2007. Том 48, № 2

Март – апрель

C. 318 – 324

УДК 547.539.1+548.737

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ МОНОКРИСТАЛЛОВ КОМПЛЕКСОВ 3-(1-АМИНО-2,2,2-ТРИФТОРЭТИЛИДЕН)-2-ИМИНО-1,1,4,5,6,7-ГЕКСАФТОРИНДАНА С ДИОКСАНОМ, ПИРАЗИНОМ И ПИРИДИНОМ

© 2007 Т.В. Рыбалова, В.М. Карпов*, В.Е. Платонов, Ю.В. Гатилов*

Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН

Статья поступила 30 мая 2006 г.

Получены монокристаллы комплексов 3-(1-амино-2,2,2-трифторэтилиден)-2-имино-1,1,4,5,6,7-гексафториндана (1) с 1,4-диоксаном, пиразином и пиридином и изучено их строение методом РСА. В кристалле комплекса с диоксаном соединение 1 содержится вместе со своим таутомером — 2-амино-3-(1-имино-2,2,2-трифторэтил)-1,1,4,5,6,7гексафторинденом (1а), которые находятся, видимо, в равновесном соотношении ~60:40. Методом функционала плотности проведены газофазные квантовохимические расчеты возможного таутомерного равновесия енаминоимина 1 в соответствующих комплексах.

Ключевые слова: полифторированные енаминоимины, индан, инден, синтез, структура, рентгеноструктурный анализ, таутомеры, квантовохимические расчеты.

введение

Недавно методом РСА нами изучена молекулярная и кристаллическая структура 3-(1амино-2,2,2-трифторэтилиден)-2-имино-1,1,4,5,6,7-гексафториндана 1 и его N-метил- и N,N'диметилпроизводных 2—4 [1]. Их строение отражают формулы 1—4, приведенные на схеме 1. Следует отметить, что в соединениях 1 и 2 как в кристалле, так и в растворе имеется внутримолекулярная водородная связь (BMBC) N—H...N, а в соединениях 3 и 4 — отсутствует. При этом в растворе соединение 1 находится в равновесии со своим таутомером — 2-амино-3-(1имино-2,2,2-трифторэтил)-1,1,4,5,6,7-гексафторинденом (1a) [2].

В связи с этим представляло интерес попытаться получить сокристаллы соединения 1 с какими-нибудь "растворителями" и изучить их методом PCA с целью обнаружения в кристаллическом состоянии таутомера (1а). Следует отметить, что в Кембриджской базе структурных данных (КБСД) содержится информация о большом количестве кристаллических структур комплексов металлов с енаминоиминами, в то время как данных о структуре свободных енаминоиминов существенно меньше [3]. При этом известны единичные случаи исследований такого рода соединений, содержащих обе незамещенные группы —NH₂ и =NH [4], а также соеди-

E-mail: karpov@nioch.nsc.ru, gatilov@nioch.nsc.ru

нений с трифторметильными группами, находящимися у атомов углерода енаминоиминной системы [5].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Нам удалось получить кристаллические комплексы 5, 6 и 7 соединения 1 с 1,4-диоксаном, пиразином и пиридином в соотношении 2:1 (5, 6) и 1:1 (7) соответственно (схема 2) и провести для них рентгеноструктурный анализ.

По данным РСА, молекулярные комплексы 5—7 образованы благодаря водородным связям между молекулами соединения 1 и соответствующего растворителя. Так, в случае комплекса 5 в образовании водородных связей типа N—H...O с молекулами 1,4-диоксана принимают участие как имино- (N1), так и амино- группы (N2) (рис. 1). Параметры связей N—H и водородных связей для N2—H2B...O1D следующие: N—H 0,91(4), H...O 2,16(4) Å, N2—H...O 158(3)° и для N1—H1A...O1D: N—H 0,84(3), H...O 2,21(4) Å, N1—H...O 164(3)°. За счет взаимодействия молекулы диоксана, расположенными в центрах симметрии, и за счет взаимодействия молекулы диоксана с четырьмя молекулами соединения 1 образуются ленты, направленные вдоль оси *с* (см. рис. 1). π -Стекинг-взаимодействия между бензольными кольцами (межплоскостное расстояние 3,56, межцентровое 3,880 Å) связывают между собой ленты, образуя 2D-мотив. При этом в π -стекинг-паре слегка сокращены контакты F1...F7 2,836 Å (сумма ВДВ-радиусов 2,92 Å [6]). Отметим также несколько сокращенные контакты H...F атомов водорода при C2D диоксана с атомами F6 (H...F 2,55 Å) и F1 (H...F 2,52 Å) (сумма ВДВ-радиусов 2,56 Å [6]).

В случае молекулярного комплекса **6** иминогруппа N1 в образовании H-связей не участвует. Для кристалла **6** можно говорить об образовании супермолекул, состоящих из двух молекул соединения **1** и молекулы пиразина (расположена в центре симметрии) и связанных H-связями N2—H2B...N1P с параметрами: N—H 0,88(3), H...N 2,15(4) Å, N1—H...N2 159(4)° (рис. 2).

Рис. 1. Строение комплекса 5 (ленты молекул вдоль оси с, *п*-стекинг-взаимодействия между бензольными кольцами)

<i>Рис.</i> 2. Строение супермолекул в кристалле 6 .
Показаны взаимодействия
С10—F8 π(пиразин) и С1—F2 π(бензольное
кольцо)

Взаимодействия C10—F8...π(пиразин) с расстоянием F — центроид 3,348 Å объединяют супермолекулы в цепочки вдоль оси *а*. При этом между цепочками наблюдаются сокращенные [6] контакты F8...F8 с расстоянием 2,826 Å. Цепочки уложены в слои (рис. 3), для которых отметим меж-

слоевые взаимодействия C1—F2...π(бензольное кольцо) с расстояниями F — центроид 3,177 Å (см. рис. 2).

При использовании пиридина в качестве растворителя естественно ожидать образования супермолекул, а не цепочек. Как видно на рис. 4, комплекс 7 представлен центросимметричными супермолекулами, состоящими из двух молекул соединения 1 и двух молекул пиридина, объединенных посредством водородных связей N—H…N. Необходимо отметить, что водородная связь N1—H…N1P с участием иминогруппы существенно слабее H-связи N2—H2B…N1P с участием аминогруппы. Параметры связей N—H и водородных связей для N1—H1A…N1P следующие: N—H 0,82(3), H…N 2,48(3) Å, N—H…N 165(2)°, а для N2—H2B…N1P N—H 0,93(3), H…N 2,14(3) Å, N1—H…N2 162(2)°. π -Стекинг-взаимодействия между бензольными кольцами (межплоскостное расстояние 3,54, межцентровое 3,906 Å) объединяют супермолекулы. Отметим также сокращенные контакты F1…F4 2,850 Å между атомами фтора соседних супермолекул.

Углеродный скелет C1—C9 молекулы соединения 1 в комплексах 5—7 плоский в пределах $\pm 0,102(3), \pm 0,062(4)$ и $\pm 0,114(3)$ Å соответственно. Указанная непланарность связана с конвертообразным искажением пятичленного цикла с углами перегиба цикла по линии C1—C3 8,5(3), 4,4(3) и 9,6(2)° соответственно. Из анализа длин связей енаминоиминного фрагмента следует, что в комплексе 5 формально двойные связи N1=C2 и C3=C10 удлинены по сравнению с аналогичными связями в комплексах 6 и 7, а формально ординарные связи C2—C3 и C10—N2, напротив, укорочены (табл. 1). Такое распределение длин связей в комплексе 5 ближе всего к расчетной геометрии этого фрагмента для переходного состояния равновесия $14 \Leftrightarrow 15$ (см. табл. 1). Отметим, что ВМВС N2—H...N1 в гетерокристаллах 5—7 ослаблена по сравнению с гомокристаллом 1 (расстояния N1...H и N1...N2 увеличены, см. табл. 1). Это ослабление

Рис. 3. Упаковка молекул комплекса **6** в кристалле (для упрощения рисунка атомы фтора и водорода не показаны)

0

Рис. 4. Строение супермолекул в кристалле 7 (π-стекинг-взаимодействия между бензольными кольцами)

вызвано, видимо, межмолекулярными водородными связями в гетерокристаллах.

С целью выяснения влияния растворителя/окружения на таутомерное равновесие для енаминоимина 1 ($1 \leftrightarrows 1a$) мы провели газофазные квантовохимические расчеты молекулярных комплексов 1:диоксан и 1:пиридин в соотношениях 1:1 и 1:2 для каждого растворителя (схема 3).

A = диоксан (а), пиридин (б)

Схема 3

Таблица 1

Экспериментальные (для соединения 1 и комплексов 5—7) и рассчитанные (для переходного состояния 14А≒15А) длины связей (Å) фрагмента N1C2C3C10N2 и параметры BMBC

Связь	1	5	6	7	14A≒15A
N1—C2	1.297(7)	1.286(4)	1.278(5)	1,278(3)	1.307
C2—C3	1,442(6)	1,431(3)	1,459(5)	1,445(3)	1,427
C3—C10	1,393(6)	1,399(4)	1,384(4)	1,389(3)	1,426
N2-C10	1,327(7)	1,305(4)	1,331(5)	1,318(3)	1,320
N2—H2A	1,13(7)	0,81(4)	0,79(5)	0,86(3)	1,308
N1H2A	1,65(7)	2,03(4)	2,04(3)	2,04(3)	1,247
N1N2	2,644(7)	2,683(4)	2,652(6)	2,690(3)	2,447

При оптимизации геометрии этих супермолекул в качестве стартовой брали их геометрию в кристалле. Проведенные расчеты (табл. 2) показали, что в случае комплексов с соотношением 1:1 предпочтительным является взаимодействие молекулы растворителя с аминогруппой, а не с иминогруппой. При этом равновесие заметно сдвигается в сторону таутомера, в котором с молекулой растворителя связана аминогруппа. В соответствии с этим повышаются (до 6,6 ккал/моль) барьеры перегруппировок 10–>11 и снижаются (до 2,8 ккал/моль) барьеры 12–>13 по сравнению с барьером (4,6 ккал/моль [1]) в свободной молекуле 1. Однако для ком-

Таблица 2 пле

Рассчитанные относительные энергии ∆Е и барьеры ∆Е[≠] таутомерного переноса (→) атома водорода, ккал/моль

Соединение	Диокса	ан (а)	Пиридин (б)		
	ΔE	ΔE^{\neq}	ΔE	ΔE^{\neq}	
10	0.0^{a}	6.1	0.0 ^b	6.6	
11	4,1	0,1	4,9	0,0	
12	1,4	3,2	1,8	2,8	
13	0,5		0,1		
14	0,0 ^c	4,6	0,0 ^d	4,5	
15	1,3		1,2		
1	0,0 ^e	4,6 ^e			
1 a	1,9 ^e				

^{a,b,c,d)} Полные энергии (H): ^{a)} E = -1735,571413, ^{b)} E = -1676,224142, ^{c)} E = -2042,987515, ^{d)} E = -1924,291281.

^{е)} Для молекул без диоксана [1].

плексов 14, 15 с соотношением 1:2 происходит взаимная компенсация влияния растворителя, связанного с двумя азотсодержащими функциональными группами соединения 1, и термодинамика перегруппировок $14 \leftrightarrows 15$ близка к таковой для свободной молекулы 1. Проведенные расчеты согласуются с наличием разупорядоченности атома водорода H1A-H2A в кристалле 5 (см. рис. 1) и отсутствием разупорядоченности в кристаллах 6 и 7, в которых иминогруппа N1 практически не участвует в образовании водородных связей.

Таким образом, нами получены сокристаллы 3-(1-амино-2,2,2-трифторэтилиден)-2-имино-1,1,-4,5,6,7-гексафториндана 1 с диоксаном, пиразином и пиридином, изучена их молекулярная и кристаллическая структура. Методом функционала плотности проведены квантовохимические расчеты возможного таутомерного равновесия в этих комплексах и получены низкие барьеры перехода атома водорода для комплекса соединения 1 с диоксаном.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Квантовохимические расчеты методом функционала плотности PBE с базисом TZ2P проведены с помощью программы PRIRODA [7].

Получение монокристаллов. Комплекс 5. Смесь 0,1 г соединения 1 ($T_{nn} = 67$ —68 °С [1]) и 0,04 г 1,4-диоксана растворяли при нагревании в CCl₄ и затем охлаждали до комнатной температуры. Получали кристаллы комплекса 5 с $T_{nn} = 68$ —86 °С.

Комплекс 6. Аналогично предыдущему эксперименту из 0,045 г соединения 1 и 0,015 г пиразина получали кристаллы комплекса 6 с $T_{nn} = 77$ —85 °C.

Комплекс 7. Монокристаллы комплекса 7 ($T_{nn} = 42$ —48 °C) получали при медленном испарении CCl₄ из раствора 0,05 г соединения 1 и 0,03 г пиридина.

Рентгеноструктурный анализ. Рентгеноструктурное исследование комплексов провели на дифрактометре Bruker P4 (Мо K_{α} -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование) при комнатной температуре. Для предотвращения разрушения кристаллы покрывали тонким слоем клея ПВА. Структуры комплексов 5—7 расшифровали прямым методом по программе SHELXS-97 и уточнили методом наименыших квадратов в анизотропно-изотропном приближении по программе SHELXL-97. Положения атомов водорода в комплексах 5—7 взяли из разностного синтеза. Кристаллографические данные соединений 5—7 и параметры рентгенодифракционных экспериментов приведены в табл. 3, координаты неводородных атомов — в табл. 4—6.

После уточнения структуры комплекса **5** в имино(N1)-аминном(N2) варианте рассмотрение пиков разностного синтеза показало, что первый по величине пик расположен у атома N1 (см. рис. 1). Это навело на мысль о возможной разупорядоченности атома водорода вследствие таутомерного переноса. Уточнение структуры в этом варианте привело к соотношению факторов занятости позиции 0,38(5):0,62(5) для атомов H1a и H2a. В случае соединений **6** и **7** у атома N1 находился более слабый пик разностного синтеза, уточнение фактора занятости которого дало в пределах погрешности нулевое значение. В качестве литературного примера разупорядоченности атома водорода вследствие кето-енольной таутомерии можно привести прецизионные исследования ацетилацетона [8].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 06-03-32229).

Таблица З

Параметр	5	6	7
Химическая формула	$C_{11}H_3F_9N_2$	$C_{11}H_{3}F_{9}N_{2}$	$C_{11}H_{3}F_{9}N_{2}$
	$+ 1/2(C_4H_8O_2)$	$+ 1/2(C_4H_4N_2)$	$+ 1(C_5H_5N)$
Мол. вес	378,21	374,20	413,25
Сингония	Триклинная	Моноклинная	Триклинная
Пространственная группа	<i>P</i> -1	$P2_{1}/c$	<i>P</i> -1
Область θ, град.	2,12—22,49	2,60—25,00	2,44—25,09
Параметры ячейки			
<i>a</i> , Å	8,7162(6)	6,465(1)	8,380(2)
b, Å	8,7898(8)	25,972(3)	9,030(3)
<i>c</i> , Å	10,4109(8)	8,249(1)	12,344(3)
α, град.	77,461(7)		69,10(2)
β, град.	69,353(5)	95,57(2)	73,42(2)
ү, град.	78,722(6)		77,58(2)
V, Å ³	722,4(1)	1378,6(3)	829,6(4)
Ζ	2	4	2
ρ(расч.), г/см ³	1,739	1,803	1,654
μ , mm $^{-1}$	0,191	0,196	0,171
Размер кристалла, мм	0,6×0,4×0,2	1,0×0,4×0,4	0,9×0,5×0,3
Число отражений измерен./независ.	2033/1882	2614/2413	3089/2876
Учет поглощения	Эмпирически	Эмпирически	Эмпирически
Трансмиссия	0,9693—0,9450	0,9858—0,8120	0,9924—0,6062
Число отражений $[I > 2\sigma(I)]$	1348	1543	2261
Число уточняемых параметров	260	247	266
R_1 для $[F > 4\sigma(F)]$	0,0326	0,0597	0,0425
wR_2 для всех отражений	0,0882	0,1880	0,1205
GOOF	1,032	1,037	1,025

Кристаллографические данные соединений и параметры экспериментов

Таблица 4

Атомные координаты (×10⁴) и тепловые параметры (Å²×10³) неводородных атомов комплекса **5**

Атом	x	У	Z	$U_{ m 3KB}$	Атом	x	У	Z	$U_{\rm 3kb}$
C(1)	1752(3)	3530(3)	6390(3)	61(1)	F(1)	2762(2)	2507(2)	7027(2)	80(1)
C(2)	1347(3)	2733(3)	5423(2)	56(1)	F(2)	369(2)	3920(2)	7460(2)	82(1)
C(3)	2067(3)	3480(3)	4024(2)	55(1)	F(3)	3654(3)	1915(3)	799(2)	117(1)
C(4)	3234(3)	6186(3)	3158(3)	64(1)	F(4)	4683(2)	3547(2)	1407(2)	92(1)
C(5)	3632(3)	7407(4)	3565(4)	74(1)	F(5)	2593(2)	4324(3)	685(2)	101(1)
C(6)	3496(4)	7386(4)	4918(4)	80(1)	F(6)	3330(2)	6374(2)	1813(2)	86(1)
C(7)	2934(4)	6111(4)	5883(3)	74(1)	F(7)	4125(2)	8663(2)	2604(2)	102(1)
C(8)	2527(3)	4905(3)	5490(3)	60(1)	F(8)	3896(3)	8587(2)	5282(2)	118(1)
C(9)	2689(3)	4885(3)	4103(3)	56(1)	F(9)	2769(2)	6078(2)	7226(2)	101(1)
C(17)	2113(3)	2785(3)	2921(3)	62(1)	O(1D)	472(3)	61(3)	1148(2)	85(1)
C(18)	3263(4)	3165(4)	1444(3)	77(1)	C(1D)	-820(7)	1143(5)	783(4)	108(2)
N(1)	505(3)	1566(4)	5851(3)	74(1)	C(2D)	1641(5)	-439(6)	-78(4)	102(1)
N(2)	1231(4)	1666(4)	3109(3)	80(1)					

Таблица 5

Атом	x	У	Ζ	$U_{ m 3KB}$	Атом	x	У	Ζ	$U_{ m _{3KB}}$
N(1)	7865(6)	6788(2)	42(5)	74(1)	E(1)	2202(4)	6022(1)	07(2)	86(1)
N(1)	-/803(0)	0788(2)	42(3)	74(1)	$\Gamma(1)$	-3303(4)	0923(1)	97(3)	00(1)
C(1)	-4397(6)	/00/(1)	1408(5)	55(1)	F(2)	-47/01(4)	7527(1)	1450(4)	86(1)
N(2)	-9644(5)	5989(2)	1348(4)	60(1)	F(3)	-4960(5)	5957(1)	6036(3)	100(1)
C(3)	-6467(5)	6350(1)	2527(4)	44(1)	F(4)	-1238(5)	6220(1)	7363(3)	96(1)
C(4)	-3815(7)	6261(2)	5164(5)	61(1)	F(5)	1186(4)	6896(1)	5912(3)	81(1)
C(5)	-1908(7)	6419(2)	5891(4)	62(1)	F(6)	-283(4)	7320(1)	3008(3)	78(1)
C(6)	-679(6)	6762(2)	5177(5)	58(1)	F(7)	-9085(5)	5130(1)	2820(4)	112(1)
C(7)	-1430(6)	6970(1)	3700(5)	54(1)	F(8)	-6038(5)	5312(1)	3775(3)	82(1)
C(8)	-3292(5)	6809(1)	2961(4)	46(1)	F(9)	-8583(5)	5604(1)	4965(3)	96(1)
C(9)	-4551(5)	6440(1)	3624(4)	46(1)	N(1P)	-13185(6)	5264(1)	548(4)	67(1)
C(10)	-8005(5)	5977(1)	2456(4)	46(1)	C(2P)	-13498(8)	4777(2)	965(5)	68(1)
C(11)	-7923(7)	5508(2)	3538(5)	62(1)	C(3P)	-15304(7)	4518(2)	415(5)	65(1)

Атомные координаты ($\times 10^4$) и тепловые параметры ($\mathring{A}^2 \times 10^3$) неводородных атомов комплекса **6**

Таблица б

Атомные координаты ($\times 10^4$) и тепловые параметры ($\mathring{A}^2 \times 10^3$) неводородных атомов комплекса 7

Атом	x	у	Ζ	$U_{ m _{3KB}}$	Атом	x	у	Ζ	$U_{ m _{3KB}}$
N(1)	3046(7)	3994(7)	5643(6)	77(2)	F(2)	-68(5)	2749(4)	7065(3)	86(1)
C(1)	874(8)	2253(8)	6116(6)	66(2)	F(3)	-11(5)	4000(5)	2223(4)	97(1)
N(2)	4223(9)	5295(8)	3286(6)	84(2)	F(4)	-2686(5)	2531(5)	2919(4)	111(2)
C(2)	2089(8)	3410(7)	5303(6)	61(2)	F(5)	-3807(5)	799(6)	5225(4)	119(2)
C(3)	1979(8)	3709(7)	4084(5)	59(2)	F(6)	-2095(5)	547(5)	6864(4)	104(2)
C(4)	-413(9)	3110(8)	3372(7)	71(2)	F(7)	5059(6)	4709(6)	1308(4)	118(2)
C(5)	-1847(10)	2375(9)	3732(8)	81(2)	F(8)	2510(6)	5681(5)	1260(3)	101(1)
C(6)	-2422(9)	1520(9)	4878(9)	83(2)	F(9)	3188(5)	3149(5)	1844(3)	98(1)
C(7)	-1530(9)	1397(8)	5705(7)	76(2)	N(1P)	3302(9)	2491(10)	8460(6)	102(2)
C(8)	-127(8)	2112(7)	5376(6)	63(2)	C(2P)	3832(11)	988(15)	8480(7)	107(3)
C(9)	527(8)	2981(7)	4172(6)	62(2)	C(3P)	3238(13)	-312(12)	9395(10)	118(3)
C(10)	3157(9)	4501(8)	3163(6)	66(2)	C(4P)	2035(14)	-19(14)	10295(8)	117(3)
C(11)	3475(10)	4512(10)	1887(7)	81(2)	C(5P)	1451(11)	1481(14)	10296(8)	109(3)
F(1)	1734(5)	810(4)	6660(3)	83(1)	C(6P)	2129(12)	2684(10)	9353(8)	104(3)

СПИСОК ЛИТЕРАТУРЫ

- 1. Карпов В.М., Платонов В.Е., Рыбалова Т.В., Гатилов Ю.В. // Журн. структур. химии 2006. 47, № 3. С. 532 539.
- 2. Чуйков И.П., Карпов В.М., Платонов В.Е. // Изв. АН СССР. Сер. хим. 1990. № 8. С. 1856 1865.
- 3. Cambridge Structural Database. Version 5.26. University of Cambridge, UK.
- 4. *Zhou M., Liu D.-S., Huang S.-P., Tong H.-B.* // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2003. **59**, N 3. P. o310 o311.
- 5. Carey D.T., Cope-Eatough E.K., Vilapana-Mafe E. et al. // Dalton Trans. 2003. P. 1083 1093.
- 6. Rowland R.S., Taylor R. // J. Phys. Chem. 1996. 100. P. 7384 7391.
- 7. Laikov D.N. // Chem. Phys. Lett. 1997. 281. P. 151 156.
- 8. Boese R., Antipin M.Yu., Blaeser D., Lyssenko K.A. // J. Phys. Chem. 1998. B102. P. 8654 8660.