УДК 662.215.4+534.222.2

ИССЛЕДОВАНИЕ ПРИМЕНЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА ТЕРМИТ/ВЗРЫВЧАТОЕ ВЕЩЕСТВО В КАЧЕСТВЕ ДЕТОНАТОРА

D.-W. Wang, C. Li, L. Zhang, C.-G. Zhu

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094, China, zhangl@njust.edu.cn

Для разработки экологически безопасного первичного взрывчатого вещества (BB) методом совместного осаждения распылением был изготовлен нанотермит Al@KIO₄, который при смешивании с тэном (пентаэритриттетранитрат) образует композит PETN/Al@KIO₄, используемый в качестве первичного BB. С помощью рентгеновской дифракционной сканирующей электронной микроскопии и просвечивающей электронной микроскопии высокого разрешения установлено, что термит имеет размер около 200 нм и хорошо распределен. Характеристики горения исследовались с использованием высокоскоростной фотографии и экспериментов по сжиганию в замкнутом пространстве. Результаты показали, что время возникновения детонации в композитах PETN/Al@KIO₄ на 60 мкс меньше, чем в чистом тэне, что указывает на то, что термит ускорял процесс перехода тэна от дефлаграции к детонации. Детонационные характеристики композитов подтвердили, что состав PETN/Al@KIO₄ может успешно инициировать гексоген и использоваться в качестве первичного BB. Были оценены также характеристики безопасности и длительного хранения композита PETN/Al@KIO₄, которые показали, что эти параметры стабильны, а инициирующие свойства композита не меняются после 20 лет хранения.

Ключевые слова: нанотермит, композиционный материал термит/вторичное BB, совместное осаждение распылением, первичное взрывчатое вещество.

DOI 10.15372/FGV20230312

ВВЕДЕНИЕ

Азид свинца и стифнат свинца являются наиболее часто используемыми первичными взрывчатыми веществами (ВВ). Однако их высокая чувствительность и наличие тяжелого металла заставляют вести поиски альтернатив этим ВВ. Начиная с 1990-х годов в литературе сообщалось о синтезе большого количества органических первичных ВВ, но из-за сложного синтеза и неудовлетворительных характеристик детонации бо́льшая их часть не рассматривается в качестве замены азиду и стифнату свинца. В последние годы внимание исследователей привлек нанотермит (метастабильный межмолекулярный композит) такими своими свойствами, как высокая плотность энергии [1, 2], низкая токсичность [3, 4] и реализуемость процесса [5–7]. Исследования показали, что объемная плотность энергии нанотермита в два раза выше, чем у тринитротолуола [8, 9], а скорость горения может достигать 2500 м/с [9, 10], что позволяет предполагать его использование в качестве первичного ВВ. Однако не существует достаточных доказательств того, что в термитах может сформироваться детонационная волна [11], и это является существенным пробелом.

По сравнению с первичными ВВ гексоген (циклотриметилентринитрамин), тэн (пентаэритриттетранитрат, PETN) и некоторые другие ВВ экологически безопасны и нечувствительны к ударам, трению, статическому электричеству и другим стимулирующим факторам. Было доказано, что они ускоряют горение термитов в процессе перехода от дефлаграции к детонации [11]. В [12] в качестве экологически чистого первичного ВВ был приготовлен нанокомпозит Al/Fe₂O₃ — гексоген и детально изучен переход от дефлаграции к детонации в разработанной смеси. Это исследование считается предварительным применением термитов в области первичных ВВ. В [13, 14] исследовалась серия композитов, состоящих из нанотермита и гексогена, и установлено, что использование нанотермита повысило скорость горения гексогена и увеличило газообразование метастабильного межмолекулярного композита. В этих работах было доказано, что композиты типа термит — ВВ могут использоваться в качестве основного заменителя первичных ВВ, однако

[©] Wang D.-W., Li C., Zhang L., Zhu C.-G., 2023.

их характеристики пока еще далеки от требуемых в реальных применениях.

За последние несколько лет наша исследовательская группа провела серию исследований экологически чистых первичных ВВ типа метастабильного межмолекулярного композита. В результате были успешно разработаны две системы: $Al/CuSO_4 \cdot 5H_2O$ [15] и Al/NaIO₄ [16]. Благодаря использованию двух солей оксикислот удалось преодолеть недостаточное газообразование традиционного термита [17] и получить хорошие характеристики инициирования. Эти исследования стимулировали применение новых солей оксикислот, таких как KIO₄. Кроме того, рассматривалась функция вторичных ВВ. Методом совместного осаждения распылением был приготовлен наноядерно-оболочечный термит Al@KIO₄, который затем использовался для приготовления высокоэнергетических композитов PETN/Al@KIO₄ методом механического смешивания. Композит оценивался по таким характеристикам, как мощность инициирования, механическая чувствительность, термические свойства и стабильность при длительном хранении. Результаты показали, что создание композитов PETN/Al@KIO₄ дает новый метод получения безопасных и экологически чистых первичных ВВ.

1. ЭКСПЕРИМЕНТ

1.1. Материалы

Промышленный тэн предоставлен компанией «Shanxi North Xing'an Chemical Co., Ltd»; алюминиевый порошок, перйодат натрия и хлорид калия предоставлены компанией «Aladdin Reagent Co., Ltd». Все химические вещества, использованные в эксперименте, имели аналитическую чистоту.

1.2. Приготовление нанотермита Al@KIO₄

Перйодат натрия массой 5.6 г растворяли в 100 мл деионизированной воды, а 4 г хлорида калия — в 50 мл деионизированной воды (молярное отношение NaIO₄ : KCl = 1 : 2). Затем 2.4 г наноалюминия диспергировали в растворе перйодата натрия с помощью ультразвука в течение 10 мин. Далее полученный суспензионный раствор впрыскивали в раствор хлорида калия (условия впрыска: скорость потока N₂ 15 л/мин, скорость подачи 10 мл/мин). Выпавший осадок отфильтровывали и сушили при 60 °C в течение 24 ч.

1.3. Приготовление высокоэнергетических композитов PETN/AI@KIO₄

Композиты PETN/Al@KIO₄ получали равномерным механическим перемешиванием тэна и термита. Образец с соотношением компонентов 0.88 г тэна и 0.12 г Al@KIO₄ обозначен как PETN-12, а образец 0.92 г тэна и 0.08 г термита Al@KIO₄ обозначен как PETN-8.

1.4. Микроструктурная характеристика

Структура, морфология и распределение элементов в образцах исследовались методами рентгеновской дифракции (XRD, Bruker D8 Advanced), сканирующей электронной микроскопии (SEM, Hitachi S-4800 II), оборудованной энергодисперсионным спектрометром (EDS), просвечивающей электронной микроскопии (TEM, FEI Tencai G2 F20 S-TWIN) и просвечивающей микроскопии высокой мощности (HRTEM, JEM 2100F).

1.5. Термические характеристики

Термическое разложение проводилось методами термогравиметрии и дифференциальной сканирующей калориметрии (ТГ/ДСК) на синхронном термоанализаторе (ТА SDT Q600); в качестве среды использовался аргон высокой чистоты со скоростью потока 50 мл/мин. Образец массой 2 ÷ 3 мг в тигле из Al₂O₃ нагревали от 30 до 900 °C со скоростью 5 °C/мин в каждом тесте ТГ/ДСК. Процесс горения фиксировался с помощью скоростной фотосъемки, что позволяло рассчитывать номинальную скорость горения.

1.6. Характеристики инициирования

Инициирующие характеристики детонатора оценивались по результатам теста со свинцовой пластиной. Экспериментальное устройство состояло из стальной трубы, свинцовой пластины, детонатора, неподвижной рамы и огнепроводного шнура (рис. 1). Испытывался детонатор, схема которого аналогична промышленному детонатору № 8 (см. вставку к рис. 1), в двух вариантах — с армирующим

Рис. 1. Схема эксперимента со свинцовой пластиной:

1 — стальная труба, 2 — свинцовая пластина, 3 — детонатор, 4 — неподвижная рама, 5 — огнепроводный шнур, 6 — воспламенитель, 7 — армирующий колпачок (чашечка), 8 — первичное ВВ, 9 — переходный заряд, 10 — вторичное ВВ

Рис. 2. Спектры рентгеновской дифракции ${\rm KIO}_4$ и ${\rm Al}@{\rm KIO}_4$

колпачком и без него. Параметры заряда детонатора были следующими: композитный образец массой 300 мг (20 МПа, первичное ВВ) и 500 мг пассивированного гексогена (40 МПа, основной заряд).

1.7. Характеристика механической чувствительности

Чувствительность образцов к удару изучалась методом испытания падающим грузом, масса груза для композита PETN/Al@KIO₄ составляла 2 кг, для Al@KIO₄ — 10 кг, дозировка составляла 30 мг в каждом испытании. Температура испытаний 293.15 ± 2 K, относительная

влажность 60 ± 5 %. По результатам 25 успешных испытаний была определена 50%-я вероятность инициирования (H_{50}). Чувствительность образцов к трению определялась в испытаниях на трение скольжения при давлении 1.23 МПа и угле отклонения маятника 70°. Дозировка в каждом тесте составляла 20 мг. Частость взрывов рассчитывалась после 50 испытаний, ее среднее значение (P, %) использовалось для обозначения чувствительности образцов к трению.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1. Анализ структуры и морфологии термита Al@KIO₄

Для дифракционного анализа были приготовлены частицы KIO_4 методом совместного осаждения распылением. Как показано на рис. 2, сильные дифракционные пики наблюдались при 16.70, 25.85, 30.94, 42.39 и 52.26°, что согласуется с данными ICDD 08-0472 (International Centre for Diffraction Data) и указывает на обоснованность метода. В тех же условиях был приготовлен композит Al@KIO₄. На рис. 2 представлены характеристические пики порошка наноалюминия при 38.21, 44.45 и 64.85°.

Формирование наноядерно-оболочечной структуры термита подтверждается шероховатой морфологией образца и указывает на то, что перйодат калия был успешно нанесен на поверхность наноалюминия, а некоторые частицы KIO₄ с хорошей кристаллизацией сформировали точечные метки, которые наблюдаются на рис. 3. Нанотермит Al@KIO₄ получен методом совместного осаждения распылением, а двухкомпонентные частицы имели размер около 200 нм, что значительно улучшило площадь контакта.

2.2. Анализ тепловых свойств нанотермита Al@KIO₄

На рис. 4,*а* представлена $T\Gamma/ДСК-$ диаграмма образца Al@KIO₄, приготовленного методом совместного осаждения распылением. Первая экзотермическая реакция нанотермита проходила при температуре T = 307.5 °C и сопровождалась небольшой потерей массы, что было вызвано разложением KIO₄ на KIO₃ и O₂. Впоследствии KIO₃ расплавился и

Рис. 3. Изображения Al@KIO₄, полученные с помощью растровой электронной микроскопии (a, δ) , просвечивающей электронной микроскопии высокого разрешения (a), энергодисперсионной рентгеновской спектроскопии (c)

поглотил тепло при T = 497.9 °C, после чего последовала алюминотермическая реакция при T = 531.2 °C с выделением значительного количества тепла. Следует отметить, что вторая экзотермическая реакция ($531.2 \div 728.2$ °C) в основном состоит из двух стадий. Сначала O₂ от разложения KIO₃ реагировал с твердым наноалюминием через оболочку из оксида алюминия, но реакция постепенно замедлялась по мере утолщения оболочки из оксида алюминия. При T = 663.2 °C наноалюминий расплавился и оболочка из оксида алюминия треснула. Поэтому непрореагировавший расплавленный наноалюминий продолжал бурно реагировать с O_2 , пока реакция не завершилась. После этого KI начал разлагаться при T = 733.2 °C и появился второй эндотермический пик. Стоит отметить, что при реагировании нанотермита Al@KIO₄ сначала KIO₄ разлагается на O_2 , а затем вступает в химическую реакцию с наноалюминием, которая является алюминотермической реакцией, что согласуется с увеличением массы после каждого этапа потери массы на кривой TГ. Таким образом, скорость реакции в первую очередь зависела от разложения KIO₄, скорости прохождения O₂ через алюмооксидную оболочки и растрескивания алюмооксидной оболочки. Рассчитанное

Рис. 4. ТГ/ДСК-диаграмма (a) и высокоскоростная фоторегистрация горения образца Al@KIO4 (б):

указаны температуры начала и пика реакции и площадь контакта

тепловыделение термита Al@KIO₄ составляло $q = 1.262.12 \, \text{Дж/r}$, что несколько ниже, чем у Al@NaIO₄ (1414.7 Дж/r).

Для описания характеристик горения термита Al@KIO₄ были проведены эксперименты по высокоскоростной регистрации процесса. Образец свободно помещался в поликарбонатную трубку с внутренним диаметром 2 мм и длиной 5 см. Затем образцы поджигали огнепроводным шнуром. Результаты показаны на рис. 5. Плотность заряда составляла 0.95 г/см^3 , а скорость горения образца рассчитывалась на основе временной зависимости координаты фронта пламени. Термит Al@KIO₄ горел ярким пламенем, и в итоге скорость горения стабилизировалась на уровне 726.5 м/с (см. далее табл. 2).

2.3. Анализ термических свойств композитов PETN/AI@KIO₄

Выход газа и скорость реакции были получены в эксперименте со взрывом в замкнутом объеме [16]. Из рис. 5 и табл. 1 видно, что скорость роста давления чистого тэна была относительно медленной и проходила в две стадии. Образец тэна, находящийся в тесном контакте с запальной головкой, предварительно нагревался и воспламенялся за 13.94 мс, а затем полностью реагировал с быстрым увеличением давления до 11.74 МПа за 8.12 мс при изменении скорости нарастания давления от 0.247 до 0.864 ГПа/с. Кривая роста давления компо-

Таблица 1

Параметры профилей давления p(t) различных составов

	Образец	$p_{\max},$ MIIa	Время нарастания давления, мс	Скорость нарастания давления, ГПа/с
	$Al@KIO_4$	7.36	2.21	2.99
	Тэн	11.74	22.06	0.48
	PETN-8	11.01	3.19	3.11
	PETN-12	10.67	3.00	3.20

Рис. 5. Профили давления различных составов

Рис. 6. Высокоскоростная фотосъемка горения композитов PETN/Al@KIO₄

зитов типа термит/ВВ была аналогична кривой для чистого Al@KIO₄, а такие параметры, как время и скорость нарастания давления, значительно улучшились. После легирования термитами скорость роста давления PETN-8 и РЕТN-12 увеличилась с 0.48 соответственно до 3.11 и 3.20 ГПа/м. Это увеличение свидетельствует о том, что добавка термита значительно ускоряет нарастание скорости горения частиц тэна. Кроме того, скорость повышения давления исследованных термитов была выше, чем у чистого Al@KIO₄. Такое поведение скорости указывает на то, что композит термит/ВВ сочетает в себе такие преимущества, как высокая скорость горения термита и большое газообразование ВВ, что является очень выгодным с точки зрения применения этого композита в качестве первичного ВВ. Однако из-за низкого содержания термита максимальное давление зависит от содержания тэна. Изменение содержания тэна в составах в ряду тэн (11.74) >

Рис. 7. Зависимость положения фронта пламени от времени для композитов

Таблица 2

Результаты измерения скорости горения композита PETN/Al@KIO $_4$

Образец	Плотность, Γ/cM^3	Скорость фронта, м/с		
		Ι	II	III
Тэн	1.05	342	1915	971.5
PETN-8	1.10	755	2402	
PETN-12	1.21	534	1797	>2416
Al@KIO ₄	0.95		726.5	

РЕТN-8 (11.01) > РЕТN-12 (10.67) не отражает влияния большого тепловыделения термита на всю систему.

Для дальнейшего изучения процесса горения и детонации композитов типа термит/ВВ были определены характеристики горения состава PETN/Al@KIO₄ методом высокоскоростной фотографии. Результаты этих исследований показаны на рис. 6, 7. Динамика роста скорости горения чистого тэна аналогична росту скорости горения гексогена. На стадии I (0 ÷ 40 мкс) наблюдался переход от воспламенения тэна к кондуктивному горению, скорость горения составляла 342 м/с; на стадии II конвективного горения (40 ÷ 50 мкс) скорость резко возросла до 1915 м/с; на компрессионной (горячие точки) стадии III горения (50 ÷ 70 мкс) скорость горения уменьшилась до 971.5 м/с (табл. 2). После воспламенения композитного образца PETN-12 в течение

Рис. 8. Экспериментальные данные по инициированию образца PETN-8 при различных условиях ограничения, полученные в тесте со свинцовой пластиной

20 мкс происходил переход от кондуктивного горения к конвективному, скорость горения при этом резко увеличилась — с 534 м/с (755 м/с) до 1797 м/с (2402 м/с).

В дальнейшем скорость горения продолжала расти, и примерно через 60 мкс произошел переход в детонацию (в чистом тэне детонация не наблюдалась, см. рис. 7). Кроме того, по сравнению с чистым тэном горение композитных образцов было более интенсивным, а пламя более ярким. Результаты показали, что добавка термита увеличивала скорость горения ВВ и сокращала время перехода от дефлаграции к детонации; поэтому композиты можно использовать в качестве первичного BB.

2.4. Анализ эксплуатационных характеристик инициирования

Эксплуатационные храктеристики композита PETN/Al@KIO₄ при инициировании пассивированного гексогена исследовались в тесте со свинцовой пластиной-свидетелем. Если мощность композита PETN/Al@KIO₄ была достаточно велика, то пассивированный гексоген детонировал, пробивал пластину-свидетеля, а диаметр отверстия в ней рассматривался как критерий мощности инициирования композита. Сначала тестировались характеристики инициирования образца при различных ограничениях. На рис. 8 приведена гистограмма диаметров отверстий в свинцовой пластине. Видно, что детонатор в алюминиевой оболочке может детонировать, и диаметр отверстий в свинцовой пластине составлял 9.13, 9.2 и 8.73 мм для железного, алюминиевого и пластикового колпачков соответственно. Однако если материал оболочки — железо, то детонатор с алюминиевыми и пластиковыми колпачками не детонирует. Что касается влияния размера частиц ВВ на диаметр отверстия в свинцовой пластине, то этот параметр составлял 9.13 и 9.36 мм для PETN-8 зернистостью 60 и 80 меш соответственно. Таким образом, мощность инициирования увеличивается при уменьшении размера частиц тэна. Кроме того, материал армирующего колпачка также оказывает существенное влияние на характеристики инициирования. Железные и алюминиевые колпачки дают лучший результат, чем пластиковые, в случае, если корпус изготовлен из алюминия.

Стабильность характеристик композита оценивалась с помощью теста на длительное хранение при температуре 71 °C. Образцы композита выдерживались при 71 °C в течение нескольких дней, поскольку в соответствии с уравнением Аррениуса это может соответствовать нескольким годам хранения при нормальных условиях. Так, например, хранение при температуре 71 °C в течение 2.8 дня эквивалентно хранению в течение одного года при 20 °С и давлении 1 атм [18]. Для оценки эксплуатационных характеристик был проведен тест на детонацию после длительного хранения методом свинцовой пластины. Результаты (диаметр отверстия d в свинцовой пластине) представлены в табл. 3, из которой видно, что мощность инициирования не изменилась после 20 лет хранения.

Чувствительность образца к удару и трению была испытана в соответствии со стандартом GJB772A-1997, результаты представлены в табл. 4. Нанотермит Al@KIO₄ показал низкую чувствительность к удару, а чувствительность к трению в стандартном тесте составила 68 %. По сравнению с чистым тэном чувствительность композита PETN/Al@KIO₄ улучшена, но все же она ниже, чем у традиционных детонаторов на основе азида свинца и стифната свинца. Так, например, 10 мг азида свинца

Таблица З

Экспериментальные результаты		
по инициированию после,	длительного хранения,	
полученные в тесте со о	свинцовой пластиной	

Хранение,	d, MM		
годы	PETN-8	PETN-12	
0	9.13	9.00	
5	9.28	9.00	
10	9.08	9.00	
15	9.36	9.18	
20	9.13	9.20	

Таблица 4

Механическая чувствительность образца

Образец	Чувствительность		
ооразец	к удару H_{50} , см	к трению $P, \%$	
$Al@KIO_4$	>60	68	
Тэн	18.84	2	
PETN-8	15.488	100	
PETN-12	7.69	100	

и 20 мг стифната свинца могут взорвать гексоген напрямую [19].

ЗАКЛЮЧЕНИЕ

В проведенном исследовании термит Al@KIO₄ методом получен совместного осаждения распылением. Его структурная характеристика показала, что двухкомпонентные частицы существовали в наномасштабе, а частицы KIO₄ были равномерно покрыты наноалюминиевой поверхностью. Путем смешивания термита с ВВ был приготовлен образец композита $PETN/Al@KIO_4$, и проведена всесторонняя оценка его свойств. Установлено, что композит PETN/Al@KIO₄ сочетает в себе преимущества высокой скорости горения термита и большого газовыделения ВВ, что ускоряет нарастание скорости горения и сокращает время перехода от дефлаграции к детонации. Исследованный композит обладает необходимой мощностью для инициирования вторичного ВВ. Кроме того, его способность к инициированию не меняется после 20 лет хранения.

ЛИТЕРАТУРА

- Martirosyan K. S. Nanoenergetic gasgenerators: principles and applications // J. Mater. Chem. — 2011. — V. 21, N 26. — P. 9400–9405. — DOI: 10.1039/C1JM11300C.
- Yen N. H., Wang L. Y. Reactive metals in explosives // Propell., Explos., Pyrotech. — 2012. — V. 37, N 2. — P. 143–155. — DOI: 10.1002/prep.200900050.
- Huynh M. H. V., Hiskey M. A., Meyer T. J., Wetzler M. Green primaries: Environmentally friendly energetic complexes // Proc. Nat. Acad. Sci. — 2006. — V. 103, N 14. — P. 5409–5412. — DOI: 10.1073/pnas.060082710.
- Feng J. Y., Jian G. Q., Liu Q., Zacharian N. Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications // ACS Appl. Mater. Interfaces. — 2013. — V. 5, N 18. — P. 8875–8880. — DOI: 10.1021/am4028263.
- He W., Tao B. W., Yang Z. J., et al. Mussel-inspired polydopamine-directed crystal growth of core-shell n-Al@PDA@CuO metastable intermixed composites // Chem. Eng. J. — 2019. — V. 369. — P. 1093–1101. — DOI: 10.1016/j.cej.2019.03.165.
- Wang J., Qiao Z. Q., Yang Y. T., et al. Core-shell Al-polytetrafluoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials // Chem. Eur. J. — 2016. — V. 22, N 1. — P. 279– 284. — DOI: 10.1002/chem.201503850.
- 7. Comet M., Martin C., Schnell F., Shpitzer D. Nanothermites: A short review. Factsheet for experimenters, present and future challenges // Propell., Explos., Pyrotech. — 2019. — V. 44, N 1. — P. 18–36. — DOI: 10.1002/prep.201800095.
- 8. Hobosyan M. A., Martirosyan K. S. Novel nanoenergetic materials: Emerging trends and applications // IEEE. Nanotechnol. Mag. — 2020. — V. 14, N 1. — P. 30–36. — DOI: 10.1109/MNANO.2019.2952226.
- Rossi C. Engineering of Al/CuO reactive multilayer thin films for tunable initiation and actuation // Propell., Explos., Pyrotech. — 2019. — V. 44, N 1. — P. 94–108. — DOI: 0.1002/prep.201800045.
- 10. Comet M., Spitzer D., Moeglin J.-P. Nanothermites for space and defence applications // Proc. SPIE. — V. 7314. — 73140N. — DOI: 10.1117/12.821334.
- Khasainov B., Comet M., Veyssiere B., Spitzer D. Comparison of performance of fast-reacting nanothermites and primary explosives // Propell., Explos., Pyrotech. — 2017. — V. 42, N 7. — P. 754–772. — DOI: 10.1002/prep.201600181.
- 12. Luo Q., Long X., Nie F., Liu G., Zhu M. The safety properties of a potential kind of novel green primary explosive: Al/Fe₂O₃/RDX

nanocomposite // Materials. — 2018. — V. 11, N
 10. — 1930. — DOI: 10.3390/ma11101930.

- Comet M., Martin C., Klaumuenzer M., Schnell F., Spitzer D. Energetic nanocomposites for detonation initiation in high explosives without primary explosives // Appl. Phys. Lett. — 2015. — V. 107, N 24. — 243108. — DOI: 10.1063/1.4938139.
- 14. Qiao Z. G., Shen J. P., Wang J., et al. Fast deflagration to detonation transition of energetic material based on a quasi-core/shell structured nanothermite composite // Compos. Sci. Technol. — 2015. — V. 107. — P. 113–119. — DOI: 10.1016/j.compscitech.2014.12.005.
- 15. Yi Z. X., Ang Q., Li N. R., Shan C. M., Li Y., Zhang L., Zhu S. G. Sulfate-based nanothermite: A green substitute of primary explosive containing lead // ACS Sustain. Chem. Eng. — 2018. — V. 6, N 7. — P. 8584–8590. — DOI: 10.1021/acssuschemeng.8b00522.
- 16. Wan Z. Y., Cruz A. T. M., Li Y., Li Y. C., Ye Y. H., Zhu S. G., Zhang L. Facile production of NaIO₄-encapsulated nanoAl microsphere as green primary explosive and its

thermodynamic research // Chem. Eng. J. — 2019. — V. 360. — P. 778–787. — DOI: 10.1016/j.cej.2018.11.215.

- Jian G., Feng J., Jacob R. J., Egan G. C., Zachariah M. R. Super-reactive nanoenergetic gas generators based on periodate salts // Angew. Chem. Int. Ed. — 2013. — V. 52, N 37. — P. 9743– 9746. — DOI: 10.1002/anie.201303545.
- 18. Wan Z. Y. Construction and application of nanothermite with core-shell like structure: Ph.D Tesis, 2022.
- Wang Q., Feng X., Wang S., et al. Metal-organic framework templated synthesis of copper azide as the primary explosive with low electrostatic sensitivity and excellent initiation ability // Adv. Mater. — 2016. — V. 28, N 28. — P. 5837–5843. — DOI: 10.1002/adma.201601371.

Поступила в редакцию 06.06.2022. После доработки 08.08.2022. Принята к публикации 07.09.2022.