесь выделяется ятулийский (2300 – 2100 млн. лет) (кварциты, кварцитопесчаники, алевролиты, алевропелиты с горизонтами доломитов и основных метавулканитов), людиковийский (2100 – 1950 млн. лет) (вулканогенно-осадочные толщи сортавальской и питкярантской серий) и калевийский (1950 – 1920 млн. лет) (метатурбидиты ладожской серии) надгоризонты [Семихатов, 1993; Общая стратиграфическая ..., 2002; Общая....., 2013].

Многие проблемы стратиграфического расчленения и корреляции разрезов палеопротерозойских вулканогенно-осадочных комплексов Фенноскандинавского щита, в том числе и выделение людиковийских образований в северном Приладожье, традиционно решались с помощью литолого-стратиграфических методов [Светов, Свириденко, 1992; Светов и др.,1990]. Возможности этих методов для выделения преимущественно вулканогенных образований людиковийского надгоризонта, основанных на корреляции общего набора пород, фациальной принадлежности, закономерностях эволюции минерального и геохимического составов, имеют ряд важных ограничений. Прежде всего, такие ограничения связаны с большими вариациями этих признаков в пределах одной тектонической структуры в зависимости от их положения относительно палеовулканических центров. В региональном плане такая неоднородность тектонического и, соответственно, литолого-формационного строения северного Приладожья и Раахе-Ладожской зоны в целом, выражена в различиях интенсивности проявления, литолого-фациального состава и уровня эрозионного среза лавово-вулканокластических полей извержений, что вызывает естественные трудности для разработки даже идеализированного унифицированного разреза нижнего Карелия в северном Приладожье.

Отдельной проблемой геологии северного Приладожья, принципиально важной для понимания геодинамики корообразующих процессов в протерозое этой части Фенноскандинавского щита, является установление характера соотношений в пространстве и во времени людиковийских вулканогенно-осадочных комплексов с гранитоидами купольных структур.

Породы нижнекарельского комплекса, смятые в узкие синклинальные и изоклинальные складки, развиты в виде узких полос, конформно окаймляющие куполовидные структуры гранито-гнейсов. В северном Приладожье установлено около двух десятков куполовидных структур размером от 0.5 до 150 км², которые сгруппированы в двух зонах — в восточной (Питкярантская зона) и западной (Сортавальская зона), в последней наиболее крупным является Кирьявалахтинский купол (рис. 1).

Несмотря на длительную историю геологического изучения, начиная с работ И. Седерхольма [Sederholm, 1934] и П. Эскола [Eskola, 1967], до настоящего времени не существует аргументированных представлений о генезисе гранито-гнейсовых куполов и их пространственно-временных соотношениях с палеопротерозойскими (карельскими) вулканогенно-осадочными комплексами. На природу купольных структур и их взаимоотношения с породами сортавальской серии существует несколько принципиально различных представлений:

- купола являются "палингенно-анатектическими выступами гранитоидного батолита", тектоническими "бескорневыми" линзами, пластинами, блоками, выступами архейской коры Карельского кратона [Кратц, 1963; Лобач-Жученко и др., 1974 и др.];
- породы сортавальской серии являются энсиматическими образованиями (метаофиолиты и островодужные комплексы) и их соотношения с куполами являются результатом позднесвекофеннской коллизии [Иваников и др., 1997; Иваников и др., 1999; Peltonen et al., 1996; Богачев и др., 1999] и дивергентных тектонических процессов в режиме транспрессии, в результате чего породы архейского фундамента оказались совмещенными на одном структурном уровне с раннепротерозойскими супракрустальными образованиями [Морозов, 1999: Ладожская, 2020].
- гранито-гнейсы являются "окаймленными гранито-гнейсовыми куполами" [Eskola 1949], диапирами или неоднократно реоморфизованными гранитоидами архейского фундамента супракрустальных пород раннего протерозоя, выведенными на современную эрозионную поверхность в результате Свекофеннского тектогенеза [Судовиков, 1954; Григорьева, Шинкарев, 1981; Светов, Свириденко, Иващенко, 1990].

Столь разнообразные представления о характере соотношений гранитоидов куполов с вулканогенно-осадочными образованиями сортавальской серии определили появление принципиально различных моделей геодинамического развития области сочленения континентальной коры эпиархейского Фенно-Карельского кратона и протерозойской ювенильной коры Свекофеннской провинции.

Ряд исследователей [Lahtinen et al., 2015; Геология и петрология, 2000; Kohonen, 1995], предполагая синхронность и формационно-геохимическое подобие пород сортаваальской серии со свекокарельскими комплексами зоны Тампере и офиолитами Оутокумпу и Йормуа юго-восточной Финляндии, рассматривают Раахе-

Ладожскую зону в геодинамическом плане как результат свекофеннской коллизии энсиматической островной дуги, задугового бассейна и края континента.

В то же время, существуют представления, основанные на литологоформационном анализе, о протоплатформенной природе супракрустальных образований сортавальской серии, состоящей из продуктов эпиконтинентального мелководного осадконакопления и платобазальтового траппового вулканизма, и их стратиграфической корреляции с протоплатформенными людиковийскими образованиями заонежской свиты Онежской структуры южной Карелии [Светов, Свириденко, 1992].

В этой связи при расчленении и корреляции нижнекарельских вулканогенноосадочных комплексов северного Приладожья и идентификации их геодинамической природы особое значение приобретают методы изотопной геохронологии, позволяющие проводить сопоставление латерально разобщенных геологических комплексов, часто связанных с различными эндогенными процессами и источниками в коре и мантии, и устанавливать объективные критерии их соотношений во времени. По сравнению с палеопротерозойскими образованиями Раахе-Ладожской зоны на территории южной Финляндии для вулканогенно-осадочных толщь сортавальской серии и гранитоидов купольных структур в северном Приладожье существует явный дефицит изотопногеохронологических данных. Есть только одно определение U-Pb возраста гранитоидов Питкярантско-Койринойского купола [Мыскова и др., 2012] и одно (1663±19 млн. лет) для вулканитов сортавальской серии [Геология и петрология..., 2000; Балтыбаев, Левченков, Левский, 2009]. На территории Финляндии в пределах Раахе-Ладожской зоны U-Pb изотопный анализ обломочных цирконов из осадков калевия (аналогов ладожской серии Приладожья) с использованием масс-спектрометра вторичных ионов архейском протерозойском свидетельствуют об И источниках осадконакопления. Нижняя возрастная граница калевийских осадков определена по минимальному значению кластогенного циркона (1907 ± 15 млн. лет) и составляет в пределах ошибки 1.9 млрд. лет [Huhma et al., 1991; Claesson et al., 1993], что несколько моложе принятому в нашей стране возрасту калевийского надгоризонта (1950 – 1920 млн. лет) [Семихатов, 1993; Общая стратиграфическая ..., 2002; Общая......, 2013] и минимального значение возраста детритового циркона 1918 ± 14 млн. лет из метапесчаников ладожской серии Мыскова И др., 2012]. 1). осадконакопления ладожской серии фиксируется становлением группы малых интрузий комплекса Импиниеми с возрастом 1874±13 млн лет [Богачев, Иваников, Козырева и др. 1999].

Результаты исследований, приведенные в настоящей статье, восполняют дефицит изотопных данных для Северного Приладожья и позволяют уточнить представления о возрасте, изотопном составе и источниках вулканогенно-осадочного комплекса сортавальской серии и гранитоидов Кирьявалахтинского выступа и на этой основе дать оценку геодинамической природе этих образований.

АНАЛИТИЧЕСКИЕ МЕТОДЫ

Содержания породообразующих оксидов в породах определены методом РФА по стандартной методике, концентрации редких (Li, Be, Sc, Cu, Zn, Ga, Y, Nb, Cs, Hf, Ta,

Th, U) и редкоземельных элементов (P3Э) — методом ICP-MS в Центральной аналитической лаборатории ВСЕГЕИ (Санкт-Петербург). Масс-спектроскопические измерения проводились трижды с использованием Rb, Re и In в качестве внутренних стандартов. Ошибка определения элементов Th, U, Lu, Yb, Er и Dy методом ICP-MS оценивается в 10–15%, для остальных редких земель, Ti, Zr, Sr, Y не более 5%.

Sm-Nd изотопно-геохимические исследования выполнены в Институте геологии и геохронологии докембрия PAH (г. Санкт-Петербург). Навески около 100 мг растертых в пудру образцов, к которым был добавлен смешанный изотопный индикатор ¹⁴⁹Sm-¹⁵⁰Nd, разлагались в тефлоновых бюксах в смеси HCl+HF+HNO₃ при температуре 110°C. Sm и Nd были выделены с помощью экстракционной хроматографии на колонках LN-Spec (100–150 меш) фирмы Eichrom. Изотопные составы Sm и Nd измерялись на многоколлекторном масс-спектрометре TRITON TI в статическом режиме. Измеренные отношения ¹⁴³Nd/¹⁴⁴Nd нормализованы к отношению ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219 и приведены к ¹⁴³Nd/¹⁴⁴Nd = 0.511860 в Nd стандарте La Jolla. Уровень холостого опыта за время исследований составил 0.03–0.2 нг для Sm, 0.1–0.5 нг для Nd. Точность определения концентраций Sm и Nd составила \pm 0.5%, изотопных отношений ¹⁴⁷Sm/¹⁴⁴Nd = \pm 0.5%, ¹⁴³Nd/¹⁴⁴Nd = \pm 0.005% (2 σ).

При расчете величин ϵ Nd(T) и модельных возрастов TNd(DM) использованы современные значения однородного хондритового резервуара (CHUR) по [Jacobsen, Wasserburg, 1984] (143 Nd/ 144 Nd = 0.512638, 147 Sm/ 144 Nd = 0.1967) и DM по [Goldstein, Jacobsen, 1988] (143 Nd/ 144 Nd = 0.513151, 147 Sm/ 144 Nd = 0.2137). Для учета возможного фракционирования Sm и Nd во внутрикоровых процессах для кислых и средних вулканитов рассчитаны двустадийные Nd-модельные возрасты TNd(DM-2st) [Keto, Jacobsen, 1987] с использованием среднекорового отношения 147 Sm/ 144 Nd = 0.12 [Taylor, McLennan, 2009].

Акцессорные цирконы выделены в минералогической лаборатории Института геологии и геохронологии докембрия РАН (Санкт-Петербург) по стандартной методике с использованием тяжелых жидкостей. U-Th-Pb датирование цирконов осуществлялось на ионном микрозонде SHRIMP-II в Центре изотопных исследований ВСЕГЕИ им. А.П. Карпинского (Санкт-Петербург). Измерения U-Pb отношений на SHRIMP-II проводились по методике, описанной в [Williams, 1998]. Интенсивность первичного пучка ионов кислорода составляла 4 нА, а диаметр пятна (кратера) – 18 мкм. Обработка полученных данных осуществлялась с использованием программы SQUID (Ludwig, 2000). U-Pb отношения нормализовались на значение 0.0668, приписанное стандартному циркону ТЕМОRA [Black et al., 2003]. Погрешности единичных анализов приведены на уровне 1σ, а погрешности возрастов на уровне 2σ.

Так как исследование изотопного состава детритового циркона с использованием дорогостоящей (более 2.5 тыс. руб. за аналитическую точку) технологии ионного микрозонда SHRIMP-II не позволило выполнить минимальные статистические требования по количеству аналитических точек в детритовом цирконе (≥ 50 конкордантных точек) для количественного определения времени осадконакопления, то при **качественной** оценки возраста и состава протолита в источнике сноса терригенного материала использовались аналитические данные с минимальным процентом дискордантности (<10%). В работе из рассмотрения так же не исключались

дискордантные значения (D>10%) ²⁰⁷Pb/²⁰⁶Pb возраста циркона из магматических комплексов, так как они были использованы в сочетании с характером нормированного распределения РЗЭ для генетической интерпретации происхождения и эволюции расплавов (тип протолита, процессы контаминации и метаморфизма).

Содержания РЗЭ в цирконе определялись на микрозонде Cameca IMS-4f в Институте микроэлектроники и информатики РАН (Ярославль) по методике [Федотова и др., 2008] в тех же точках, в которых была изучена U-Pb изотопная система на ионном микрозонде SHRIMP-II. Диаметр анализируемого участка не превышал более 15–20 мкм, относительная ошибка определения концентраций для большинства элементов не превышала 10–15%, порог обнаружения в среднем составлял 10 мг/т. Содержание РЗЭ нормировалось на состав примитивной мантии [МсDonough, Sun, 1995]. Символы названий минералов приведены по [Whitney, Evans, 2010].

В вулканогенно-осадочных образованиях сортавальской серии Северного Приладожья, несмотря на метаморфические преобразования высокотемпературной амфиболитовой фации, достаточно хорошо сохранились различные структурнотекстурные коматиитовых и толеитовых вулканитов и туфов, кислых и средних вулканитов, а также терригенных пород, что позволяет использовать при таксономической идентификации пород кайнотипную терминологию.

ОСНОВНЫЕ ЧЕРТЫ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ

В Сортавальской зоне развития гранитоидных куполов наиболее полные и представительные разрезы вулканогенно-осадочного комплекса сортавальской серии расположены в северо-восточном обрамлении Кирьявалахтинского выступа в районе пос. Харлу – оз. Тенъярви (рис. 1).

В современном эрозионном срезе Кирьявалахтинский выступ представлен биотитовыми плагио-гнейсами и гранито-гнейсами, как правило, в различной степени мигматизированными. Породы имеют грубо полосчатую текстуру, обусловленную чередованием более меланократовых полос по составу варьирующих от кварцевых диоритов до плагиогранитов и лейкократового материала плагио- и плагиомикроклинового состава, причем микроклин является наложенным и более поздним по отношению к общей гнейсовидности пород.

Вулканогенно-осадочные образования сортавальской серии развиты в обрамлении купольных структур в виде толщ мощностью от нескольких сот метров до первых километров моноклинального строения в разной степени смятых в изоклинальные складки субмеридионального простирания. Породы сортавальской серии имеют крутые (70-90°) и иногда опрокинутые пространственные соотношения с гранито-гнейсами куполов.

Несмотря на высокую степень регионального метаморфизма, отвечающего амфиболитовой фации, вулканогенно-осадочные породы, как правило, сохраняют первичные литологические признаки. В излившихся вулканитах хорошо различимы реликты подушечной, кластолавовой, миндалекаменной и порфировой текстур лавовых потоков, в вулканогенно-осадочных образованиях - бомбовые текстуры туфов, слоистые текстуры туффитов и терригенных пород. Эти особенности строения супракрустальных пород позволили провести детальную палеовулканологическую реконструкцию динамики и типов вулканических пароксизмов людиковийского вулканизма этой части

северного Приладожья, связанного со «щитовым Кирьявалахтинским платобазальтовым стратовулканом» [Светов и др., 1990; Светов, Свириденко, 1992].

Более поздние исследования существенно уточнили представления о составе и происхождении вулканогенно-осадочных комплексов сортавальской серии, которые были разделены на четыре свиты принципиально отличающихся формационным и изотопно-геохимическим составом и отвечающих последовательным эпизодам вулканической активности [Вревский, Матреничев, 2007; Матреничев, Матреничев, 2010].

Нижняя вулканогенно-осадочная <u>питкярантская</u> свита представлена СЛОИСТЫМИ кремнисто-карбонатными перекрытыми терригенными породами, тонкозернистыми углеродистыми алевролитами и вулканомиктовыми граувакками, которые находятся в тектонических соотношениях с гранитоидами Кирьявалахтинского купола. Общая мощность терригенных пород составляет не менее 250 м. Выше располагается горизонт граувакк и ааркозовых песчаников, мощностью 4-6 м, преобразованных в биотитовые микрогнейсы с большим количеством линзовидных прослоев кварцито-песчаников и кварц-полевошпатовых гравеллитов. Осадочные породы нижней толщи прорваны маломощными (2-10 м) субвулканическими дайками и интрузиями плагиогранит-порфиров, фельзит-порфиров и диоритов-порфиров (рис. 2). Литологическую последовательность питкярантской свиты завершает вулканогенная пачка мощностью до 150 м метаморфизованных толеитовых базальтов с прослоями лапиллевых и кристаллокластических туфов. Содержание и соотношения редких элементов в толеитовых базальтах характеризуются плоским спектром распределения редкоземельных элементов с небольшим обогащением ЛРЗЭ ($[Ce/Yb]_N = 1.2 - 3.5$) при содержании тяжелых редкоземельных элементов на уровне 10-14 нормированных единиц (рис. 3 а)

Вышезалегающая <u>петсеваарская свита</u> в основании разреза представлена толщей переслаивания аркозовых кварцито-песчаников с магнетитом, углеродсодержащих алевролитов и аграувакк мощностью около 40 м. Терригенная толща перекрыта несколькими лавовыми потоками подушечных толеитовых базальтов общей мощностью 200-220 м. По сравнению с основными вулканитами питкярантской свиты для базальтов петсеваарской свиты характерна обогащенность MgO = 7.5 - 11% и обедненность $TiO_2 = 0.9 - 1.2\%$ (табл. 1). Они характеризуются спектром распределения РЗЭ, с небольшим обеднением ЛРЗЭ ([Ce/Yb]_N = 0.5 – 0.8), при содержании тяжелых на уровне 8-8.5 нормированных единиц (рис. 3а).

На породах петсеваарской свиты с признаками размыва и угловым несогласием залегают породы <u>свиты харлу</u>, разрез которой начинается с пачки мощностью до 30 м аркозовых песчаников с линзами гравеллитов и туфоконгломератов с гальками базальтов. Терригенные породы перекрыты толщей вулканитов, варьирующих по составу от трахибазальтов до трахиандезитов и трахитов лавовой и пирокластической (бомбовые туфы) (табл. 1, рис. 4) фаций общей мощностью 250 - 500 м. Вулканиты свиты харлу обогащены ЛРЗЭ ([Ce/Yb] $_{\rm N}$ = 4 – 5) при содержании тяжелых лантаноидов на уровне Yb = 9 – 14 нормированных единиц (рис. 36, 5).

Завершает разрез сортавальской серии в изученном районе вулканогенноосадочная толща (*свита тенъярви*) метаморфизованных лав и туфов коматиитов, коматиитовых базальтов и базальтов (табл. 1). Отдельные потоки коматиитовых лав имеют мощности от 0.6 до 1.2 м и часто разделяются между собой прослоями кровельных лавобрекчий или кластолав и горизонтами слоистых туфов. В кластолавах встречаются обломки миндалекаменных коматиитов. Латеральные текстурные различия коматиитов проявляются в замещении коматиитов лавовой фации на слоистые туфы с высоким содержанием карбонатов. Базальты свиты тенъярви отличаются от вулканитов питкярантской и петсеваарской свит повышенной щелочностью, высокими содержаниями ЛРЗЭ ([Ce/Yb] $_{\rm N}$ = 2 - 4) и ТРЗЭ (Yb = 10 - 14 нормированных единиц). Содержание лантаноидов в коматиитах характеризуются обедненостью ЛРЗЭ ([Ce/Yb] $_{\rm N}$ = 0.7 - 1.1) при концентрации ТРЗЭ на уровне 4 - 8 нормированных единиц (рис. 3в). Коматиитовые базальты близки к базальтам по содержанию ЛРЗЭ ([Ce/Yb] $_{\rm N}$ = 2 - 4), но имеют более высокое содержание ТРЗЭ.

РЕЗУЛЬТАТЫ U-TH-РВ (SIMS) ДАТИРОВАНИЯ ЦИРКОНА, ЕГО ГЕОХИМИЧЕСКИЙ СОСТАВ И SM-ND ХАРАКТЕРИСТИКА ПОРОД

Для определения возраста пород сортавальской серии и характера ее соотношения с гранитоидами куполов, возраста источников области сноса и оценки времени проявления метаморфических процессов было проведено изучение изотопного состава Nd, геохимическое и изотопно-геохронологическое исследования акцессорных цирконов из гранито-гнейсов Кирьявалахтинского выступа, базальных граувакк нижней толщи и трахитов средней толщи сортавальской серии, а также, секущих вулканогенно-осадочные толщи сортавальской серии, даек плагио- и диорит-порфиров.

Гранитоиды Кирьявалахтинского купола. Из среднезернистых плагиомикроклиновых лейкократовых гранито-гнейсов (табл. 2) вблизи тектонического контакта с породами сортавальской серии в районе пос. Харлу была отобрана проба (обр. 8003 в) массой около 5 кг. Морфологические особенности выделенной популяции циркона позволили разделить кристаллы на несколько разновидностей, среди которых наиболее распространенными являются короткопризматические, бледно коричневые, хорошо ограненные кристаллы со следами растворения и темно коричневые, хорошо ограненные короткопризматические кристаллы, так же со следами растворения. Все цирконы в катодолюминесценции (КЛ) характеризуются сложным внутренним строением и содержат ядро, обрастающее одной или более наружными оболочками более темного циркона (рис. 6). На диаграмме с конкордией, для магматического циркона из ядерных частей кристаллов, положение 11 аналитических точек изотопного состава U-Th-Pb (SIMS SHRIMP II) (табл. 2) апрокрисимируется дискордией, верхнее пересечение которой с конкордией отвечает возрасту 2695±13 млн. лет (СКВО=1.6) (рис. 7а). Полученное значений возраста более чем на 30 млн. лет древнее возраста 2659±15 млн. лет циркона из гранито-гнейсов Питкярантско-Койринойского купола [Мыскова и др., 2012].

Время метаморфических изменений гранитов, выраженных в появлении темных кайм обрастания призматических ядерных частей циркона, было оценено по 5 аналитическим точкам изотопного состава, образующих дискордию с верхним пересечением 2479±27 млн. лет (СКВО=0.87) (рис. 76, табл. 2).

Содержание и нормированное распределение РЗЭ в цирконе из ядерных частей и кайм обрастания имеют принципиальные отличия. Для ядерных частей распределение в целом соответствует «магматическому» типу распределению РЗЭ [Hoskin, Schaltegger, 2003; Belousova et al., 2006; Федотова и др., 2008], с характерными положительной Се-и отрицательной Eu- аномалиями (Ce/Ce*= 2.85-5.52; Eu/Eu*= 0.46-0.56) и фракционированным трендом нормированного распределения средних и тяжелых РЗЭ с (Sm/Yb) $_{\rm N}$ отношением 0.04-0.02 (рис. 8, табл. 3).

Широкие темные каймы призматических кристаллов в сравнении с магматическими ядрами отчетливо обогащены Y и P3Э, характеризуются отсутствием Се аномалии (Ce/Ce* =0.91--0.98) и слабо выраженной отрицательной Eu аномалией (Eu/Eu*= 0.45-0.96). Для кайм характернл менее выраженное фракционированное распределение тяжелых лантаноидов ([La/Gd] $_{\rm N}$ = 0.11-0.41 (рис. 8, табл. 3), что свидетельствует об их метаморфической природе (Hoskin, Schaltegger, 2003; Belousova et al., 2002, 2006; Федотова и др., 2008).

Результаты Sm-Nd изотопных исследований гранито-гнейсов Кирьявалахтинского купола (табл. 4), также свидетельствуют об их ювенильной природе (ϵ Nd = +1.5) и позднеархейском времени отделения протолита от деплетированной мантии (DM) (TNdDM = 2.85 млрд. лет) (табл. 4).

Вулканокластические граувакки нижней толщи питкярантской свиты сортавальской серии. Для определения минимального возраста заложения бассейна осадконакопления сортавальской серии была опробована базальная терригенная пачка питкярантской свиты мощностью более 18 м тонкополосчатых сланцев полевошпатового и кварц полевошпатового состава с реликтами псаммитовой структуры. По химическому составу породы относятся к грауваккам (табл. 1).

Общее количество акцессорного детритового циркона, выделенного из пробы массой около 2 кг граувакк (обр. 40301в, 6703) значительно меньше, чем было выделено из гранитов. Детритовый циркон из граувакк различается по цвету и морфологии. Преобладают зерна в той или иной степени окатанные, а также обломочные кристаллы. Значительно меньше субидиоморфных и идиоморфных кристаллов с пирамидальными и дипирамидальными окончаниями. Внутреннее строение зерен циркона по данным катодолюминесцентного изучения довольно разнообразно, но в большинстве зерен в той или иной степени проявлена осцилляционная зональность (рис. 9).

Изучение изотопного состава детритового циркона их граувакк, проведенное в 20 аналитических точках, показало мультимодальное распределение возрастов, отраженное на диаграмме с конкордией и на графике относительной вероятности распределения ²⁰⁷Pb/²⁰⁶Pb возрастов (рис. 10, табл. 5). В целом анализ совокупной выборки из 17 конкордантных значений возраста с процентом дискордантности меньше10% позволил достаточно аргументировано предположить их связь с определенными породными комплексами и эндогенными событиями. Так наиболее многочисленная (>75%) группа циркона с возрастом по ²⁰⁷Pb/²⁰⁶Pb в интервале 2600-2800 млн. лет совпадает в пределах ошибок с U-Th-Pb возрастом 2695±13 млн. лет циркона из гранитов Кирьявалахтинского выступа. Детритовые цирконы с возрастом в интервале 3110-3160 млн. лет в граувакках питкярантской свиты указывают на присутствие в области размыва для терригенных толщ основания разреза сортавальской

серии не только неоархейских гранитоидов, но и мезоархейских источников, аналогичных ТТГ комплексам Водлозерского блока Фенно-Карельской области Фенноскандинавского щита.

Обе группы архейского циркона характеризуются магматическим типом (Hoskin, Schaltegger, 2003; Belousova et al., 2002, 2006; Федотова и др., 2008) нормированного распределения P3Э с характерными положительной Се-ой (Се/Се*ср.=2.90) и отрицательной Eu-ой (Eu/Eu*cp.=0.29) аномалиями и фракционированным трендом нормированного распределения средних и тяжелых P3Э со средним значением отношения $Sm/Yb)_N = 0.05$ и (La/Gd) $_N = 0.07$ (рис. 11, табл. 6).

Два детритовых циркона с минимальными конкордантными значениями возраста по 207 Pb/ 206 Pb — $1958\pm17\,$ млн лет (D= -5%) и $1973\,\pm21\,$ (D= 0%) (табл. 5) возможно отражают вклад наиболее молодых пород в источники сноса терригенных пород, что позволяет принять эти значения в качестве минимального возрастного ограничения терригенных осадков питкярантской свиты, что хорошо соотносится с оценкой верхней возрастной границы пород сортавальской серии в целом по U-Th-Pb (SIMS) возрасту $1922\pm11\,$ млн. лет диоритов "Терваоя" [Матреничев, Вревский, Сергеев и др. 2006], которые прорывают контакт пород сортавальской и ладожской серий.

Свекофеннские тектоно-термальные события (1.92-1.85 млрд. лет) практически не отразились в U-Pb изотопной системе циркона из гранитоидов Кирьявалахтинского выступа и только в популяции детритовых цирконов из граувакк питкярантской свиты получены значения возраста по 207 Pb/ 206 Pb в пределах 1800-1875 млн. лет в двух зернах с метаморфическими характеристиками содержания и распределения РЗЭ (Ce/Ce*=0.97-0.89; Eu/Eu*= 0.85-0.58; [Sm/Yb]_N-0.56-1.00) (рис. 11, табл. 6).

Дайки плагио- и диорит-порфиров. Базальная терригенная пачка питкярантской свиты прорвана маломощными (2-10 м) субвулканическими дайками плагио-порфиров (обр. 40301-а) и диорит-порфира (обр.16399) (табл. 7). Из них была выделена небольшая популяция циркона (рис. 13, 14), в которой пригодными для исследования U-Th-Pb изотопной системы и геохимии РЗЭ оказалось только 6 зерен. Для ядерных частей кристаллов циркона, имеющих "магматический" характер нормированного распределения РЗЭ (Ce/Ce*=0.51-2.12; Eu/Eu*= 0.10-0.09; [Sm/Yb]_N=0.04; [La/Gd]_N=0.03 —0.66) (рис. 13а, табл. 8), получены неоархейские конкордантные (D=2% и -3%) значения по ²⁰⁷Pb/²⁰⁶Pb возраста (2827±19 и 2767±7 млн. лет) (рис. 12, точки 1.1 и 3.1), что, вероятно, свидетельствует о происхождении первичных расплавов плагио- и диорит-порфиров из протолита в архейской континентальной коре. Этот источник фиксируется так же начальным изотопным составом неодима (єNdT =-4.8 и -2.6) и модельном возрасте (TNdDM) 2796 и 2612 млн. лет (табл. 4) плагио- и диорит порфиров.

Дискордантное (D=11%) значение возраста по 207 Pb/ 206 Pb и конкордантное (D=5%) значение 2247±23 млн. лет, полученное для краевой части циркона из диоритпорфира, по всей вероятности связано с изменениями в изотопной системе циркона при наложенном метаморфизме, о чем свидетельствуют особенности состава и нормированного распределение P39 - Ce/Ce*= 0.33, Eu/Eu*= 0.1, (Sm/Yb) $_{\rm N}$ =0.134, (La/Gd) $_{\rm N}$ =0.44 (рис. 13 а, табл. 8). Вероятно, эти же наложенные тектоно-термальные процессы отразились в U-Th-Pb изотопной системы в краевых частях двух кристаллов

циркона с дискордантными значениями возраста по 207 Pb/ 206 Pb в интервале1890-1910 млн. лет.

Трахиандезибазальты свиты харлу сортавальской серии. Из образца (обр. 14399) бомбовых туфов трахиандезибазальтов (рис. 4) была выделена популяция циркона из которой пригодными для изучения U-Th-Pb изотопной системы и состава РЗЭ оказалось 9 кристаллов различной морфологии и внутреннего строения (рис. 14). Полученные значения изотопного возраста циркона по ²⁰⁷Pb/²⁰⁶Pb имеют бимодальное распределение - 2700-2850 млн. лет и 1800 -2050 млрд. лет (табл. 7, рис. 15). Морфология и возраст (2718-2782 млн. лет) ядерных частей в короткопризматических цирконах указывает на их ксеногенную природу, связанную с плавлением корового протолита неоархейского возраста. Так как в популяции циркона присутствуют также и кристаллы с значениями дискордантными возраста в интервале 2000-2130 млн. лет, то, вероятно, первичные расплавы трахиандезибазальтов могли быть контаминированы нижележащими ятулийскими образованиями. Одно зерно циркона с конкордантным (D=-3%) значением возраста 1837±70 млн. лет характеризуется метаморфическими характеристиками содержания и распределения РЗЭ (Ce/Ce*=1.6; Eu/Eu*= 0.69; $[Sm/Yb]_N=0.13$, $[La/Gd]_N=0.49$) (рис. 136, табл. 8), что вероятно можно связать со свекофеннскими тектоно-термальными событиями. Источником первичных расплавов субщелочных вулканитов свиты харлу вероятно являлась архейская континентальная литосфера, что запечатлено в их начальном изотопном составе (єNdTcp= - 4.36) и неоархейском модельном возрасте (TNdDM) 2606 млн. лет (табл. 4).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В докембрийской геологической эволюции Земли переход от архея к протерозою ознаменовался этапом (2.5-2.4 млрд. лет) заложения глобальной системы континентального рифтогенеза суперконтинента Кенорленд (Гуронская супергруппа Канадского щита, супергруппы Трансвааль и Грикваленд Капваальского кратона, Карельская эонотема Балтийского щита), тектоническая природа которого определялась плюмовой мантийной геодинамикой [Puchtel I. S. et al., 1999]. Для Карело-Кольского эпиархейского кратона палеопротерозойский рифтогенез проявился в нескольких типах интракратонных структур, отличающихся временем заложения, особенностями литолого-формационного состава и тектонического строения.

К таким структурам относятся в первую очередь две наиболее крупных и протяженных системы рифтогенных структур Фенно-Карельской (Киттиля - Пана-Куолоярви – Лехта – Ветреный пояс) и Кольско-Норвежской (Пасвик-Полмак – Печенга - Имандра-Варзуга) областей Фенноскандинавского щита с мощным и разнообразным мантийным и корово-мантийным магматизмом. Кроме того, палеопротерозойский тектогенез Карело-Кольского эпиархейского кратона проявился в формировании внутриконтинентальных бассейнов (Онежская мульда) с развитием платформенного осадконакопления и платобазальтового магматизма.

Своеобразие тектонического строения северного Приладожья позволяет выделить этот регион в качестве еще одного типа палеопротерозойского перикратонного рифтогенеза, общее геологическое и тектоническое строение которого во многом подобно архейским гранит-зеленокаменным областям древних кратонов.

Примечательно, что дискуссии о характере взаимоотношений верхнекарельских (людиковийских) вулканогенно-осадочных структур C гранитоидами куполов противоречивыми аналогичны представлениями 0 геодинамических супракрустальных комплексов зеленокаменных взаимоотношениях окружающими их тоналит-трондъемит-гранитными (ТТГ) комплексами [см. например Herzberg, Rudnick, 2012; Van Kranendonk M. et al., 2007; Taylor, McLennan. 2009 p].

Практически синхронно с поздними стадиями (2.0 – 1.92 млрд. лет) развития интракратонного рифтогенеза Карело-Кольского эпиархейского кратона происходили заложение и сложная тектоническая эволюция свекофеннид вдоль его юго-восточной окраины. Благодаря многолетним исследованиям финских геологов [Hietanen, 1975, Gaal, 1986; Lahtinen et al., 2015; Nironen, 1997, 1989, 2017; Kara et al., 2018 и др.] геодинамические модели области сочленения эпиархейского кратона со Свекофеннской областью наиболее аргументированно описываются в терминах аккреционноколлизионных геодинамических механизмов формирования ювенильной коры в цикле Уилсона. В основе этих представлений лежит геодинамическая интерпретация литолого-формационного и изотопно-геохимического состава свекофеннских вулканоплутонических комплексов южной Финляндии. Ключевыми объектами в таких моделях является офиолитовые комплексы Иормуа и Оутокумпу с возрастом ≤1.94 млрд. лет [Peltonen et al., 1998], которые обычно интерпретируются как обдуцированные на кратон реликты океанической коры начальных стадий раскрытия т.н. «людиковийского океана» или окраинного рифта [Lahtinen et al., 2015]. Присутствие в клинопироксенитах Иормуа нескольких групп циркона как архейского возраста от 2747±8 до 3206±3 млн лет, так и палеопротерозойского (2030 – 1940 млн. лет) объясняется участием архейской субконтинентальной литосферной мантии на начальной стадии раскрытия океана [Peltonen, 2003; Lahtinen, 2012; Lahtinen et al., 2015]. В дальнейшем, вплоть до 1.83 млрд, лет, ювенильное корообразование свекофеннид и их тектоническая эволюция в рамках этим моделей определялась разнонаправленной субдукцией океанической коры, формированием юных и зрелых островных дуг, их аккрецией и коллизией. В итоге менее чем за 100 млн. лет был сформирован основной объем континентальной коры аккреционного орогена мощностью не менее 40 км и протяженностью в широтном (современном) направлении более чем на 400 км.

Исходя их общих теоретических и экспериментальных петрологических представлений о процессах генерации вулкано-плутонических известково-щелочных комплексов в надсубдукционнных геодинамических обстановках (10-40 % частичное плавление океанического слэба в различных РТµ условиях) [например Annen et al., 2006] можно констатировать, что амплитуда раскрытия людиковийского океана, при теоретической мощности океанической коры не менее современной (т.е. ≥ 5-7 км), составляла более 2000 км. Таким образом, очевидно, что скорость, интенсивность и масштаб корово-мантийных процессов ювенильного корообразования свекофеннид имели принципиально иную геодинамическую природу по сравнению с интракратонными рифтогенным корообразованием на эпиархейском кратоне, в том числе в его перикратонной части северного Приладожья.

Полученные новые изотопно-геохимические данные свидетельствуют, что формирование вулканогенно-осадочного комплекса сортавальской серии (≥1920 млн

лет) происходило в условиях континентального рифтогенеза на краю эпиархейского кратона вслед за суйсарским платобазальтовым вулканизмом (1.95-1.99 млрд. лет) в Онежской структуре Фенно-Карельской области и ферро-пикритами свиты матерт (1980±34 млрд. лет) Печенгской структуры Кольско-Норвежской области Фенноскандинавского щита. Палеопротерозойский интракратонный рифтогенез Фенноскандинавского щита был обусловлен, как полагают некоторые исследователи [Puchtel I. S. et al., 1999], эволюцией долгоживущего (2.45- 1.9 млрд. лет) обширного мантийного плюма.

Присутствие неоархейского протолитового циркона в трахиандезибазальтовых туфах и дайках плагио- и диорит порфиров нео- и мезоархейского (~3.1, 2.6-2.8 млрд. лет) и палеопротерозойского (сумийского) (2.47 -2.52 млрд. дет) возраста и кластогенного циркона (2.6-2.8 млрд. лет) в вулканомиктовых граувакках питкярантской свиты сортавальской серии свидетельствует, что неоархейские гранитоиды являлись не только фундаментом супракрустальных толщ сортавальской серии, но и служили одним из источников терригенного материала в области размыва при накоплении базальных граувакк сортавальской серии. Кроме того, еще одним источником сноса вероятно служили мезоархейские ТТГ комплексы Водлозерского блока Фенно-Карельского эпиархейского кратона

Наиболее молодой источник терригенного материала для граувакк питкярантской свиты представлял собой результат переотложения незрелых продуктов размыва вулканитов раннелюдиковийского возраста (1958-1973 млрд. лет). Присутствие кластогенного циркона с U-Th-Pb возрастом 2460 -2500 млн. лет в осадках ладожской серии [Мыскова и др., 2012] свидетельствует, что гранитоиды куполов длительное время, вплоть до калевия, были одним из источников сноса терригенного материала в палеобассейн Северного Приладожья.

Исследование U-Th-Pb возраста детритовых цирконов из вулканомиктовых граувакк питкярантской свиты позволили принять с учетом ошибок определения возраста кластогенных цирконов минимальные конкордантные значения в интервале 1940- 1990 млн лет в качестве вероятного временного интервала окончания процессов накопления терригенных пород, что согласуется с оценкой максимального возраста пород сортавальской серии в целом по U-Th-Pb (SIMS) возрасту 1922±11 млн. лет диоритов "Терваоя" [Матреничев, Вревский, Сергеев и др. 2006], которые прорывают контакт пород сортавальской и ладожской серий.

Полученные данные позволяют считать, что ко времени начала свекофеннской субдукции и формирования бимодальных вулкано-плутонических комплексов юных островных дуг Пюхисалми и кислых вулканитов сланцевого пояса Саво (1920-1890 млн. лет) [Lahtinen, 2012; Kousa et al., 1994], в перикратонной части Фенно-Карельского эпиархейского кратона на коре континентального типа уже произошло накопление вулканогенно-осадочного комплекса сортавальской серии, его метаморфизм, эрозия и несогласное перекрытие турбидитами ладожской серии. Последние, по крайней мере, на 10 млн. лет древнее граувакковых турбидитов Сланцевых поясов Тампере и Хамеелинна, содержащих наиболее молодой кластогенный циркон с U-Pb возрастом 1907±15 [Huhma et al., 1991].

выводы

На основании полученных новых геологических и изотопно-геохимических данных для вулканогенно-осадочных пород сортавальской серии и гранитоидов Киръяволахтинского выступа можно сделать следующие выводы.

Гранитоиды Кирьявалахтинского выступа имеют неоархейский возраст 2695±13 млн. лет, ювенильную природу (єNdT=+1.5) и испытали тектоно-метаморфические преобразования (реоморфизм) раннепротерозойского (сумийского) времени (2.45-2.50 млрд. лет), запечатленные в U-Th-Pb изотопной системе оболочек древних ядер кристаллов циркона. В изученных гранитоидах воздействие свекофеннского тектонотермального события (1850-1890 млн. лет) практически не отразились в U-Th-Pb изотопной системе циркона и Sm-Nd изотопной системе пород (TNdDM= 2.86 млрд. лет, єNdT= +1.5). Вероятно, это было связано с закрытостью изотопной системы циркона и породы в целом при сфекофеннском орогенезе и реализации этих структурно-метаморфических процессов главным образом в некомпетентных слоистых вулканогенно-осадочных породах сортавальской серии, о чем свидетельствует присутствие в граувакках питкяранской свиты единичных зерен циркона с возрастом 1800-1875 млн. лет и геохимическими характеристиками распределения РЗЭ метаморфического типа. Вероятно, существенное влияние на реологическое состояние и реоморфизм гранитоидов выступов фундамента при свекофеннских структурнометаморфических процессах имел размер этих блоков. Так, в наиболее крупном Кирьявалахтинском выступе, имеющим "трапецивидную" форму, не зафиксированы цирконы свекофеннского возраста, тогда как плагио-микроклиновые граниты самого небольшого "грибовидного" выступа Хавус имеют конкордантный возраст 1970±6 млн. лет, а архейские цирконы в них не установлены [Морозов и др., 2020].

Плагио-микроклиновые гранитоиды Кирьявалахтинского выступа не только более чем на 30 млн. лет древнее плагиомикроклиновых гранито-гнейсов Питкярантско-Койринойского выступа (2659 \pm 15 млн. лет) [Мыскова и др., 2012], но и имеют ювенильную природу протолита (ϵ NdT=+1.5) (табл. 3) в отличие от коровой природы (ϵ NdT= -6.2) протолита гранитов Питкеранского выступа. Эти данные являются еще одним аргументом, подтверждающим правомерность подразделение гранитоидных куполов Северного Приладожья на две структурно-морфологические группы – Сортавальскую и Питкярантскую [Ладожская, 2020].

Полученные изотопные данные позволяют считать, что заложение и развитие вулканогенно-осадочного комплекса сортавальской серии происходило на гетерогенной и полихронной (3.1 -2.46 млрд. лет) континентальной коре Фенно-Карельского эпиархейского кратона. U-Th-Pb возраст кластогенных цирконов в граувакках и вариации начальных изотопных отношений ¹⁴³Nd/¹⁴⁴Nd в основных (єNdT= -1.4 - +1.8) и субщелочных (єNdT=от -5.4 до -4.0) метавулканитах сортавальской серии также свидетельствуют, что континентальная литосфера Фенно-Карельского этиархеского кратона была не только областью сноса терригенного материала сортавальской серии, но и служила источником и контаминантом для первичных расплавов вулканических серий.

Завершающие стадии эндогенной активности при эволюции вулканогенноосадочного комплекса сортавальской серии фиксируются временем кристаллизации гипабиссальных даек гранит- и диорит-порфиров, секущих вулканогенно-осадочные толщи, и определяется временным интервалом в пределах 1890-1910 млрд. лет. Источником и контаминантом первичных расплавов этих гипабиссальных интрузивных тел являлись коровые породы фундамента с єNdT от -4.8 до -2.6 неоархейского и раннепротерозойского возраста (от 2.8 до 2.2 млрд. лет).

Работа выполнена в рамках НИР 0153-2019-0001 Госзадания ИГГД РАН.

СПИСОК ЛИТЕРАТУРЫ

Балтыбаев Ш. К., Левченков О.А., Левский Л.К. Свекофеннский пояс Фенноскандии: пространственно-временная корреляция раннепротерозойских эндогенных процессов. СПб.: Наука, 2009, 328 с.

Богачев В.А., Иваников В.В., Козырева И.В. и др. U-Рb цирконовое датирование синорогенных габбро-диоритовых и гранитоидных интрузий Северного Приладожья // Вест. СПбГУ, 1999, сер. 7, вып. 3 (№21), с. 23-33.

Вревский А..Б., Матреничев В.А. Геохронологическое и изотопногеохимическое обоснование энсиалической природы сортавальской серии, Фенноскандинавский щит. «Геодинамика, магматизм, седиментогенез и минерагения Северо-запада России», Петрозаводск, ИГ КарНЦ РАН, 2007, с.79-82.

Геология и петрология свекофеннид Приладожья. СПб ун-т, 2000, 200 с.,

Григорьева Л.В., *Шинкарев Н.*Ф. Условия образования купольных структур в Приладожье // Изв. АН СССР, сер. геол., 1981, № 3, с. 41-45.

Иваников В.В., Филиппов Н.Б., Богачев В.А., Кольцов А.А. Метавулканиты окаймленных куполов Северного Приладожья — покровы платобазальтов или офиолитовые надвиги? // Докембрий Северной Евразии. СПб: ИГГД РАН, 1997, с.36-37.

Иваников В.В., Филиппов Н.Б., Богачев В.А., Мурадымов Г.Ш. Минералого-геохимические признаки офиолитовой ассоциации в Приладожье. Рифтогенез, магматизм, металлогения докембрия. Корреляция геологических комплексов Фенноскандии. //Материалы междунар. конф. Петрозаводск, 1999, с. 53-55.

Кратц К.О. К расчленению и терминологии протерозоя Карелии //Изв. Карельского и Кольского фил. АН ССР, 1963, №2, с.3-15.

Ладожская протерозойская структура (геология, глубинное строение, и минерагения). Петрозаводск, КНЦ РАН, 2020, 436 с.

Лобач-Жученко С.Б., *Чекулаев В.П.*, *Байкова В.С.* Эпохи и типы гранитообразования в докембрии Балтийского щита. // Л. Наука, 1973, 208 с.

Матреничев А.В., Матреничев В.А. Петрология людиковийского вулканизма Онежской структуры и Раахе-Ладожской зоны. Балтийский щит // Сборник трудов молодых ученых ИГГД РАН. Изд-во Политехн. ун-та, СПб. 2010. с. 223-255

Матреничев В.А., Вревский А.Б., Сергеев С.А., Матуков Д.А. Граница между людиковием и калевием в северном Приладожье: геологические взаимоотношения и изотопный возраст. // ДАН, 2006, т.407, №5, с.654-649.

Матреничев В.А., Степанов К.И., Пупков О.М. и др. Стратиграфия и особенности вещественного состава раннепротерозойских вулканитов Сортавальского поднятия (Северное Приладожье) // Вест. СПбГУ, 2004, вып. 2, с.31-44.

Морозов Ю.А. О роли транспрессии в формировании структуры Свекокарелид Балтийского щита// Геотектоника, 1999, № 4, с. 37-50

Морозов Ю.А., Кулаковский А.Л., Смульская А.И. Структуры Северного Приладожья и модели эволюции. // В кн.: Ладожская протерозойская структура (геология, глубинное строение, и минерагения). Петрозаводск, КНЦ РАН, 2020, с. 162-185.

Мыскова Т.А., *Милькевич Р.И.*, *Львов П.А.* U-Pb геохронология (SHRIMP-II) цирконов из метаосадков ладожской серии (Северное Приладожье, Балтийский щит) // Стратиграфия. Геологическая корреляция, 2012, т. 20, № 2, с. 55-67.

Общая стратиграфическая шкала нижнего докембрия России. Апатиты: Изд-во КНЦ РАН, 2002, 13 с.

Общая стратиграфическая шкала России. М. 2013.

Ранний докембрий Балтийского щита. СПб: Наука, 2005, 711 с.

Светов А.П., Свириденко Л.П. Стратиграфия докембрия Карелии. Сортаваальская серия свекокарелид Приладожья. Петрозаводск. КарНЦ РАН, 1992, 152 с.

Светов А.П., Свириденко Л.П., Иващенко В.И. Вулкано-плутонизм свекокарелид Балтийского щита. Петрозаводск. КарНЦ РАН, 1990, 321 с.

Семихатов М.А. Новейшие шкалы общего расчленения докембрия: сравнение // Стратиграфия и геологическая корреляция, 1993, т.16, №.1, с. 6-20.

Cудовиков H. Γ . Тектоника, метаморфизм, мигматизация и гранитизация пород ладожской формации // Тр. ЛАГЕД АН СССР, 1954, вып. 4, 190 с.

Федотова А.А., Бибикова Е.В., Симакин С.Г. Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минералов при геохронологических исследованиях // Геохимия, 2008, № 9, с.980-997.

Annen C., *Blundy J. D.*, *Spark R. S. J.* The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones // J. Petrol, 2006, v. 47, № 3, p. 505–539

Belousova E.A., *Griffin W.L.*, *O'Reilly S.Y.* Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian Granitoids //J. Petrol, 2006, v. 47, N 2, p. 329-353.

Black, *L.P.*, *Kamo*, *S.L. et al.* TEMORA 1: a new zircon standard for U-Pb geochronology //Chemical Geology, 2003, v. 200, p. 155-170.

Claesson S., Huhma H., Kinny P.D., Williams, I.A. Svecofennian detrital zircon ages - implications for the Precambrian evolution of the Baltic Shield // Precambrian Res., 1993, v.64, p. 109–130.

Escola P. The problem of mantled gneiss domes // Quart. Journal Geol. Soc. London. 1949, v. 104, p.461-476.

Gaál G. 2200 million years of crustal evolution: the Baltic Shield // Geol. Surv. of Finland, 1986, bull. 58, p. 149–168.

Herzberg C., *Rudnick R*. Formation of cratonic lithosphere: an integrated thermal and petrological model. //Lithos. 2012. V.149. P. 4–15.

Hietanen A. Generation of potassium poor magmas in the northern Sierra Nevada and the Svecofennian in Finland// J. Res. U.S. Geol. Surv., 1975, v. 3, p. 631–645.

Hoskin P.W.O., *Schaltegger U.* Zircon // Rev. Mineral. Geochem., 2003, v. 53, p. 27-62.

Huhma H., *Claesson S.*, *Kinny P.D.*, *Williams I.S.* The growth of the Early Proterozoic crust: new evidence from Svecofennian detrital zircons // Terra Nova, 1991, v. 3, \mathbb{N}_2 2, p. 175-179.

Jacobsen S.B., *Wasserburg G.J.* Sm-Nd Evolution of Chondrites and Achondrites // Earth Planet. Sci. Lett., 1984, v. 67, p. 137–150.

Kara J., *Väisänen M.*, *Johansson A.*, *Lahaye Y.*, *O'Brien H.*, *Eklund O.* 1.90-1.88Ga arc magmatism of central Fennoscandia: geochemistry, U-Pb geochronology, Sm-Nd and Lu-Hf isotope systematics of plutonic-volcanic rocks from southern Finland // Geologica Acta, 2018, v.16, N 1, p. 1-23.

Kohonen J. From continental rifting to collisional crustal shortening - Paleoproterozoic Kaleva metasediments of the Haytianen area in North Karelia, Finland $/\!/$

Geol. Surv. Finland Bul., 1995, v. 380, 82 p.

Kousa J., Marttila E., Vaasjoki M. Petrology, geochemistry and dating of Paleoproterozoic metavolcanic rocks in the Pyhäjärvi area, central Finland. In: Nironen, M. & Kähkönen, Y. (eds) Geochemistry of Proterozoic supracrustal rocks in Finland. //Geological Survey of Finland, 1994, Special Paper 19, p. 7- 27.

Lahtinen R. Main geological features of Fennoscandia.//Geological Survey of Finland. Special Paper, 2012, v. 53, p. 13–18

Lahtinen R., *Huhma H.*, *Lahaye Y.*, *Kousa J.*, *Luukas J.* Archean–Proterozoic collision boundary in central Fennoscandia: Revisited // Precambrian Research, 2015, v. 261, p. 127–165.

Ludwig, K.R, SQUID 1.00, a User's Manual; Berkeley Geochronology Center Special Publication, 2000, N 2, 2455 Ridge Road, Berkeley, CA 94709, USA.

McDonough W.F., *Sun S.-S.* The composition of the Earth // Chemical Geology, 1995, v. 120, p. 223–253.

Nironen M. Emplacement and structural setting of granitoids in the early Proterozoic Tampere and Savo Schist Belts, Finland—implications for contrasting crustal evolution //Geol. Surv. Finland Bull., 1989, v. 346, 83p.

Nironen M. The Salittu Formation in southwestern Finland, part II: Picritic-basaltic volcanism in mature arc environment // Bulletin of the Geological Society of Finland, 2017, v. 89, p. 5–19.

Nironen M. The Svecofennian Orogen: a tectonic model // Precambrian Res., 1997, v.86, p. 21–44.

Peltonen P., Kontinen A., Huhma H. Petrogenesis of the mantle sequence of the Jormua ophiolite (Finland): melt migration in the upper mantle during Palaeoproterozoic continental break-up // J. Petrol., 1998, v. 39, p. 297–329.

Peltonen P., Kontinen A., Huhma H. Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua Ophiolite, northeastern Finland // J. Petrol., 1996, v.37, p.1359–1383.

Peltonen P., Manttari I., Huhma H., Kontinen A. Archean zircons from the mantle: the Jormua ophiolite revisited // Geology, 2003, v.7, p.645-648.

Ploegsma M., *Westra L.* The early Proterozoic Orija rvi triangle (southwest Finland): a key area on the tectonic evolution of the Svecofennides // Precambrian Res., 1990, v.47, p.51–69.

Puchtel I. S., Brugmann G. E., Hofmann A. W. Precise Re-Os mineral isochron and Pb-Nd-Os isotope systematics of a mafic-ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield) // Earth Planet. Sc. Lett., 1999, v. 170, p. 447—461.

Sederholm J. J. On migmatites and associated Pre-Cambrian rocks of southwestern Finland, Part III. The Åland Islands. Bulletin de la Commission Géologique de Finlande, 1934, v.107, 68p.

Taylor S.R., *McLennan S.M.* Planetary crusts: Their composition, origin and evolution. Cambridge: Cambridge University Press, 2009, 400 p.

Van Kranendonk M. et al. Paleoarchean development of a continental nucleus: the East Pilbara terrane of the Pilbara craton, Western Australia // Earth's Oldest Rocks. 2007. P.307-337.

Wetherill G.W. Discordant uranium-lead ages. // Trans. Amer. Geophys. Union, 1956, v. 37, p. 320-326.

Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. Mineral., 2010, v. 95, p. 185–187.

William I.S. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben, M.A., Shanks III, W.C. and Ridley, W.I. (eds.), Applications of microanalytical techniques to

 $understanding\ mineralizing\ processes\ //\ Reviews\ in\ Economic\ Geology,\ 1998,\ v.7,\ p.\ 1-35.$

- **Рис. 1.** а) Схема тектонического строения Фенноскандинавского щита. (1 архейская кора; 2 палеопротерозойские (2.45 -1.90 мдрд лет) вулканогенно-осадочные комплексы; 3 кора архей-протерозойского возраста: а Фенно-Карельская и б Кольско-Норвежская области; 4 –Лапландско-Кольский ороген; 5 граница эпиархейского кратона; 6 платформенный чехол.
- б) Схема геологического строения Северного Приладожья. 1 гранито-гнейсовые купола: Сортавальская зона (1 Сортавальский, 2 Кирьявалахтинский), Питкярантская зона (3-Мурсульский, 4- Импилахтинский, 5 Кокосельский, 6 Койринойский-Питкяранский); 2 людиковий (сортавальская и питкярантская серии); 3 калевий (ладожская серия).
- **Рис. 2.** Базальные граувакки сортавальской серии (40301в) и секущая дайка плагиопорфира (40301а).
- **Рис. 3.** Нормированное к примитивной мантии (ПМ) распределение редкоземельных элементов в основных и высокомагнезиальных вулканитах сортавальской серии (а –базальты питкярантской 1-5 и петсеваарской свит 6-9; б трахтандезибазальты свиты харлу; в –базальты 1, коматиитовые базальты 2 и коматииты 3 свиты тенъярви).
 - Рис. 4. Бомбовые туфы трахиандезибазальтов, свита харлу.
- **Рис. 5.** Нормированное к примитивной мантии (ПМ) распределение редкоземельных элементов в трахибазальтах (1, 2, 3) свиты харлу, дайках диоритпорфиров (4) и плагио-порфиров (5, 6), гранитоидах Кирьявалахтинского выступа (7).
- **Рис. 6.** Микрофотографии кристаллов циркона из гранитоидов Кирьявалахтинского выступа в режиме катодолюминесценции. Цифры на фото соответствуют аналитическим точкам в табл., диаметр кратера ~ 20 мкм.
- **Рис. 7.** Диаграмма с конкордией для ядерных частей (а) и кайм (б) циркона из лейкогранитов Кирьявалахтинского выступа. Цифры на рис. соответствуют аналитическим точкам в табл. 1.
- **Рис. 8.** Нормированное к примитивной мантии (ПМ) распределение редкоземельных элементов в цирконе из гранитоидов Кирьявалахтинского выступа.
- **Рис. 9.** Микрофотографии кристаллов циркона из вулканокластических граувакк нижней части питкярантской свиты в режиме катодолюминесценции. Цифры на фото соответствуют аналитическим точкам в табл. 5, диаметр кратера ~ 20 мкм.
- **Рис. 10.** Диаграмма с конкордией (а) и график относительной вероятности распределения ²⁰⁷Pb/²⁰⁶Pb возрастов циркона (б) из вулканокластических граувакк нижней части питкярантской свиты.
- **Рис. 11.** Нормированное к примитивной мантии (ПМ) распределение редкоземельных элементов в цирконе из вулканокластических граувакк нижней части питкярантской свиты. Цифры на рис. соответствуют аналитическим точкам в табл. 6.
- **Рис. 12.** Диаграмма с конкордией (а) и график относительной вероятности распределения ²⁰⁷Pb/²⁰⁶Pb возрастов циркона (б) из даек плагио-порфира и диоритпорфиров. Цифры на рис. соответствуют аналитическим точкам в табл. 1.
- **Рис. 13.** Нормированное к примитивной мантии (ПМ) распределение редкоземельных элементов в цирконе из дайки плагио-порфира (40301a) и диоритпорфира (16399) (А) и в цирконе из вулканокластических трахиандезибазальтов свиты харлу (Б).
- **Рис. 14.** Микрофотографии кристаллов циркона из трахиандезибазальтов свиты харлу и из даек плагио-порфира и диорит-порфиров (1.2, 2.1, 3.1, 3.2) в режиме

катодолюминесценции. Цифры на фото соответствуют аналитическим точкам в табл. 7, диаметр кратера ~ 20 мкм.

Рис. 15. Диаграмма с конкордией (a) и график относительной вероятности распределения 207 Pb/ 206 Pb возрастов циркона (б) из трахиандезибазальтов свиты харлу.

Таблица 1. Химический состав (вес.%) пород сортавальской серии, гранитоидов Кирьявалахтинского выступа и поздних даек

	SiO ₂	TiO ₂	Al ₂ O ₃	FeO*	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	ппп	Сумма
1	58.00	0.70	16.10	7.08	0.14	3.55	7.05	4.5	0.88	0.18	1.08	99.26
2	68.90	0.18	17.20	1.88	0.02	1.06	2.52	6.15	0.83	0.07	1.05	99.87
3	69.97	0.18	15.78	2.12	0.05	1.00	3.36	5.36	0.93	0.07		98.82
4	73.90	0.14	13.90	1.13	0.03	0.43	1.11	4.18	3.85	0.05	1.06	99.78
5	66.05	0.22	17.89	3.13	2.82	0.07	1.12	4.28	5.19	0.70	0.13	101.60
6	60.12	0.81	18.64	5.08	0.05	4.15	1.95	5.31	2.25	0.06	0.80	99.22
7	55.09	1.66	14.62	10.56	0.16	3.07	4.89	5.66	1.10	0.53	1.06	98.41
8	50.80	1.18	13.09	11.81	0.19	7.73	8.53	2.48	0.72	0.13	1.56	98.22
9	43.38	0.61	7.46	12.25	0.20	22.14	8.04	0.55	0.03	0.04	3.23	97.93
10	43.38	0.61	7.46	12.25	0.20	22.14	8.04	0.55	0.03	0.04	3.23	97.93
11	49.58	1.03	12.25	11.32	0.19	10.18	9.96	2.56	0.30	0.12	1.00	98.49

Примечание.1 – дайка диорит-порфира (16399), 2 -3 – дайка плагио-порфира (40301а), 4 - лейкогранит (n=4) Кирьявалахтинского выступа, 5-6 – вулканокластическая граувакка (40301 в, 6703), 7 – средний (n=9) состав трахиандезибазальтов свиты харлу, 8 - средний (n=7) состав базальтов питкярантской свиты, 9-11 – вулканиты свиты тенъярви (9 - коматииты, n=9; 10 - коматиитовые базальты, n=14; 11 - базальты, n=12)

Таблица 2. Результаты U-Th-Pb геохронологических исследований циркона из лейкогранитов Кирьявалахтинского выступа

Ка					Ţ			*					Воз	раст			
Аналит. точка		U, mkt/f	Тһ мкг/г	Th/U	²⁰⁶ Pb*, mkr/r	$^{238}\mathrm{U/^{206}Pb}^*$	% T	²⁰⁷ Pb*/ ²⁰⁶ Pb*	% +	$^{207} extbf{pb}^*/^{235} extbf{U}$	% +	Ω_{827} / $ ext{d}_{902}$	% T	²⁰⁷ Pb/ ²⁰⁶ Pb	% +	err corr	Ω∓%
83003b.5.3		149	118	0.79	71.1	1.798	0.84	0.1904	0.83	14.60	1.2	2855	21	2745	14	0.710	-4
83003b.1.2		59	37	0.63	26.8	1.899	1.4	0.1869	1.2	13.57	1.8	2733	32	2715	21	0.735	0
83003b.2.2		265	130	0.49	116	1.972	0.81	0.1858	0.63	13.00	1.0	2643	19	2706	10	0.789	2
83003b.3.3		37	18	0.49	17.5	1.853	1.6	0.1845	2.1	13.73	2.6	2804	37	2694	34	0.601	-3
83003b.4.3	ттр	340	156	0.46	150	1.949	1.1	0.18416	0.49	13.02	1.2	2671	26	2690	8	0.921	1
83003b.6.2	Центр	326	112	0.34	146	1.917	0.64	0.18332	0.48	13.19	0.8	2708	15	2683	8	0.799	-1
83003b.4.4		538	51	0.09	233	1.938	1.2	0.18326	0.47	12.52	2.0	2632	40	2655	12	0.928	1
2018-7.1		53	45	0.85	23.4	1.951	0.75	0.18706	0.4	12.68	2.8	2674	50	2643	27	0.810	-1
2018-8.1		253	30	0.12	99.4	1.943	0.85	0.18906	0.51	11.12	1.8	2425	36	2619	13	0.906	9
2018-9.1		29	31	1.07	12.9	2.067	0.74	0.18558	0.43	12.44	4.2	2685	78	2606	38	0.837	-3
2018-3.1		969	77	0.08	381	2.036	0.87	0.1853	0.79	11.07	0.7	2426	12	2601	6	0.860	7
2018- 2.1		55	60	1.09	23.3	2.054	1.4	0.1671	2.0	11.21	2.5	2569	34	2528	34	0.578	-1
2018_1.1	Край	51	155	3.04	21.2	2.112	1.7	0.1641	2.12	10.71	2.7	2453	57	2498	35	0.625	0
83003b.5.2	Кр	133	165	1.24	53	2.151	2.0	0.1608	0.13	10.31	2.2	2463	51	2465	18	0.885	0
83003b.4.2		90	98	1.09	35.8	2.111	1.4	0.1593	0.72	10.25	2.5	2454	40	2464	23	0.835	1
83003b.3.2		509	88	0.17	180	2.438	0.57	0.16014	0.51	9.058	0.8	2210	11	2457	8	0.749	11

[•] Примечание. Звездочкой отмечены изотопные отношения, исправленные на измеренный ²⁰⁴Pb. Погрешности определения изотопных отношений приведены на уровне одна сигма, а погрешности оценок – двух сигма, егг согг - коэффициент корреляции ошибок, D±% – процент дискордантности.

Таблица 3. Содержание (мкг/г) редкоземельных и редких элементов в цирконе из лейкогранитов Кирьявалахтинского выступа

	центр	центр	край	край	край	край
	83003b.5.2	83003b.3.2	83003b.3.1	83003b.4.1	83003b.5.1	2018-1.1
La	0.73	0.49	51.2	87.4	166.8	1256.2
Ce	21.0	14.3	331.5	514.4	673.5	2108.1
Nd	9.6	2.9	425.8	709.5	704.8	1015.5
Eu	1.5	0.5	95.2	120.0	58.5	69.3
Gd	13.9	4.5	377.8	306.4	341.7	423.4
Dy	34.1	15.4	331.5	257.0	256.2	269.9
Er	76.1	37.3	290.7	209.0	213.2	277.2
Yb	203	127	588	359	355	524
Y	448	847	1682	1586	1496	1819
Hf	7908	8990	1098	1059	1018	9610
Ce/Ce*	2,85	5,52	0,94	0,87	0,98	0,91
Eu/Eu*	0,46	0,56	0,85	0,96	0,45	0,51
(Sm/Yb) _N	0.04	0.02	0.56	1.30	1.34	0.83
(La/Gd) _N	0.04	0.09	0.11	0.24	0.41	2.49

Таблица 4. Результаты Sm-Nd изотопного анализа

	1	2	3	4	5	6	7	8	9	10
№ обр.	83003б	40301a	16399	72900г	143399	78800e	72900д	72900в	40401a	32799a
Sm, мкг/г	3.394	0.991	2.707	4.61	3.65	4.35	3.34	4.52	2.95	2.99
Nd, мкг/г	26.51	5.163	12.1	22.63	15.59	21.18	15.21	20.59	9.06	11.24
¹⁴⁷ Sm/ ¹⁴⁴ Nd	0.0774	0.116	0.1249	0.1232	0.1433	0.124	0.1327	0.1328	0.1965	0.1608
¹⁴³ Nd/ ¹⁴⁴ Nd	0.51058	0.51137	0.5116	0.51143	0.51013	0.51146	0.51159	0.51154	0.51243	0.51211
εNd (T)	1.5	-4.8	-2.6	-5.11	-4.01	-4.77	-4.3	-5.38	-4.01	-1.37
T DM	2865	2796	2612	2 885		2 864	2 917	3 021		
	10	11	12	13	14	15	16	17	18	19
№ обр.	32799a	32999ж	13399д	12899	88500	67500	62400в	40501a	41001г	41501
Sm, мкг/г	2.99	2.34	1.83	2.09	2.67	2.29	1.45	3.55	1.67	1.67
Nd, мкг/г	11.24	8.68	5.83	4.35	9.79	7.79	3.66	16.17	4.7	4.64
¹⁴⁷ Sm/ ¹⁴⁴ Nd	0.1608	0.1629	0.1902	0.2907	0.1648	0.1777	0.2387	0.1326	0.2144	0.218
¹⁴³ Nd/ ¹⁴⁴ Nd	0.51211	0.51214	0.51265	0.51388	0.5123	0.51246	0.51321	0.51188	0.51307	0.51313
εNd (T)	-1.37	-1.18	1.78	0.63	1.42	1.39	0.49	1.41	4.03	4.28
T DM								2 375		

Примечание. 1- лейкогранит Кирьявалахтинского выступа, 2 — дайка плагио-порфира, 3 — дайка диорит-порфира, 4-9 — трахиандезибазальты, свита харлу, 10- 16 —базальты, свита тенъярви, 17-19 — коматииты, свита петсельваара. єNd (Т) рассчитаны для лейкогранитов на возраст 2700 млн. лет, для даек плагио- и диорит-порфира — на 1920 млн. лет и для вулканитов сортавальской серии — на 1960 млн. лет

Таблица 5. Результаты U-Th-Pb геохронологических исследований циркона из граувакк сортавальской серии

1 au	лица 5. Результ	аты С-	1 111-I C	reuxp	OHUM	1 ически	х исс	ледован	ии ци	ркона из	траув	akk cu	JIaBo	MIDCKU	и сер	ии	
	MT.				/Γ	v.		*_					Воз	раст			
	точкаАналит.	U, mkf/f	Тһ мкг/г	Th/U	$^{206}\mathrm{Pb}^{*}$, MKΓ/ Γ	538 U $/^{206}$ Pb*	%+	²⁰⁷ Pb*/ ²⁰⁶ Pb*	% T	$^{207}\mathrm{pb*}/^{235}\mathrm{U}$	7,∓	$\Omega_{82}/\mathrm{ph}/238$	∓%	²⁰⁷ / ²⁰⁶ Pb	∓%	eır coır	Ω±%
1						3.218	1.										7
	40301в.2.1	82	80	0.98	0.47	3	5	0.1147	2.9	4.912	3.2	1744	23	1875	52	0.461	/
2						2.667	1.										-5
<u> </u>	40301в.13.1	217	74	0.34	0.25	6	1	0.1201	1.5	6.207	1.9	2052	20	1958	17	0.598	-5
3						2.229	1.										10
	40301в.12.1	492	213	0.43	0.18	7	0	0.1836	0.6	11.352	1.1	2388	20	2685	10	0.856	
4						2.175	1.										9
	40301в.3.1	245	208	0.85	0.56	9	0	0.1800	1.1	11.404	1.5	2438	21	2653	17	0.704	
5						2.172	1.										9
	40301в.4.1	349	157	0.45	0.32	2	0	0.1802	0.7	11.441	1.3	2441	21	2655	12	0.814	
6						2.142	0.										12
	40301в.6.1	987	125	0.13	0.06	4	9	0.1932	0.4	12.435	1.0	2469	19	2770	7	0.916	
7						2.094	1.										13
	40301в.9.1	372	231	0.62	0.21	6	0	0.2009	0.7	13.222	1.2	2516	20	2833	12	0.802	
8						2.000	1.										4
	40301в.8.1	283	292	1.03	0.01	1	0	0.1880	0.7	12.963	1.2	2614	22	2725	11	0.838	
9						1.963	1.										2
	40301в.14.1	286	30	0.11	0.08	0	1	0.1848	0.7	12.984	1.3	2654	24	2697	12	0.840	
10						1.961	0.										7
	40301в.10.1	491	92	0.19	0.04	2	9	0.2013	0.5	14.152	1.0	2656	20	2837	8	0.886	
11		_				1.946	1.					_					3
<u> </u>	40301в.11.1	167	104	0.62	0.15	6	4	0.1920	1.2	13.596	1.9	2672	31	2759	20	0.764	
12						1.934	1.										2
	40301в.5.1	185	83	0.45	0.39	7	1	0.1901	1.0	13.551	1.5	2686	25	2743	16	0.748	
13						1.934	1.										1
	40301в.5.2	284	108	0.38	0.19	6	0	0.1860	0.8	13.258	1.3	2686	23	2707	13	0.799	

14						1.942	1.										1
	40301-18-15.1	417	233	0.56	0.03	0	9	0.1901	3.5	13.562	1.0	2707	19	2728	9	0.830	
15						1.936	1.										0
	40301-18-16.1	697	569	0.82	0.15	0	3	0.1897	0.5	13.343	0.9	2710	16	2699	8	0.835	
16						1.931	1.										13
	40301-18-17.1	546	428	0.78	0.30	0	4	0.1882	0.4	11.120	1.1	2361	16	2672	13	0.729	
17						2.768	1.										0
	40301-18-17.2	381	119	0.31	0.23	5	1	0.1168	1.5	6.0812	1.5	1977	15	1973	21	0.613	
18						1.797	0.										9
	6703.7.1	2074	91	0.04	0.08		8	0.2381	0.2	18.293	0.9	2852	19	3110	3	0.968	
19						1.682	0.										5
	6703.7.2	1410	294	0.21	0.60		9	0.2474	0.3	20.224	0.9	3008	21	3164	5	0.937	
20						3.227	2.		·								4
	6703-18-9.1	141	86	0.61	2.45		5	0.1105	2.9	4.680	3.8	1744	3	1801	52	0.661	

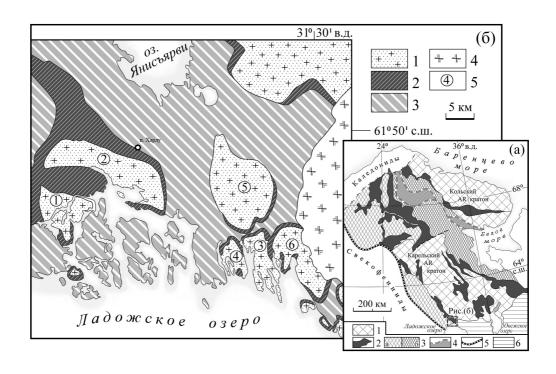
[•] Примечание. Звездочкой отмечены изотопные отношения, исправленные на измеренный ²⁰⁴Pb. Погрешности определения изотопных отношений приведены на уровне одна сигма, а погрешности оценок – двух сигма, егт согт - коэффициент корреляции ошибок, D±% – процент дискордантности.

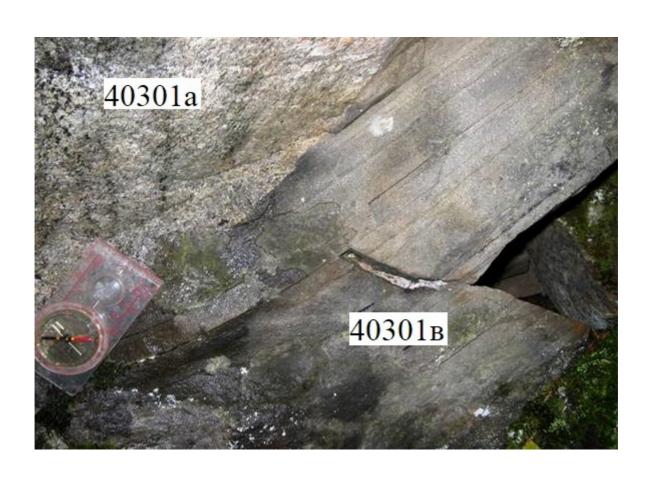
Таблица 6. Содержание (мкг/г) редкоземельных элементов в цирконе из граувакк питкярантской свиты (40318в и 6703)

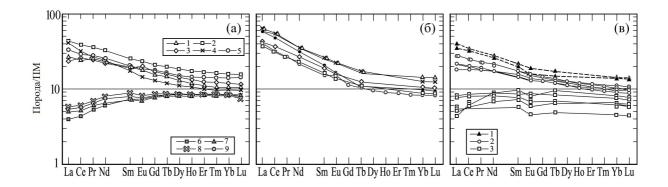
	12.1	10.1	3.1	6.1	14.1	5.2	9.1	8.1	2.1	9.1/18
La	12.74	0.27	7.18	3.63	1.97	1.37	6.17	2.60	51.22	75.37
									342.1	485.7
Ce	98.28	10.70	112.62	37.28	8.50	8.77	56.73	65.09	5	6
									425.7	671.3
Nd	86.06	1.28	44.79	30.73	6.74	3.97	53.15	18.09	8	3
									305.3	312.3
Sm	56.30	1.98	32.52	20.09	4.82	4.05	39.08	15.68	0	8
Eu	8.07	0.44	3.32	5.34	0.39	1.15	6.72	2.01	95.18	65.84
	103.4								377.8	377.3
Gd	0	10.08	80.98	44.21	16.45	16.45	82.35	40.92	3	3
	250.4		210.8	132.6			231.1	121.4	331.5	531.9
Dy	3	48.57	9	9	62.73	60.52	2	1	1	6
-	286.8	127.4	307.4	320.2	153.1	130.9	379.5	203.3	290.7	290.8
Er	2	9	1	8	4	4	4	4	0	2
	436.6	302.8	513.8	668.4	453.4	270.2	641.4	347.6	588.0	338.2
Yb	5	1	5	1	4	0	5	8	5	2
Ce/Ce*	1.32	8.88	2.86	1.47	1.20	1.98	1.30	4.20	0.97	0.89
Eu/Eu*	0.32	0.25	0.19	0.53	0.12	0.37	0.35	0.23	0.85	0.58
(Sm/Yb) _N	0.14	0.01	0.07	0.03	0.01	0.02	0.07	0.05	0.56	1.00
(La/Gd) _N	0.10	0.02	0.07	0.07	0.10	0.07	0.06	0.05	0.11	0.17

Таблица 7. Результаты U-Th-Pb геохронологических исследований циркона из трахиандезибазальтов свиты харлу (14399), даек

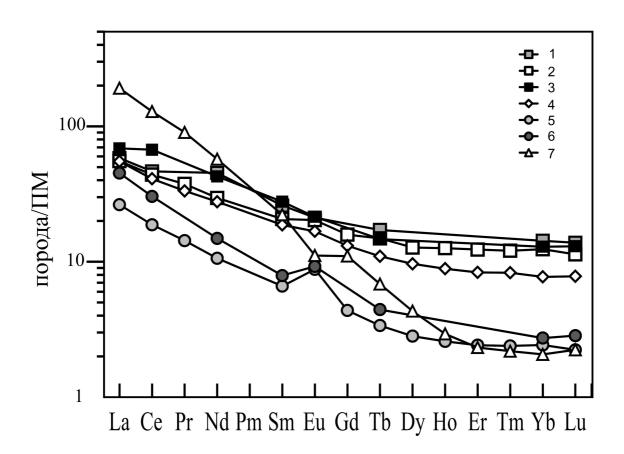
плагио-порфира 40301а и диорит-порфира 16399


плагио-порфира 4		дпори 	Порф	_												
точка	Ĺ	Ļ		MKΓ/Γ	p *		%q∂		ΰ			B03]	раст			
Аналит. то	U, mkt/r	Тһ мкг/г	Ω/Ч.I	²⁰⁶ Pb*, MF	*9d ₉₀₇ /Ω ₈₈₇	% T	₂₀₇ pb*/ ²⁰⁶ pb*	%∓	²⁰⁷ Pb*/²³⁵U	% T	$\Omega_{862}/\mathrm{qd}_{902}$	% T	$^{207} m Pb/^{206} m Pb$	%∓	eir coir	%∓Q
40301а.1.1 центр	70	59	0.87	32.4	1.858	2.8	0.2001	1.2	14.8500	3.0	2800	68	2827	19	0.921	2
40301a.1.2	101	9	0.09	28.9	3.001	2.9	0.1155	3.4	5.3100	4.5	1853	47	1888	61	0.657	2
40301a.2.1	295	26	0.09	79.1	3.214	2.7	0.1170	0.9	5.0200	2.9	1752	42	1911	16	0.948	9
16399.1.1.2	100	92	0.94	37.3	2.413	2.8	0.1658	4.8	9.4800	5.5	2256	64	2516	80	0.502	11
16399.3.1 центр	342	48	0.15	159	1.851	0.6	0.1930	0.4	14.3800	0.7	2789	15	2767	7	0.806	-3
16399.3.2	106	35	0.34	36.2	2.528	0.9	0.1416	1.3	7.7300	1.6	2145	19	2247	23	0.590	5
14399.9.1	71	28	0.42	20.9	2.9378	1.5	0.1123	3.8	5.2715	4.1	1889	25	1837	70	0.368	-3
14399.12.1	367	340	0.96	101.9	3.0960	1.2	0.1186	1.3	5.2823	1.8	1804	19	1935	23	0.682	7
14399.5.1	422	165	0.40	122.0	2.9791	1.0	0.1234	0.9	5.7102	1.3	1866	16	2006	16	0.727	7
14399.2.1	303	266	0.91	86.4	3.0299	1.0	0.1237	1.2	5.6285	1.5	1839	16	2010	21	0.649	9
14399.4.1	356	135	0.39	96.5	3.1788	1.0	0.1255	1.1	5.4435	1.5	1763	16	2036	19	0.688	15
14399.8.1	134	48	0.37	41.0	3.0370	1.5	0.1321	6.2	5.9977	6.4	1835	24	2126	19	0.235	16
14399.10.1	125	89	0.74	54.7	1.9727	1.2	0.1872	0.9	13.0836	1.5	2643	26	2718	16	0.766	3
14399.11.1	221	119	0.56	95.6	1.9919	1.1	0.1892	0.8	13.0963	1.3	2623	23	2735	14	0.789	4
14399.6.1	178	177	1.03	82.5	1.8569	1.1	0.1946	0.8	14.4531	1.3	2777	25	2782	14	0.788	0


[•] Примечание. Звездочкой отмечены изотопные отношения, исправленные на измеренный ²⁰⁴Pb. Погрешности определения изотопных отношений приведены на уровне одна сигма, а погрешности оценок – двух сигма, err corr - коэффициент корреляции ошибок, D±% – процент дискордантности.


Таблица 8. Содержание (мкг/г) редкоземельных элементов в цирконе из трахиандезибазальтов свиты харлу (14399), даек плагио-

порфира (40301а) и диорит-порфира (16399)


ун днорит п	163			403	01a		14399					
	2.1	3.2	1.1	1.2	2.1	2.2	6.1	11.1	10.1	9.1		
			центр	край	центр	край						
La	2.63	8.32	1.10	2.05	1.15	0.50	1.15	2.82	0.20	27.21		
Ce	56.07	83.55	6.98	37.45	17.41	13.17	74.02	68.75	39.06	77.22		
Nd	41.81	44.45	3.99	32.67	8.04	5.81	13.11	40.77	2.24	56.06		
Sm	44.83	9.07	4.32	18.89	7.22	6.85	10.75	15.49	2.00	22.68		
Eu	9.32	2.85	0.26	1.86	1.97	0.49	2.31	2.04	0.14	7.53		
Gd	89.82	10.51	13.81	22.63	27.48	24.42	30.91	29.36	9.63	46.30		
Dy	154.77	29.03	34.68	38.28	130.62	73.14	82.82	61.42	36.69	70.49		
Er	214.01	77.72	54.12	62.72	327.12	143.97	160.36	83.73	76.48	92.66		
Yb	449.25	227.47	123.50	171.11	732.33	266.24	306.96	152.95	155.02	185.10		
Ce*	0.45	0.51	0.43	0.38	0.63	0.72	1.80	0.55	5.55	0.27		
Eu*	0.11	0.10	0.02	0.07	0.09	0.03	0.09	0.07	0.02	0.17		
(Sm/Yb) _N	0.11	0.04	0.04	0.12	0.01	0.03	0.04	0.11	0.01	0.13		
(La/Gd) _N	0.02	0.66	0.07	0.07	0.03	0.02	0.03	0.08	0.02	0.49		

