2010. Том 51, № 2

Март – апрель

C. 295 – 300

УДК 541.60

ЗАВИСИМОСТЬ ДЛИНЫ СВЯЗИ В МОЛЕКУЛАХ И КРИСТАЛЛАХ ОТ КООРДИНАЦИОННЫХ ЧИСЕЛ АТОМОВ

© 2010 С.С. Бацанов*

Институт структурной макрокинетики и проблем материаловедения РАН, Черноголовка

Статья поступила 13 марта 2009 г.

С доработки — 20 мая 2009 г.

Рассмотрены два подхода к описанию изменений длины связей в молекулах и кристаллах при изменении координационных чисел атомов, основанные на разнице или отношении межатомных расстояний при изменении структуры, и показано, что второй подход дает более точные результаты. Изменение межатомных расстояний в полярных соединениях имеет точно такой же характер как изменение ионных радиусов при вариации координационных чисел.

Ключевые слова: межатомное расстояние, фазовый переход, координационное число, порядок связи.

Концепция координационного числа (КЧ) как числа ближайших соседей, расположенных на равных расстояниях от центрального атома, была введена в науку Вернером [1] в 1893 г. для координационных соединений, а в 1915 г. Пфайфером для структур типа NaCl [2]. Зависимость межатомных расстояний в металлах от КЧ эмпирически установил Гольдшмидт [3] в 1927 г., а Полинг [4] в 1929 г. сформулировал концепцию силы связи (синомимы: кратность или порядок связи, связевая валентность V), согласно которой

$$V = Z / K \Psi, \tag{1}$$

где Z — валентность атома, и в 1947 г. предложил соотношение между длиной (d) и порядком связи [5]:

$$d = d_1 - a \log V, \tag{2}$$

где d_1 — длина одинарной связи и a = 0,71 для ковалентных веществ. После этих работ были предложены различные полуэмпирические зависимости длин связей от их кратности (см. библиографию в [6,7]), которые использовались, как правило, для интерпретации структур тройных кислородных и галоидных соединений. Наиболее популярными оказались формулировки Брауна—Шэннона [8] и Захариазена [9]

$$V = (d_1 / d)^N, \tag{3}$$

$$d = d_1 - b \ln V \tag{4}$$

и особенно Брауна и Олтерматта [10]

$$d = d_1 - 0.37 \ln V, \tag{5}$$

где N — эмпирический параметр, изменяющийся в разных структурах в пределах от 4 до 7, а *b* принимает для различных связей значения 0,305—0,341 [6, 9, 11], 0,44—0,50 [12], 1,02 и 0,67 [13] и 0,75 [14].

Непостоянство параметра *b* для разных типов связей и валентных состояний атомов неоднократно обсуждали в кристаллохимических обзорах [7, 15—18], наконец, Зоччи [6] на основе статистического анализа 318 кристаллических структур показал, что применение уравне-

^{*} E-mail: batsanov@gol.ru

С.С. БАЦАНОВ

ния (5) не дает удовлетворительных результатов. Действительно, трудно понять, почему значение *b* должно быть неизменным для атомов с различной электронной структурой и размером, хотя в конкретных случаях, например для вычисления ван-дер-ваальсовых радиусов, оно вполне подходит [19].

В настоящей работе рассмотрено изменение межатомных расстояний при максимально возможном изменении КЧ в структурах бинарных соединений в газообразном и кристаллическом состояниях для нахождения альтернативной зависимости d = f(KH).

ПРЕВРАЩЕНИЕ МОЛЕКУЛ В КРИСТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ

Сравним два подхода для описания вариации межатомных расстояний при конденсации полярных молекул. Эти изменения можно выразить как отношение расстояний $k_{mn} = d(K\Psi_m)/d(K\Psi_n)$ или как их разность $\Delta d_{mn}(A) = d(K\Psi_m) - d(K\Psi_n)$, где *m* и *n* — координационные числа в исходном и конечном состояниях вещества. Экспериментальные данные для молекул и кристаллов взяты из обзоров [20—24] или оригинальных статей, на которые даны ссылки.

Как следует из табл. 1, усредненные значения отношений и разниц межатомных расстояний для различных изменений координационных чисел в моногалогенидах равны:

$$\begin{aligned} k_{21} &= 1,056 \pm 1,0 \%, \quad k_{41} = 1,141 \pm 2,8 \%, \quad k_{61} = 1,220 \pm 3,7 \%, \quad k_{81} = 1,264 \pm 3,8 \%; \\ \Delta d_{21}, & \text{\AA} = 0,131 \pm 16,5 \%, \quad \Delta d_{41}, & \text{\AA} = 0,286 \pm 3,5 \%, \quad \Delta d_{61}, & \text{\AA} = 0,537 \pm 15,1 \%, \\ \Delta d_{81}, & \text{\AA} = 0,698 \pm 12,5 \%. \end{aligned}$$

Таблица 1

Длина связей (й	Å)	в молекулах и кристаллических соединениях моногалогенидов	1
	-/		

М	КЧ	<i>d</i> (M—H)	<i>d</i> (M—F)	d(M—Cl)	d(M—Br)	d(M—I)
Au	1			2,199 [25]	2,318 [25]	2,471 [25]
	2			2,356	2,422	2,603
Cu	1	1,462		2,051	2,173	2,338
	4	1,756		2,345	2,464	2,624
Ag	1		1,983	2,281	2,393	2,545
	6		2,465*	2,774	2,887	3,035**
Li	1	1,596	1,564	2,021	2,170	2,392
	6	2,043	2,009	2,566	2,747	3,025
Na	1	1,887	1,926	2,361	2,502	2,711
	6	2,445	2,307	2,814	2,981	3,231
	8		2,36	3,00		
Κ	1	2,240	2,171	2,667	2,821	3,048
	6	2,856	2,664	3,139	3,293	3,526
	8	2,96	2,78 [26]	3,28 [27]	3,46 [27]	3,76 [27]
Rb	1	2,367	2,270	2,787	2,945	3,177
	6	3,025	2,815	3,285	3,434	3,663
	8	3,16	2,83 [27]	3,41 [27]	3,57 [27]	3,84 [27]
Cs	1	2,494	2,345	2,906	3,072	3,315
	6	3,195	3,005	3,47	3,615	3,83
	8	3,312 [28]	3,09	3,566	3,720	3,956
T1	1		2,084	2,485	2,618	2,814
	6			3,16	3,297	3,47
	8			3,327	3,443	3,64

^{*} Для AgF в *B*2 структуре *d* = 2,595 Å.

^{**} Для AgI в *B*3 структуре *d* = 2,812 Å.

т		~	_				2
1	а	0	Л	И	Ц	а	

	, ,			2 1		(, , ,	
MX	КЧ = 1	КЧ = 4	MX	КЧ = 1	КЧ = 6	MX	КЧ = 1	КЧ = 6
BeO	1,331	1,649	ZnO	1,719	2,140	MnO	1,648	2,222
BeS	1,742	2,107	ZnS	2,10	2,53	MnS	2,068	2,610
MgS	2,144	2,451	AlN	1,686	2,022	FeO	1,619	2,154
ZnO	1,719 [29]	1,978	ScN	1,687	2,252	FeS	2,04	2,49
ZnS	2,10 [30]	2,341	YN	1,804	2,44	CoO	1,631	2,130
BN	1,274	1,566	LaN	2,172	2,65	CoS	1,978	2,34
AlN	1,686	1,892	ZrC	1,807	2,344	NiO	1,631	2,088
MnS	2,068 [31]	2,429	HfN	1,69	2,263	NiS	2,00	2,39
FeN	1,580 [32]	1,865	VN	1,566	2,072	PtN	1,682 [35]	2,402 [36]
MX	КЧ = 1	КЧ = 8	NbC	1,700	2,233	PtC	1,679 [35]	2,407 [37]
CaO	1,822	2,52	TaN	1,683	2,168	MgO	1,749	2,106
CaS	2,320	3,00	WN	1,667	2,06	CaO	1,822	2,405
SrO	1,920	2,65	LaS	2,352 [33]	2,926 [34]	CaS	2,320	2,842
SrS	2,441	3,125	PbS	2,287	2,968	SrO	1,920	2,580
BaO	1,940	2,96	ThO	1,840	2,60	SrS	2,441	3,012
BaS	2,507	3,37	CrS	2,071	2,46	BaO	1,940	2,770
LaS	2,352	2,988	CrN	1,563	2,074	BaS	2,507	3,193

Длины связей (Å) в молекулах и кристаллах MX (X = C, N, O, S)

Как видно из табл. 2, средние значения k и Δd в соединениях многовалентных элементов равны:

$$k_{41} = 1,174 \pm 3,6 \%, \quad k_{61} = 1,289 \pm 5,5 \%, \quad k_{81} = 1,354 \pm 6,1 \%;$$

 $\Delta d_{41}, \text{\AA} = 0,293 \pm 16,9 \%, \quad \Delta d_{61}, \text{\AA} = 0,537 \pm 22,5 \%, \quad \Delta d_{81}, \text{\AA} = 0,759 \pm 16,6.$

Средние значения k и Δd в соединениях типа MX₂ равны:

$$k_{42} = 1,108 \pm 2,3 \%, \quad k_{62} = 1,171 \pm 2,8 \%, \quad k_{82} = 1,194 \pm 3,8 \%;$$

 $\Delta d_{42}, \text{\AA} = 0,213 \pm 30,0 \%, \quad \Delta d_{62}, \text{\AA} = 0,363 \pm 18,8 \%, \quad \Delta d_{82}, \text{\AA} = 0,395 \pm 15,7 \%.$

Средние значения k и Δd в соединениях типа MX₃ равны:

 $k_{63} = 1,110 \pm 1,3 \%, \quad k_{93} = 1,174 \pm 1,4 \%;$ $\Delta d_{63}, \text{ } \text{ } \text{ } = 0,215 \pm 17,6 \%, \quad \Delta d_{93}, \text{ } \text{ } \text{ } \text{ } = 0,437 \pm 6,7 \%.$

ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ В КРИСТАЛЛИЧЕСКИХ СОЕДИНЕНИЯХ

Сравнение межатомных расстояний в полиморфных модификациях соединений типа МХ в таблицах 1, 5, 6 и соединений типа MX_2 в табл. 7 показывает аналогичное влияние координационных чисел на длины связей. При этом следует иметь в виду, что межатомные расстояния в фазах высокого давления определены с точностью ±0,02 Å.

ЗАКЛЮЧЕНИЕ

Как показано выше, конденсация полярных молекул, или фазовый переход в кристаллах при высоких давлениях с увеличением координационных чисел в пределах от 1 до 8, ведет к закономерному увеличению межатомных расстояний независимо от природы атомов в соединениях MX_n . При этом стабильность отношений расстояний (k_{mn}) много больше, чем разница длин связей (Δd_{mn}), что указывает на ключевую роль атомных размеров, тогда как влияние валентности много меньше. Следовательно, средние относительные изменения длин связей в бинарных соединениях при изменении координационных чисел могут быть описаны следующим образом:

С.С. БАЦАНОВ

$K H_m \rightarrow C N_n$	$1 \rightarrow 4/3$	$1 \rightarrow 3/2$	$1 \rightarrow 2$	$1 \rightarrow 3$	$1 \rightarrow 4$	$1 \rightarrow 6$	$1 \rightarrow 8$
k_{mn}	1,05	1,08	1,10	1,17	1,19	1,27	1,30

Эти изменения близки к изменениям ионных радиусов при изменении координационного числа в структуре. Так, согласно Полингу ([46], с. 538), для K⁺ или Cl⁻ имеем следующий характер изменения радиусов ионов при изменении их координации:

Этот результат следует из закономерностей изменения атомных радиусов при увеличении полярности связи ([24], с. 285), когда уже при 70%-й ионности радиусы атомов приближаются

MX ₂	КЧ = 2	КЧ = 4	MX ₂	КЧ = 2	КЧ = 6	MX ₂	КЧ = 2	КЧ = 6
2			2		•	2		
BeH_2	1,334 [38]	1,47 [39]	CaI ₂	2,822	3,12	NbO ₂	1,713	2,054
BeF ₂	1,374	1,540	ZnF_2	1,743	2,033	NiF ₂	1,730	2,073
$BeCl_2$	1,791	2,028 [40]	ZnBr ₂	2,194	2,74	NiCl ₂	2,056	2,474
BeBr ₂	1,932	2,185 [40]	CdCl ₂	2,266	2,652	NiBr ₂	2,177	2,628
BeI ₂	2,10	2,417 [40]	CdBr ₂	2,386	2,782	NiI ₂	2,44	2,74
$ZnCl_2$	2,064	2,346	CdI ₂	2,570	2,989	MX ₂	КЧ = 2	КЧ = 8
$ZnBr_2$	2,194	2,415	MnF_2	1,812	2,196	CaF ₂	2,10	2,365
ZnI_2	2,389	2,645	MnCl ₂	2,184	2,593	SrF ₂	2,20	2,511
HgI_2	2,558	2,788 [41]	MnBr ₂	2,328	2,727	SrCl ₂	2,607	3,021
SiO ₂	1,521	1,607	MnI_2	2,538	2,92	SrBr ₂	2,748	3,17
SiS ₂	1,924	2,14	FeF ₂	1,770	2,139	BaF_2	2,32	2,683
GeO ₂	1,628	1,74	FeCl ₂	2,132	2,536	BaCl ₂	2,768	3,17
GeS ₂	2,005	2,19	FeBr ₂	2,272	2,636	CdF ₂	1,97	2,333
MX ₂	КЧ = 2	КЧ = 6	FeI ₂	2,51	2,88	HgF_2	1,96	2,398
MgH_2	1,703 [38]	1,948	CoF ₂	1,756	2,100	PbF ₂	2,036	2,570
MgF_2	1,746	1,991	CoCl ₂	2,063	2,508	MnF_2	1,812	2,25
MgCl ₂	2,179	2,565	CoBr ₂	2,223	2,63	CoF ₂	1,756	2,13
MgBr ₂	2,308	2,735	CoI ₂	2,475	2,83	NiF ₂	1,730	2,10
MgI_2	2,52	2,918	SiO ₂	1,521	1,774	HfO ₂	1,776	2,22
CaCl ₂	2,483	2,741 [42]	GeO ₂	1,628	1,885	Li ₂ O	1,606	2,00
CaBr ₂	2,592	2,905 [43]						

Длины связей (Å) в молекулах и кристаллах состава MX₂

Таблица 4

Таблица З

Длины связей (Å) в молекулярных	и кристаллических	тригалогенидах MX ₃
-----------------	------------------	-------------------	--------------------------------

MX ₃	КЧ = 3	КЧ = 6	MX ₃	КЧ = 3	КЧ = 6	MX ₃	КЧ = 3	КЧ = 9
ScF ₃	1,808	2,01	GaF ₃	1,716	1,88	LaF ₃ [45]	2,077	2,495
ScCl ₃	2,285	2,52	TiCl ₃	2,205	2,47	LaCl ₃ [45]	2,534	2,952
YF ₃	2,04	2,32	VF ₃	1,721	1,935	LaBr ₃ [45]	2,689	3,115
YCl ₃	2,422 [44]	2,633	MnF ₃	1,739	1,93	LaI ₃ [45]	2,867	3,355
AlF ₃	1,628	1,80	FeF ₃	1,763	1,925			
AlCl ₃	2,052	2,31	FeCl ₃	2,145	2,37			

298

Таблица 5

КЧ = 4	SiC	1,888	MgS	2,45	MgSe	2,53	КЧ = 4	MnS	2,431	MnSe	2,546	MnTe	2,744
КЧ = 6		2,02		2,596		2,732	КЧ = 6		2,610		2,725		3,013
КЧ = 4	ZnO	1,978	ZnS	2,341	ZnSe	2,454	КЧ = 4	AlN	1,896	GaN	1,948	InN	2,156
КЧ = 6		2,140		2,53		2,67	КЧ = 6		2,022		2,076		2,344
КЧ = 4	CdS	2,528	CdSe	2,620	CdTe	2,806							
КЧ = 6		2,72		2,84		3,05							

Изменение длин связей (Å) в соединениях МХ при изменении КЧ от 4 до 6

 $k_{64} = 1,078 \pm 0,9 \%$, Δd_{64} , Å = 0,185 ± 22,0 %.

Таблица б

Изменение длин связей (Å) в соединениях МХ при изменении КЧ от 6 до 8

М	КЧ		d(M—Cl)	d(M—Br)	d(M—I)	М	КЧ	<i>d</i> (M—O)	d(M—S)	d(M—Se)	d(M—Te)
NH4	6		3,300	3,437	3,630	Ba	6	2,770	3,193	3,296	3,500
	8		3,350	3,515	3,784		8	2,96	3,37	3,42	3,697
М	КЧ	<i>d</i> (M—O)	d(M-S)	d(M—Se)	d(M—Te)	Cd	6	2,348			
Ca	6	2,405	2,842	2,962	3,174		8	2,48			
	8	2,52	3,00	3,13	3,30	La	6		2,926	3,061	3,226
Sr	6	2,580	3,012	3,116	3,330		8		2,988 [34]	3,123 [34]	3,364 [34]
	8	2,65	3,125	3,26	3,475						

 $k_{86} = 1,041 \pm 1,4$ %, Δd_{86} , Å = 0,128 ± 35,0 %.

к ионным значениям (см. рисунок), что собственно и обеспечивает применимость системы ионных радиусов для вычисления длин связей в кристаллических соединениях.

Совершенно иная ситуация наблюдается в ковалентных соединениях, где изменение межатомных расстояний сильно зависит от природы атомов. Например, при переходе молекул щелочных металлов (КЧ = 1) в твердое состояние (КЧ = 8) расстояния увеличиваются на 17 %,

Изменение атомных радиусов при изменении ионности связи М—Х: *I* — радиус Х, *2* — радиус М, *3* — длина связи М—Х

тогда как при конденсации молекул Cu, Ag и Au длина связи увеличивается меньше — в среднем на 15 %, хотя КЧ увеличился больше — с 1 до 12 [24].

Таблица 7

Длины связей (Å) в полиморфных модификациях соединений типа MX₂

КЧ = 4	SiO ₂	1,607	${\rm GeO}_2$	1,740				
КЧ = 6		1,774		1,885				
КЧ = 6	TiO ₂	1,959	SnO_2	2,054	PbO_2	2,163	RuO_2	1,970
КЧ = 8		2,109		2,132		2,316		2,106
КЧ = 6	MnF_2	2,122	CoF_2	2,040	NiF ₂	2,008	PdF_2	2,163
КЧ = 8		2,25		2,13		2,10		2,30

 $k_{64} = 1,094 \pm 0,9$ %, $k_{86} = 1,058 \pm 1,2$ %; Δd_{64} , Å = 0,156 ± 7,0 %; Δd_{86} , Å = 0,120 ± 22,8 %.

Таким образом, уравнения (3)—(5) удобны для интерпретации структуры и свойств индивидуальных веществ, тогда как относительный подход позволяет лучше оценить изменения длин связей при любом изменении координационного числа в кристаллических соединениях.

СПИСОК ЛИТЕРАТУРЫ

- 1. Werner A. // Z. Anorg. Chem. 1893. 3. S. 267 330.
- 2. Pfeiffer P. // Z. Anorg. Allgem. Chem. 1915. 92. S. 376 380.
- 3. Goldschmidt V.M. // Skr. Nor. Vidensk. Akad. Oslo. 1927. 8. P. 7 23.
- 4. Pauling L. // J. Amer. Chem. Soc. 1929. 51. P. 1010 1026.
- 5. Pauling L. // Ibid. 1947. 69. P. 542 553.
- 6. Zocchi F. // Solid State Sciences. 2000. 2. P. 383 387.
- 7. *Brown I.D.* The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford: Oxford Univ. Press, 2002.
- 8. Brown I.D., Shannon R.D. // Acta Crystallogr. 1973. A29. P. 266 282.
- 9. Zachariasen W.H. // J. Less-Common Met. 1978. 62. P. 1 7.
- 10. Brown I.D., Altermatt D. // Acta Crystallogr. 1985. B41. P. 244 247.
- 11. Zocchi F. // Chem. Phys. Lett. 2006. 421. P. 277 280.
- 12. Sidey V. // Acta Crystallogr. 2009. B65. P. 99 101
- 13. Jules J.L., Lombardi J.R. // J. Phys. Chem. 2003. A107. P. 1268 1273.
- 14. Pettifor D.G. Bonding and Structures of Molecules and Solids. Oxford: Clarendon Press, 1995.
- 15. Brese N.E., O'Keeffe M. // Acta Crystallogr. 1991. **B47**. P. 192 197.
- 16. *Trzescowska A., Kruszynski R., Bartczak T.J. //* Ibid. 2004. **B60**. P. 174 178; 2006. **B62**. P. 745 753.
- 17. Ефремов В.А. // Успехи химии. 1990. 59. С. 1085 1110.
- 18. Urusov V.S. // Acta Crystallogr. 1995. B51. P. 641 649.
- 19. Nag S., Banerjee K., Datta D. // New J. Chem. 2007. **31**. P. 832 834
- 20. Hull S., Berastegui P. // J. Phys. Cond. Matter. 1998. 10. P. 7945 7956.
- 21. Гурвич Л.В., Ежов Ю.С., Осина Е.Л., Шенявская Е.А. // Журн. физ. химич. 1999. **73**. С. 401 414.
- 22. Belsky A., Hellenbrandt M., Karen V.L., Luksch P. // Acta Crystallogr. 2002. B58. P. 364 369; Kaduk J.A. // Ibid. – P. 370 – 379.
- 23. Бацанов С.С. // Журн. структур. химии. 2005. 46. С. 314 322.
- 24. Batsanov S.S. Experimental Foundations of Structural Chemistry. Moscow: Moscow Univ. Press, 2008.
- 25. Reynard L.M., Evans C.J., Gerry M.C.L. // J. Mol. Spectroscop. 2001. 205. P. 344 346.
- 26. Yagi T. // J. Phys. Chem. Solids. 1978. 39. P. 563 571.
- 27. Hofmeister A.M. // Phys. Rev. 1997. B56. P. 5835 5855.
- 28. Ghandehari K., Luo H., Ruoff A.L. et al. // Phys. Rev. Lett. 1995. 74. P. 2264 2267.
- 29. Bauschlicher C.W., Partridge H. // Chem. Phys. Lett. 2001. 342. P. 441 446.
- 30. Bridgeman A.J., Rothery J. // J. Chem. Soc., Dalton. 2000. P. 211 218.
- 31. Thompsen J.M., Ziurys L.M. // Chem. Phys. Lett. 2001. 344. P. 75 84.
- 32. Aiuchi K., Shibuya K. // J. Molec. Spectroscop. 2000. 204. P. 235 247.
- 33. Winkel R.J., Davis S.P., Abrams M.C. // Appl. Opt. 1996. 35. P. 2874 2878.
- 34. Vaitheeswaran G., Kanchana V., Heathman S. et al. // Phys. Rev. 2007. B75. P.184108.
- 35. Cooke A.A., Gerry M.C.L. // J. Chem. Phys. 2004. 121. P. 3486 3486.
- 36. Gregoryanz E., Sanloup Ch., Somayazulu M. et al. // Nature Mater. 2004. 3. P. 294 297.
- 37. Ono S., Kikegawa T., Ohishi Y. // Solid State Comm. 2005. 133. P. 55 59.
- 38. Shayesteh A., Yu S., Bernath P.F. // Chem. Eur. J. 2005. 11. P. 4709 4712.
- 39. Сенин М.Д., Ахачинский В.В., Маркушин Ю.Е. et al. // Неорган. матер. 1993. 29. С. 1582 1586.
- 40. Троянов С.Л. // Журн. неорган. химии. 2000. 45. С. 1619 1624.
- 41. Hostettler M., Birkedal H., Schwarzenbach D. // Acta Crystallogr. 2002. B58. P. 903 913.
- 42. Howard C.J., Kennedy B.J., Curfs C. // Phys. Rev. 2005. B72. P. 214114.
- 43. Kennedy B.J., Howard C.J. // Ibid. 2004. B70. P. 144102.
- 44. Reffy B., Marsden C.J., Hargittai M. // J. Phys. Chem. 2003. A107. P. 1840 1849.
- 45. Kovacs A., Konings R.J.M. // J. Phys. Chem. Ref. Data. 2004. 33. P. 377 404.
- 46. Pauling L. The Nature of the Chemical Bond. 3rd ed. N.Y.: Cornell Univ. Press, 1960.