2015. Том 56, № 1

Январь – февраль

C. 109 – 114

УДК 539.27:541.49

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КОМПЛЕКСОВ ЖЕЛЕЗА(III) И НИКЕЛЯ(II) С 1'-ФТАЛАЗИНИЛГИДРАЗОНАМИ ГЕТЕРОЦИКЛИЧЕСКИХ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ

Л.Д. Попов¹, С.И. Левченков², И.Н. Щербаков¹, Г.Г. Александров³, В.А. Старикова⁴, В.В. Луков¹, В.А. Коган¹

¹Южный федеральный университет, химический факультет, Ростов-на-Дону, Россия ²Южный научный иентр РАН, Ростов-на-Дону, Россия

E-mail: s.levchenkov@gmail.com

³Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

⁴Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия

Статья поступила 19 января 2014 г.

Методом РСА определены структуры комплексов железа(III) и никеля(II) состава $[FeL_2]Cl \cdot H_2O(1)$ и $[Ni(HL'_2)] \cdot ДМСО \cdot 0,5H_2O(2)$, где L и HL' — монодепротонированные остатки 1'-фталазинилгидразонов 2-ацетилбензимидазола и 1-фенил-3-метил-4-формил-5-гидроксипиразола соответственно. Оба соединения кристаллизуются в моноклинной сингонии. Ионы Fe(III) и Ni(II) в комплексах имеют октаэдрическое N₆- и N₄O₂донорное окружение соответственно. За счет межмолекулярных водородных связей молекулы комплексов образуют в кристалле зигзагообразные (комплекс 1) и линейные (комплекс 2) цепи молекул.

Ключевые слова: гидразоны, координационные соединения, рентгеноструктурный анализ.

Интенсивное исследование комплексов переходных металлов с гидразонами на основе 1-гидразинофталазина (гидралазина) обусловлено прежде всего биологической активностью, присущей как самим гидразонам, так и комплексам на их основе [1—6]. Возможность би- либо тридентатной координации 1'-фталазинилгидразонов в различных таутомерных формах предопределяет большое разнообразие форм комплексов, строение которых зависит от структурных особенностей лиганда, условий синтеза и природы металла-комплексообразователя [6—10]. В отличие от большинства других гетарилгидразонов 1'-фталазинилгидразоны могут выступать также и в качестве хелатно-мостиковых N,N'-донорных лигандов, что делает возможным получение биядерных комплексов на их основе [11, 12].

Настоящая работа является продолжением исследований комплексообразующей способности фталазинилгидразонов полифункциональных карбонильных соединений [10—14]. Здесь представлены результаты рентгеноструктурного исследования комплексов железа(III) и никеля(II) с 1'-фталазинилгидразонами 2-ацетилбензимидазола (HL) и 1-фенил-3-метил-4-формил-5-гидроксипиразола (H₂L').

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Гидразон HL синтезировали по описанной ранее методике [10].

[©] Попов Л.Д., Левченков С.И., Щербаков И.Н., Александров Г.Г., Старикова З.А., Луков В.В., Коган В.А., 2015

Гидразон H₂**L**′ получали следующим образом. К горячему раствору 3 ммолей хлоргидрата 1-гидразинофталазина в 10 мл этанола добавляли эквивалентное количество ацетата натрия, затем приливали горячий раствор 3 ммолей 1-фенил-3-метил-4-формил-5-гидроксипиразола в 10 мл этанола. Реакционную смесь кипятили 1 ч, после чего добавляли 50 мл дистиллированной воды. Образующийся осадок отфильтровывали и промывали водой. Перекристаллизовывали из смеси этанол—ДМФА (2:1).

 $T_{\Pi\Pi} > 250$ °С. Элементный анализ: брутто-формула C₁₉H₁₆N₆O; вычислено, %: С 66,27, Н 4,68, N 24,40; найдено, %: С 66,12, Н 4,81, N 24,71. ИК спектр (v, см⁻¹): 3325 v(NH), 1667 v(C=O), 1610, 1595 v(C=N). ПМР спектр (δ , м.д.): 18,069 с (1H, NH), 13,697 с (1H, NH), 8,720 с (1H, CH), 8,67 д (1H, J = 6,9 Гц, CH_{аром}), 8,12 м (3H, CH_{аром}), 7,28 д (2H, J = 8,1 Гц, CH_{аром}), 7,40 т (2H, J = 7,8 Гц, CH_{аром}), 7,297 с (1H, CH_{аром}), 7,14 т (1H, J = 7,4 Гц, CH_{аром}), 2,202 с (3H, CH₃).

Комплекс 1. К горячему раствору 2 ммолей **HL** в 20 мл метанола добавляли раствор 1 ммоля шестиводного хлорида железа(III) в 10 мл метанола. Смесь кипятили 1 ч. Выпавший при охлаждении желтый осадок отфильтровывали, промывали метанолом и сушили в вакууме при комнатной температуре. Монокристаллы комплекса, пригодные для PCA, были получены перекристаллизацией из этанола.

Выход 40 %. $T_{\text{пл}} > 250$ °C. Элементный анализ: брутто-формула $C_{34}H_{28}ClFeN_{12}O$; вычислено, %: С 57,4, Н 3,96, N 23,6; найдено, %: С 57,9, Н 4,06, N 23,0. ИК спектр (v, см⁻¹): 3387 v(OH), 3209 v(NH), 1629, 1597 v(C=N). $\mu_{3\phi\phi}$ 1,77 М.Б. (295 К), 1,72 М.Б. (77,4 К).

Комплекс 2. К горячему раствору 2 ммолей H_2L' в 40 мл метанола добавляли раствор 1 ммоля ацетата никеля(II) в 5 мл метанола. Смесь кипятили с обратным холодильником 3 ч, осадок отфильтровывали, промывали метанолом и сушили в вакууме. Монокристаллы комплекса, пригодные для РСА, были получены перекристаллизацией из ДМСО.

Выход 65 %. $T_{\text{пл}} > 250$ °C. Элементный анализ: брутто-формула C₄₀H₃₆N₁₂NiO₃S; вычислено, %: C 58,3, H 4,41, N 20,4; найдено, %: C 57,9, H 4,51, N 20,8. ИК спектр (v, см⁻¹): 3383 v(OH), 3208 v(NH), 1620, 1596 v(C=N). $\mu_{9\phi\phi}$ 2,92 М.Б. (295 K), 2,88 М.Б. (77,4 K).

Элементный анализ выполнен на приборе Perkin-Elmer 240С. ИК спектры регистрировали на приборе Varian Scimitar 1000 FT-IR в области 400—4000 см⁻¹; образцы готовили в виде суспензии в вазелиновом масле. Магнитную восприимчивость комплексов измеряли относительным методом Фарадея в интервале температур 77,4—300 К.

Рентгеноструктурное исследование. Монокристаллы соединений 1 и 2 для РСА получены при медленном охлаждении растворов в ДМСО. Параметры элементарной ячейки и интенсивности отражений измерены на дифрактометре Bruker Apex II [15], оборудованном ССДдетектором (Мо K_{α} -излучение, графический монохроматор, ω -сканирование). Поглощение рентгеновского излучения учтено полуэмпирически с помощью программы SADABS [16]. Структуры определены прямым методом и уточнены полноматричным МНК в анизотропном приближении для неводородных атомов по F_{hkl}^2 . Атомы водорода помещали в геометрически рас-

считанные положения и уточняли с использованием модели наездника ($U_{\rm H30}({\rm H}) = nU_{\rm H30}({\rm C})$, где n = 1,5 для атомов углерода метильных групп, n = 1, 2 для остальных атомов C). Все расчеты проведены с использованием комплекса программ SHELXTL [17]. Для анализа структуры использовалась программа PLATON [18]. Характеристики эксперимента и кристаллографические данные приведены в табл. 1, избранные межатомные расстояния и валентные углы — в табл. 2, характеристики водородных связей — в табл. 3.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Данные ИК и ПМР спектроскопии гидразонов HL и H_2L' указывают на их существование во фталазоновой таутомерной форме [6]. Для гидразона HL это было подтверждено ранее квантово-химическими расчетами и PCA [10, 19]. Наличие в ИК спектре соединения H_2L' полосы поглощения v(C=O) в области 1667 см⁻¹ свидетельствует о реализации пиразолоновой таутомерной формы, что характерно и для других азометинов и гидразонов 1-фенил-3-метил-4формил-5-гидроксипиразола [20—22].

Таблица 1

Кристаллографические данные, характеристики эксперимента и уточнения для комплексов 1 и 2

Парамотр	Значение			
параметр	1	2		
Брутто-формула	C ₃₄ H ₂₈ ClFeN ₁₂ O	C ₄₀ H ₃₇ N ₁₂ NiO _{3,5} S		
M	711,98	832,59		
Размер кристалла, мм	0,23×0,12×0,09	0,45×0,20×0,15		
Температура, К	150(2)	100(2)		
Сингония	Моноклинная	Моноклинная		
Пространственная группа	$P2_1$	$P2_{1}/c$		
a, b, c, Å	9,875(4), 16,625(7), 10,299(5)	12,4855(14), 16,2941(19), 19,695(2)		
β, град.	89,821(6)	105,353(3)		
$V, Å^3$	1690,8(13)	3863,7(8)		
Ζ	2	4		
ρ(выч.), г/см ³	1,398	1,431		
μ, мм ⁻¹	0,573	0,614		
F(000)	734	1732		
Область сбора данных по θ, град.	1,69—27,00	2,33—27,30		
Интервалы индексов отражений	$-11 \le h \le 11, -16 \le k \le 19,$	$-15 \le h \le 15, -20 \le k \le 20,$		
	$-9 \le l \le 12$	$-25 \le l \le 25$		
Число измер. / независ. отражений	6554 / 4800	40277 / 8416		
Число отражений с $I > 2\sigma(I)$	1726	5892		
Количество уточняемых параметров	400	593		
$R_1 \left(I > 2\sigma(I) \right)$	0,0798	0,0558		
wR_2 / GOOF (все отражения)	0,1650 / 1,026	0,1500 / 0,994		
$\Delta ho_{ m max}$ / $\Delta ho_{ m min}$, e /Å ⁻³	0,458 / -0,442	0,969 / -0,732		
Номер в КБСД	946769	946785		

Таблица 2

Основные межатомные расстояния и валентные углы в координационных полиэдрах атомов железа в комплексе 1 и атомов никеля в комплексе 2

Связь	<i>d</i> , Å	Угол	ω, град.	Угол	ω, град.		
Соединение 1							
Fe(1)—N(2)	1,952(12)	N(3)—Fe(1)—N(5A)	99,9(6)	N(5)—Fe(1)—N(2A)	91,6(5)		
Fe(1) - N(3)	1,817(14)	N(3) - Fe(1) - N(5)	80,1(6)	N(2)—Fe(1)—N(2A)	92,3(5)		
Fe(1) - N(5)	1,917(12)	N(5A)—Fe(1)—N(5)	91,9(5)	N(3)—Fe(1)—N(3A)	176,8(5)		
Fe(1)—N(2A)	1,954(12)	N(3) - Fe(1) - N(2)	81,2(6)	N(5A)—Fe(1)—N(3A)	77,7(6)		
Fe(1)—N(3A)	1,944(12)	N(5A)—Fe(1)—N(2)	90,4(5)	N(5)—Fe(1)—N(3A)	97,8(6)		
Fe(1)—N(5A)	1,879(11)	N(5) - Fe(1) - N(2)	161,2(7)	N(2)—Fe(1)—N(3A)	100,9(6)		
		N(3)—Fe(1)—N(2A)	99,1(6)	N(2A)—Fe(1)— $N(3A)$	83,3(5)		
		N(5A)—Fe(1)— $N(2A)$	161,0(6)				
Соединение 2							
Ni(1)—N(3)	2,041(3)	N(9)—Ni(1)—N(3)	178,40(11)	O(1)—Ni(1)—N(11)	91,62(9)		
Ni(1)—N(5)	2,093(3)	N(9)—Ni(1)—O(1)	89,12(9)	O(2)—Ni(1)—N(11)	169,40(9)		
Ni(1)—O(1)	2,053(2)	N(3)—Ni(1)—O(1)	91,99(9)	N(9)—Ni(1)—N(5)	101,79(10)		
Ni(1)—N(9)	2,040(3)	N(9)—Ni(1)—O(2)	92,19(9)	N(3)—Ni(1)—N(5)	77,15(10)		
Ni(1)—N(11)	2,065(3)	N(3)—Ni(1)—O(2)	86,73(9)	O(1)—Ni(1)—N(5)	168,86(9)		
Ni(1)—O(2)	2,055(2)	O(1)—Ni(1)—O(2)	86,14(9)	O(2)—Ni(1)—N(5)	95,60(10)		
		N(9)—Ni(1)—N(11)	77,40(10)	N(11)—Ni(1)—N(5)	88,59(10)		
		N(3)—Ni(1)—N(11)	103,72(10)				

Таблица 3

D—HA	D—H, Å	HA, Å	DA, Å	∠DHA, град.			
Соединение 1*							
$N(1A)$ — $H(1AA)Cl(1)^{i}$	0,88	2,23	3,046(15)	153			
N(1)—H(1A)O(1W)	0,88	1,98	2,86(3)	173			
O(1W)—H(1W1)Cl(1)	0,82	2,25	3,062(19)	170			
Соединение 2**							
N(4)—H(4N)N(12) ⁱ	0,88	2,14	2,998(4)	167			
N(10)—H(10N)N(6) ⁱⁱ	0,88	2,19	3,064(4)	174			
O(1W)—H(1W1)N(2)	0,95	1,93	2,823(6)	157			
O(1W)—H(2W1)S(3)	0,95	2.20	3,094(9)	157			

Характеристики водородных связей в кристаллах соединений 1 и 2

* Кристаллографические положения: ⁱ –1–*x*, –1/2+*y*, –2–*z*. ** Кристаллографические положения: ⁱ –*x*, 1–*y*, –*z*; ⁱⁱ 1–*x*, 1–*y*, –*z*.

Медленной кристаллизацией продукта взаимодействия гидразона HL с хлоридом железа(III) из этанола был получен монокристаллический образец комплекса 1 состава [FeL₂]Cl. \cdot H₂O, молекулярная структура которого представлена на рис. 1.

Два депротонированных остатка гидразона L⁻ в комплексе тридентатно координированы к иону железа(III). Координационный полиэдр атома Fe — искаженный октаэдр, образованный азометиновыми атомами N(1) и N(1A), атомами N(5) и N(5A) фталазинового и атомами N(2) и N(2A) бензимидазольного гетероциклов. Оба органических лиганда — практически плоские;

Рис. 1. Строение комплекса 1 (эллипсоиды тепловых колебаний приведены с вероятностью 30 %)

Рис. 2. Строение комплекса 2 (сольватные молекулы ДМСО и воды не показаны; эллипсоиды тепловых колебаний приведены с вероятностью 50 %)

диэдральный угол между средними плоскостями фталазинового и бензимидазольного гетероциклов составляет 6,17°.

NH-группы бензимидазольных фрагментов образуют в кристалле комплекса водородные связи (см. табл. 3) с кислородным атомом молекулы воды N(1)—H(1A)...O(1W) и внешнесферным хлорид-ионом N(1A)—H(1AA)...Cl(1)ⁱ (кристаллографические положения: ⁱ -1-x, -1/2+y, -2-z), в результате чего в кристалле комплекса образуются зигзагообразные бесконечные цепи молекул, вытянутые вдоль кристаллографической оси *b*.

Эффективный магнитный момент комплекса 1 составляет 1,77 М.Б. при комнатной температуре и практически не изменяется при охлаждении до точки кипения азота, что указывает на низкоспиновое состояние иона железа.

Комплекс 2 получен взаимодействием гидразона H_2L' с ацетатом никеля(II) в метаноле. Из ДМСО соединение кристаллизуется в виде сольвата, включающего молекулу ДМСО и 0,5 молекулы воды. Структура комплекса показана на рис. 2. Молекула ДМСО в кристалле разупорядочена по двум кристаллографическим положениям в соотношении заселенностей 2:1.

Органический лиганд в комплексе 2 тридентатно координирован к иону никеля(II) в монодепротонированной гидразонной форме. Координационный полиэдр атома никеля — слабо искаженный октаэдр. Оба пятичленных металлохелатных цикла практически плоские; шестичленные циклы Ni(1)N(3)C(9)C(10)C(13)O(1) и Ni(1)N(9)C(28)C(29)C(32)O(2) несколько искажены за счет выхода атома никеля из плоскости остальных атомов цикла на 0,411 и 0,300 Å соответственно. Пиразольный и фталазиновый гетероциклы в обоих лигандах некопланарны в результате разворота вдоль связей N(3)—N(4) и N(9)—N(10) на торсионный угол 14,22 и 14,91° соответственно. Фенильные заместители существенно развернуты относительно пиразольных циклов; величины диэдральных углов между средними плоскостями составляют 44,35 и 49,75°. Следует отметить, что в гидразонах на основе 4-карбонильных производных 1-фенил-3-метил-5-гидроксипиразола и их комплексах с переходными металлами угол поворота фенильной группы относительно пиразольного цикла варьируется в очень широких пределах и обусловлен, по-видимому, исключительно эффектами кристаллической упаковки [21—25].

В монокристалле комплекса 2 каждая молекула образует с двумя соседними молекулами по две водородные связи N(4)—H(4N)...N(12)ⁱ и N(10)—H(10N)...N(6)ⁱⁱ (кристаллографические

положения: ⁱ –*x*, 1–*y*, –*z*; ⁱⁱ 1–*x*, 1–*y*, –*z*), что приводит к формированию в кристалле бесконечных цепей молекул, вытянутых вдоль кристаллографической оси *a*.

Таким образом, впервые получены и структурно охарактеризованы моноядерные октаэдрические комплексы железа(III) и никеля(II) с N₃- и N₂O-донорным лигандами — продуктами конденсации гетероциклических карбонильных соединений с 1-гидразинофталазином.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зеленин К.Н., Хорсеева Л.А., Алексеев В.В. // Хим. фарм. журн. 1992. **26**, № 5. С. 30 [Zelenin K.N., Khorseeva L.A., Alekseev V.V. // Pharm. Chem. J. 1992. **26**, N 5. Р. 395].
- 2. Vicini P., Incerty M., Doytchinova I.A. et al. // Eur. J. Med. Chem. 2006. 48, N 5. P. 624.
- 3. Segura-Pacheco B., Trejo-Becerril C., Perez-Cardenas E. et al. // Clin. Cancer Res. 2003. 9, N 5. P. 1596.
- 4. Kaminskas L.M., Pyke S.M., Burcham P.C. // J. Pharm. Exper. Therap. 2004. 310, N 3. P. 1003.
- 5. Arce C., Segura-Pacheco B., Perez-Cardenas E. et al. // J. Transl. Med. 2006. 4, N 1. P. 10.
- 6. Коган В.А., Левченков С.И., Попов Л.Д., Щербаков И.Н. // Росс. хим. журн. 2009. **53**, № 1. С. 86 [Kogan V.A., Levchenkov S.I., Popov L.D., Shcherbakov I.N. // Russ. J. Gen. Chem. 2009. **79**, N 12. Р. 2767].
- 7. Shoukry A.A., Shoukry M.M. // Spectrochim. Acta A. 2008. 70, N 3. P. 686.
- 8. Paolucci G., Stelluto S., Sitran S. et al. // Inorg. Chim. Acta. 1992. 193, N 1. P. 57.
- 9. El-Sherif A.A., Shoukry M.M., Abd-Elgawad M.M.A. // Spectrochim. Acta. A. 2012. 98. P. 307.
- 10. Попов Л.Д., Левченков С.И., Щербаков И.Н. и др. // Журн. общей химии. 2010. **80**, № 12. С. 2040 [*Popov L.D., Levchenkov S.I., Shcherbakov I.N. et al.* // Russ. J. Gen. Chem. 2010. **80**, N 12. Р. 2501].
- 11. Попов Л.Д., Щербаков И.Н., Левченков С.И. и др. // Координац. химия. 2011. **37**, № 7. С. 483 [*Popov L.D., Shcherbakov I.N., Levchenkov S.I. et al.* // Russ. J. Coord. Chem. 2011. **37**, N 7. Р. 483].
- Евсюкова М.А., Кравцова А.Н., Щербаков И.Н. и др. // Журн. структур. химии. 2010. 51, № 6. – С. 1114 [Evsyukova M.A., Kravtsova A.N., Shcherbakov I.N. et al. // J. Struct. Chem. – 2010. – 51, N 6. – Р. 1075].
- 13. Левченков С.И., Щербаков И.Н., Попов Л.Д. и др. // Журн. общей химии. 2013. **83**, № 10. С. 1722 [Levchenkov S.I., Shcherbakov I.N., Popov L.D. et al. // Russ. J. Gen. Chem. 2013. **83**, N 10. Р. 1928].
- 14. Левченков С.И., Попов Л.Д., Щербаков И.Н. и др. // Журн. структур. химии. 2013. **54**, № 5. С. 914 [Levchenkov S.I., Popov L.D., Shcherbakov I.N. et al. // J. Struct. Chem. 2013. **54**, N 5. P. 952].
- 15. Bruker APEX2 Software Package, Bruker AXS, Madison, 2005.
- 16. *Sheldrik G.M.* SADABS, Program for Scanning and Correction of Area Detector Data. Göttingen University, Göttingen, Germany, 2004.
- 17. Sheldrick G.M. // Acta Crystallogr. A. 2008. 64, N 1. P. 112.
- 18. Spek A.L. // J. Appl. Crystallogr. 2003. 36. P. 7.
- 19. Попов Л.Д., Левченков С.И., Щербаков И.Н. и др. // Журн. общей химии. 2012. **82**, № 3. С. 472 [*Popov L.D., Levchenkov S.I., Shcherbakov I.N. et al.* // Russ. J. Gen. Chem. 2012. **82**, N 3. Р. 465].
- 20. Minkin V.I., Garnovskii A.D., Elguero J. et al. // Adv. Heterocycl. Chem. 2000. 76. P. 157.
- 21. Levchenkov S.I., Shcherbakov I.N., Popov L.D. et al. // Inorg. Chim. Acta. 2013. 405. P. 169.
- 22. Попов Л.Д., Левченков С.И., Щербаков И.Н. и др. // Координац. химия. 2013. **39**, № 12. С. 743 [*Popov L.D., Levchenkov S.I., Shcherbakov I.N. et al.* // Russ. J. Coord. Chem. 2013. **39**, № 12. Р. 849].
- 23. Li H., Xu G.-C., Zhang L. et al. // Polyhedron. 2013. 55. P. 209.
- 24. Jadeja R.N., Shah J.R. // Polyhedron. 2007. 26, N 8. P. 1677.
- 25. Xie X., Liu L., Jia D. et al. // New J. Chem. 2009. 33, N 11. P. 2232.