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ВВЕДЕНИЕ

Современная направленность динамики кли­
мата в Арктике в геокриологическом отношении 
проявляется, как известно, в повышении темпера­
туры мерзлых пород, и в первую очередь в верхней 
части геологического разреза. В краткосрочной 
перспективе это ведет к увеличению мощности се­
зонноталого слоя (СТС) и появлению талого, не 
промерзающего зимой слоя над кровлей многолет­
немерзлых пород (ММП). Дальнейшее повыше­
ние температуры воздуха должно было бы способ­
ствовать понижению кровли многолетнемерзлых 
пород и формированию участков с заглубленным 
положением кровли ММП. Однако благодаря по­
явлению перманентного талого слоя возникает 
хорошо известный эффект “нулевой завесы” [Гео-
криологический словарь, 2003; Glossary…, 1988]. 
Возникновение талого слоя между подошвой се­

зонномерзлого слоя (СМС) и кровлей ММП бу­
дет оказывать существенное влияние на структуру 
годовых теплооборотов. В частности, существенно 
сократится глубина проникновения годовых коле­
баний температуры. Формирование в верхней час­
ти разреза такого термодинамического барьера 
само по себе стабилизирует (консервирует на не­
которое время) геокриологические условия на но­
вом уровне, даже в случае постоянного повыше­
ния температуры воздуха. 

Важным фактором, влияющим на формиро­
вание геокриологической обстановки в верхней 
части разреза, является и изменение микрорелье­
фа поверхности из-за осадки пород при их оттаи­
вании. Закономерности этого явления (инверсия 
рельефа) изучались на участке Сейда, располо­
женном в Воркутинском районе [Ривкин и др., 
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2017]. В результате пространственной неоднород­
ности этого процесса создаются предпосылки к 
существенной трансформации геокриологических 
условий в верхней части разреза. 

Основные закономерности  
изменения геокриологических условий  

в приповерхностной части разреза
Можно выделить несколько этапов (или ста­

дий) трансформации современных геокриологи­
ческих условий на фоне положительного темпера­
турного тренда. На рис. 1 приведена схема измене­
ния соотношения мощности СТС, СМС и кровли 
ММП в верхней части разреза в результате повы­
шения температуры пород. Выделено три основ­
ные стадии трансформации геокриологических 
условий в зависимости от соотношения мощности 
СТС, СМС и глубины положения кровли ММП:  
а – стадия равенства СМС и СТС; б – стадия 
увеличения СТС и начала формирования тало­
го слоя, разделяющего подошву СМС и кровлю 
ММП; в – стадия формирования устойчивой не­
сливающейся мерзлоты, глубина положения кров­
ли ММП существенно больше глубины сезонного 
промерзания. Явление приповерхностной несли­
вающейся мерзлоты (заглубленной кровли ММП) 
очень распространено на севере Западной Сибири 
и Европейском Севере и является в зависимости 
от широтного положения или реликтом климати­
ческого оптимума голоцена, или результатом бо­
лее поздних короткопериодных климатических 
колебаний. Общим свойством для таких участков 
является то, что они, как правило, не имеют в есте­
ственных условиях выраженной ландшафтной ин­
дикации. То есть в пределах микрорайона с одно­
типным ландшафтом в приповерхностной части 

разреза могут существовать и участки с заглублен­
ной кровлей (несквозные талики), и участки с 
мерзлыми породами сливающегося типа. Совре­
менные условия, которые сформировались и су­
ществуют на территории такого ландшафтного 
микрорайона, обеспечивают устойчивое суще­
ствование таких несквозных таликов в обрам­
лении массивов мерзлых пород. Таким образом, 
формируется достаточно устойчивая в термодина­
мическом отношении геокриологическая система 
(см. рис. 1, в).

Важнейшим геоэкологическим и инженерно-
геокриологическим последствием перехода при­
поверхностной части мерзлых пород в талое со­
стояние является осадка поверхности. Простран­
ственная дифференцированность величины 
осадки мерзлых пород при оттаивании, предопре­
деленная как пространственной неоднородностью 
литологического состава и свойств мерзлых по­
род, так и современным процессом теплообмена 
на поверхности, существенно влияет на форми­
рование новых ландшафтных условий. Формиро­
вание этих условий будет происходить на фоне 
деградации мерзлых пород и криогенной инвер­
сии рельефа. В первую очередь изменится микро­
рельеф и гидроморфность (дренированность) со­
временных ландшафтов. Следствием этого будет 
изменение локальных условий теплообмена на 
поверхности. В конечном счете это приведет к из­
менению условий сезонного промерзания и оттаи­
вания, они будут отличаться от существующих 
ныне условий. На некоторых участках будут соз­
даны условия для глубокого сезонного промерза­
ния, возникновения перелетков и маломощных 
многолетнемерзлых грунтов. Это происходит и в 
настоящее время даже на фоне положительного 
тренда температуры воздуха и температуры ММП 
[Иванова и др., 2011; Осадчая, 2016; Rivkin et al., 
2008]. 

На рис. 2 приведена схема трансформации по­
верхностных условий в результате понижения 
кровли ММП, осадки поверхности при оттаива­
нии мерзлых пород и относительного повышения 
локальных участков в результате новообразова­
ния маломощных приповерхностных ММП. 
Стрелками показано направление трансформации 
рельефа. Прогноз трансформации рельефа и гео­
криологических условий сделан на основе пред­
полагаемого повышения температуры воздуха в 
XXI столетии согласно региональной климатиче­
ской модели HIRHAM4 [Christensen et al., 1996, 
2001]. 

На рис. 2 выделено три основных этапа транс­
формации рельефа при сохранении положитель­
ного климатического тренда в XXI в. Этап 1 соот­
ветствует современному состоянию ландшафтно-
геокриологических условий. Зона  а на схеме 
соответствует достаточно типичному криолитоло­

Рис. 1. Принципиальная схема изменения соот­
ношения СТС/СМС/ММП в верхней части раз­
реза в результате повышения температуры пород:
1 – почвенно-растительный слой; 2 – граница раздела мерз­
лых (м) и талых (т) пород. СТС – сезонноталый слой, 
СМС – сезонномерзлый слой, ММП – многолетнемерзлые 
породы.
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гическому разрезу, который характерен для за­
болоченных понижений (например, ложбины 
временного стока) на всех геоморфологических 
уровнях. Верхняя часть разреза на таких переув­
лажненных участках представлена, как правило, 
заторфованными отложениями или слаборазло­
жившимся торфом. В силу избыточного поверх­
ностного увлажнения и повышенного снегона­
копления здесь обычно формируются несквозные 
талики. Положение кровли ММП в этом случае 
понижено, а верхняя часть разреза находится в та­
лом состоянии. На севере Ямала понижение кров­
ли ММП (непромерзающая часть несквозного та­
лика) может составлять всего несколько метров, а 
иногда не превышать 0.5 м [Ривкин, Левантовская, 
2002]. На юге, вблизи южной границы распростра­
нения мерзлых пород, кровля ММП в пределах 
ложбин стока существенно глубже и обычно 
варьирует от 5 до 10 м [Суходольский, 1982; Гео-
криология СССР, 1988]. Безусловно, это сильно 
зависит от ландшафтно-геоморфологических и 
криолитологических условий участка: ширины 
долины и глубины ее вреза по отношению к при­

легающей территории, условий снегонакопления, 
состава пород и т. д. Осадки поверхности из-за от­
таивания пород в результате положительного кли­
матического тренда на таких участках не происхо­
дит, так как порода уже находится в талом состоя­
нии. Дальнейшее оттаивание и осадка пород будут 
происходить существенно медленнее и с сильной 
задержкой во времени. Таким образом, абсолют­
ная отметка поверхности пород останется на 
прежнем уровне (см. рис. 2, этап 2а) или изменит­
ся незначительно в результате консолидации по­
род при их дренировании. Зоны б и в на рис. 2 
(этап  1) соответствуют изначально мерзлым 
участкам, сложенным в верхней части разреза ми­
неральными, как правило, льдистыми породами б 
и мерзлым торфом в, подстилаемым мерзлыми 
минеральными породами.

Геокриологические условия на этапе 2 (см. 
рис. 2) в целом соответствуют ситуации, формиру­
ющейся в результате оттаивания мерзлых грунтов 
при положительном климатическом тренде. Наи­
большие изменения прогнозируются на участках, 
близких по своим условиям к зоне б (см. рис. 2, 

Рис. 2. Принципиальная схема трансформации ландшафтных и геокриологических условий в резуль­
тате оттаивания ММП.
Этап 1 – современное состояние, этап 2 – трансформация рельефа и ландшафтов в результате осадки грунтов при оттаи­
вании, этап 3 – их трансформация в результате промерзания и новообразования ММП. Стрелками показано направление 
смещения поверхности. 1 – почвенно-растительный слой; 2 – граница раздела мерзлых (м) и талых (т) грунтов; 3 – торф, 
4 – суглинок 
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этап 2б). Верхняя часть разреза таких участков 
представлена льдистыми минеральными порода­
ми и перекрыта мохово-растительным слоем отно­
сительно небольшой мощности. Оттаивание по­
род на таких участках будет сопровождаться су­
щественной осадкой поверхности. При понижении 
кровли ММП на 10 м осадка поверхности может 
составить 2.5 м и более для глинистых льдистых 
пород [Ривкин и др., 2017; Rivkin et al., 2008].

Абсолютное положение поверхности пород в 
зоне в (см. рис. 2, этапы 1в, 2в, 3в), сложенных с 
поверхности торфом большой мощности, останет­
ся стабильной на всех этапах развития. 

Многолетнее промерзание будет сопрово­
ждаться пучением и вследствии этого повыше­
нием (как абсолютным, так и относительным, по 
отношению к прилегающим участкам) поверхно­
сти пород, т. е. инверсией рельефа на некоторых 
участках. На рис. 2 показано, как изменится соот­
ношение положения поверхности пород в зонах а 
и б на всех этапах трансформации рельефа. Ам­
плитуда инверсии микрорельефа будет опреде­
ляться локальными факторами, показывающими 
степень пучинистости грунтов (влажность, состав, 
дисперсность, наличие источника воды и т. д.), и 
глубиной многолетнего промерзания. 

Таким образом, заболоченное (сложенное в 
верхней части торфом) локальное понижение (см. 
рис. 2, этап 1а) в результате промерзания с по­
верхности трансформируется в относительно при­
поднятый талый участок (этап 2а), а затем в мерз­
лый торфяник (этап  3а). Поверхность нового 
ландшафтного участка в результате пучения по­
вышается и из пониженного участка рельефа 
трансформируется в относительно возвышенный: 
зона а (гидроморфное понижение) трансформи­
руется в зону в – мерзлый торфяник (см. рис. 2, 
этап 3). Зона а, сложенная с поверхности торфом, 
будет (в связи с дренированием за счет относи­
тельного опускания поверхности соседних участ­

ков) благоприятна для локального многолетнего 
промерзания, формирования перелетков и мало­
мощной мерзлоты даже на фоне положительного 
тренда температуры воздуха. Уже в современных 
условиях это явление часто встречается в виде но­
вообразования мерзлых пород в днищах заболо­
ченных локальных понижений рельефа (рис. 3).

Зона б на рис. 2, сложенная льдистыми мине­
ральными породами, при повышении температу­
ры пород будет испытывать другие изменения. На 
таких участках оттаивание мерзлых пород и осад­
ка поверхности ландшафта при их оттаивании 
приведут к существенной трансформации ланд­
шафта в целом. Абсолютное положение поверхно­
сти пород в зоне б понизится на величину осадки 
при оттаивании (на 2.5–3.0  м при оттаивании 
мерзлых пород на глубину до 10 м в зависимости 
от криолитологических условий разреза) [Ривкин 
и др., 2017]. Таким образом, относительно возвы­
шенный и дренированный в современных услови­
ях ландшафтный участок минеральной тундры 
(см. рис. 2, этап 1б) в результате оттаивания мерз­
лых пород и понижения поверхности при осадке 
пород трансформируется в конечном счете в забо­
лоченное гидроморфное понижение (трансформа­
ция зоны б в зону а, см. рис. 2, этап 3). 

Следует отметить, что если понижение по­
верхности в результате осадки пород при оттаива­
нии и трансформации рельефа относительно дре­
нированных участков минеральной тундры в ги­
дроморфные заболоченные понижения в целом 
достаточно обоснованно (это закономерно на фоне 
потепления климата и, как следствие, повышения 
температуры пород и их оттаивания), то обратный 
процесс (локальное новообразование мерзлых 
грунтов на фоне повышения температуры мерзлой 
толщи в целом) требует более детального исследо­
вания. В частности, предполагается, что немало­
важную роль при этом может играть понижение 
влажности биогенных покровов в ходе дренирова­
ния участков территории в результате криогенно­
го преобразования рельефа.

Глубокое сезонное промерзание, как извест­
но, характерно для участков с определенным со­
четанием природных факторов: климатических, 
ландшафтных и литологических. В первую оче­
редь это участки с достаточно низким температур­
ным фоном приземного воздуха, отсутствием кус­
тарниковой и кустарничковой растительности, 
маломощным снежным покровом или участки, с 
которых снег постоянно сдувается ветром. С точ­
ки зрения криолитологических условий, это 
участки, сложенные в верхней части геологиче­
ского разреза породами, коэффициент теплопро­
водности которых в мерзлом состоянии суще­
ственно больше, чем в талом. В мерзлотоведении 
такое сочетание природных факторов – классиче­

Рис. 3. Новообразование мерзлых грунтов в за­
болоченном понижении. 
Стрелки указывают на участки промерзания и новообразо­
вания ММП. 
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ское условие для формирования перелетков мерз­
лых пород и многолетнего промерзания. 

В слабодренированных понижениях (ложби­
нах локального стока, озерных понижений, участ­
ках обрамления озерных котловин и подобных 
гидроморфных участках) на всех геоморфологиче­
ских уровнях условия для глубокого промерзания 
не самые благоприятные. Верхняя часть разреза 
на таких гидроморфных участках обычно пред­
ставлена торфом или сильно оторфованными су­
глинистыми отложениями, которые перекрыты с 
поверхности мощным (20–30 см) моховым покро­
вом. Неравномерные локальные условия теплооб­
мена на поверхности, обусловленные естествен­
ными неровностями мохового покрова и форми­
рующегося снежного покрова, способствуют и 
дифференцированности промерзания в пределах 
одного микрорайона. При благоприятном сочета­
нии сезонных факторов, а именно: раннем уста­
новлении отрицательных температур воздуха и 
позднем установлении снежного покрова, созда­
ются условия для опережающего промерзания в 
местах пониженного снегонакопления и более ин­
тенсивного охлаждения поверхности. В результа­
те формируется небольшой бугор. Уменьшение 
мощности снега на вершине бугра в результате 
ветрового перераспределения снега будет способ­
ствовать более глубокому промерзанию и фор­
мированию перелетка. Подобные явления широко 
встречаются в настоящее время на участках ха­
сыреев, в межблоковых понижениях бугристых 
торфяников и на других, аналогичных по гидро­
морфности и ландшафтным условиям участках 
(см. рис. 3). 

Такое образование перелетков происходит 
как на территориях с достаточно низким темпера­
турным фоном (см. рис. 3), так и на территориях 
островного и спорадического распространения 
ММП, в частности, в Шведской Лапландии и на 
севере Финляндии, где среднегодовая температу­
ра воздуха близка к 0 °С, а мерзлые породы при­
урочены только к бугристым торфяникам и пред­
ставляют собой “пальса” [Seppälä, 2011; Sjöberg et 
al., 2015]. Практически повсеместно отмечается 
новообразование мерзлых пород на гидроморф­
ных участках вокруг озер и в межблоковых пони­
жениях бугристых торфяников [Иванова и др., 
2011]. Мерзлые бугристые торфяники в Швед­
ской Лапландии и на севере Финляндии факти­
чески являются результатом вторичного промер­
зания пород на тех участках, где мерзлые породы 
ранее оттаяли. Фоновая среднегодовая темпера­
тура пород в обрамлении мерзлых участков прак­
тически повсеместно выше 0 °С. Тем не менее и в 
настоящее время здесь создаются условия для 
промерзания и локального новообразования мало­
мощной мерзлоты.

 Результаты моделирования возможности 
новообразования мерзлых грунтов

Для обоснования возможности новообразова­
ния мерзлых пород на фоне положительного трен­
да среднегодовой температуры воздуха выполнено 
численное моделирование геокриологической си­
туации, развивающейся на торфяниках в природ­
ных условиях района г. Воркуты. Среднемесячные 
температуры воздуха приняты по данным метео­
наблюдений за последние 75  лет [http://www.
pogodaiklimat.ru/history/23226.htm] и приведены 
в табл. 1.

Моделирование геокриологической обста­
новки осуществлялось путем численного решения 
тепловой задачи типа Стефана с помощью ком­
пьютерной программы “WARM” [Программа…, 
1994]. Основным переменным фактором при этом 
была влажность торфяного покрова. Термическое 
сопротивление снежного покрова в ходе модели­
рования также варьировалось в диапазоне реально 
возможных изменений этой характеристики в 
природе. Рассматривался двухслойный разрез по­
род: верхний слой был представлен торфом, ко­
торый подстилался толщей суглинков. При этом 
расчеты велись для двух вариантов мощности тор­
фяного покрова. В первом случае мощность торфа 
принята 0.3 м, что обычно меньше глубин сезонно­
го оттаивания пород (двухслойное строение СТС), 
во втором случае мощность торфа превышала воз­
можную глубину сезонного оттаивания пород, т. е. 
все фазовые переходы воды происходили в преде­
лах торфяного слоя (однослойное строение СТС). 

Теплофизические характеристики торфа в 
области изменения его влажности от небольших 
значений до полного влагонасыщения рассчиты­
вались по известным зависимостям [Гаврильев, 
2004]. Содержание незамерзшей воды в торфяном 
покрове в соответствии с графиками Ф.И. Гав­
рильева [2004] задавалось равным одной четверти 
от общего влагосодержания. Плотность скелета 
торфа равна 0.18 г/см3. В качестве подстилаю­
щего слоя рассматривался водонасыщенный су­

Т а б л и ц а  1. Среднемесячные температуры воздуха  
	 по м/c Воркута 

Месяц Температура, °С
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII

–19.9
–19.8
–15.0

–8.9
–2.0

7.1
13.0

9.8
4.2

–4.0
–13.0
–16.7



20

Ф.М. РИВКИН, С.Н. БУЛДОВИЧ

глинок с плотностью скелета 1.5 г/см3, теплофи­
зические свойства которого приняты по данным 
СП 25.13330.2020 (приложение Б). Используемые 
в модели теплофизические свойства приведены в 
табл. 2.

Результаты моделирования показали, что 
дренирование торфа при его относительном под­
нятии по отношению к смежным участкам (даже 
без учета сдувания снега с бугров) приводит к за­
метному понижению среднегодовой температуры 
пород и в определенных условиях – к началу их 
многолетнего промерзания (рис. 4). Как видно на 
рис.  4, темп понижения температуры пород с 
уменьшением их влажности примерно одинаков 
для вариантов с малой и большой мощностью тор­
фа, однако второй вариант оказывается более “хо­
лодным”. Многолетнее промерзание начинается 
при более высокой влажности торфа, когда пони­
жение температуры существеннее. 

Выявленная закономерность имеет следую­
щее объяснение. Уменьшение влажности торфа за 
счет его дренирования приводит к уменьшению 
отрицательной температурной сдвижки и, следо­
вательно, к некоторому повышению среднегодо­
вой температуры пород. В то же время при умень­
шении влажности торфа уменьшаются и затраты 
тепла на фазовые переходы, что приводит к сокра­

щению величины годового теплооборота в поро­
дах и сопутствующему резкому снижению отепля­
ющего влияния снега. Причем, как показывают 
результаты моделирования, это уменьшение оте­
пляющего влияния снега оказывается домини­
рующим в данной ситуации. Таким образом, сред­
негодовая температура пород понижается и в 
определенной природной обстановке создаются 
условия для многолетнего промерзания. В рас­
сматриваемом случае базовым условием новооб­
разования ММП является уменьшение влажности 
торфа, вызванное локальным увеличением дрени­
рованности участка и в конечном счете провоци­
рующее уменьшение отепляющего влияния снега. 
К этому может добавляться снижение отепляю­
щего влияния снега из-за уменьшения его мощно­
сти на вершине бугра вследствие ветрового сноса 
снега.

Формируется вполне прогнозируемая ситуа­
ция. На относительно возвышенных участках бу­
дет увеличиваться глубина СМС и становится 
возможным многолетнее промерзание. При мощ­
ности торфа более 0.7 м на фоне дренирования 
торфа [Seppälä, 2011; Sjöberg et al., 2015] и умень­
шения отепляющего влияния снега на буграх соз­
даются еще более благоприятные условия для 
устойчивого новообразования мерзлых пород. 

Рис. 5. Среднегодовая температура пород при 
мощности слоя торфа 0.3 м в зависимости от его 
влажности и термического сопротивления снеж­
ного покрова.
1 – 1.4  м2⋅°С/Вт; 2 – 1.6  м2⋅°С/Вт; 3 – 1.8  м2⋅°С/Вт;  
4 – 2.0 м2⋅°С/Вт. 

Рис. 4. Зависимость темературы пород от влаж­
ности торфа.
1 – торф мощностью 0.3  м, подстилаемый суглинками;  
2 – торф мощностью более 0.7 м, подстилаемый суглинками. 
Термическое сопротивление снежного покрова 1.6 м2⋅°С/Вт.

Т а б л и ц а  2.	 Теплофизические свойства пород, принятые при моделировании

Показатель Суглинок Торф
Весовая влажность, д.е. 0.3 1.0 2.0 3.0 4.0 4.88
Влажность незамерзшей воды, д.е. 0.1 0.25 0.5 0.75 1 1.22
Теплопроводность в талом состоянии, Вт/(м⋅°С) 1.65 0.14 0.22 0.32 0.44 0.55
Теплопроводность в мерзлом состоянии, Вт/(м⋅°С) 1.95 0.10 0.26 0.52 0.89 1.30
Объемная теплоемкость в талом состоянии, кДж/(°С⋅м3) 3310 1080 1830 2590 3340 4010
Объемная теплоемкость в мерзлом состоянии, кДж/(°С⋅м3) 2685 800 1270 1740 2210 2630
Теплота фазовых переходов, МДж/(°С⋅м3) 100.56 45.25 90.50 135.76 181.01 220.83
Плотность скелета, г/см3 1.5 0.18
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Прогнозное моделирование температуры по­
род с учетом дренирования торфа на участках ло­
кального повышения рельефа (рис. 5) показало, 
что даже при мощности слоя торфа всего 0.3 м в 
результате понижения его влажности при дрени­
ровании среднегодовые температуры пород с по­
ложительных значений опускаются до –1…–2 °С. 
При большей мощности торфа, как отмечалось 
выше, указанное понижение температуры пород 
происходит еще быстрее. Заметим, что это проис­
ходит при характерных фоновых значениях высо­
ты снежного покрова (диапазон значений тер­
мических сопротивлений снега 1.4–2.0 °С м2/Вт 
соответствует среднезимней высоте снежного по­
крова 0.3–0.5  м). Если же учесть уменьшение 
мощности снежного покрова на формирующихся 
буграх за счет ветрового сноса, то понижение тем­
пературы пород будет еще более существенным 
(см. рис. 5). Такая температура обеспечивает глу­
бокое промерзание пород, новообразование ММП, 
многолетнее пучение и инверсионную трансфор­
мацию рельефа.

Это явление будет означать трансформацию 
талых гидроморфных понижений рельефа (лож­
бин стока, дренированных озерных котловин и 
др.) с мощностью торфа более глубины СТС в 
мерзлые участки (см. рис. 2, этап 3), т. е. агграда­
цию ММП. В пространственном отношении это 
приведет к тенденции сохранения суммарной пло­
щади распространения ММП на фоне положи­
тельного тренда потепления климата.

ЗАКЛЮЧЕНИЕ

В условиях существующей тенденции клима­
тических изменений дифференцированная осадка 
поверхности при оттаивании ММП приведет к 
частичной инверсии рельефа. Днища существую­
щих озер и заболоченных котловин, где не будет 
происходить осадка поверхности, окажутся не­
сколько приподнятыми по отношению к участкам, 
где осадка при оттаивании будет значительной. 
Тем самым реализуется инверсия рельефа.

На относительно приподнявшихся в резуль­
тате дифференцированной осадки при оттаивании 
участках, сложенных с поверхности торфом мощ­
ностью более глубины сезонного оттаивания (0.5–
0.7 м), формируются условия для глубокого мно­
голетнего промерзания за счет снижения тепло­
оборотов в породе, уменьшения отепляющего 
влияния снега на локально возвышенных участках 
и увеличения отрицательного значения темпера­
турной сдвижки за счет разности коэффициентов 
теплопроводности пород в талом и мерзлом со­
стояниях. На изначально талых участках это при­
ведет к возникновению “пальса”. На участках с 
заглубленной на первые метры кровлей ММП в 
течение второй половины XXI в. произойдет смы­
кание новообразования ММП с современными 

мерзлыми породами и сформируются несливаю­
щиеся ММП (при прогнозируемом повышении 
температуры по региональной климатической мо­
дели HIRHAM4 [Christensen et al., 1996, 2002]). На 
участках мерзлых торфяников с мощностью торфа 
более глубины сезонного оттаивания мерзлые по­
роды могут, при определенных условиях, сохра­
няться до конца XXI столетия [Ривкин и др., 2017].

Таким образом, новообразование мерзлых по­
род на фоне положительного тренда температуры 
воздуха является частью механизма самоконсер­
вации мерзлых пород посредством формирования 
специфического комплекса новообразований: за­
глубленной кровли, новообразования ММП на из­
начально талых заторфованных участках и сохра­
нения ММП на мерзлых торфяниках. В целом это 
окажет существенное влияние на пространствен­
ные (зональные) закономерности динамики ланд­
шафтов и связанные парагенетические процессы, 
обусловленные климатическими изменениями. 
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