2007. Том 48

Приложение

S149 – S154

УДК 541.10

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРОЕНИЯ НАНОЧАСТИЦЫ С₆₀@С₄₅₀ И ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ ИНКАПСУЛИРОВАННОЙ МОЛЕКУЛЫ С₆₀

О.Е. Глухова*

Саратовский государственный университет им. Н.Г. Чернышевского

Статья поступила 17 ноября 2006 г.

Изучено равновесное состояние наночастицы $C_{60}@C_{450}$. Выяснено, что соединение стабильно при инкапсулировании тубелена C_{60} . Детально исследовано движение тубелена в поле удерживающего потенциала закрытой нанотрубки C_{450} : поступательное вдоль оси тубуса и вращательное. Прогнозируется существование наногироскопа внутри C_{450} , вращающегося в поле капсулы C_{60} . Рассчитаны его квантованные вращательные состояния. Изучение структуры и энергетики наночастицы проводили методом сильной связи с модифицированными параметрами.

Ключевые слова: инкапсулированный тубелен, наночастица, наногироскоп.

введение

Исследованию наностручков (углеродных нанотрубок инкапсулированными с фуллеренами) уделяется в настоящий момент большое внимание: изучаются их оптические свойства [1], энергетика [2,3] и ориентация фуллеренов в трубке [4], теплопроводность [5] и термодинамические свойства [6]. Уже реально рассматривается возможность конструирования на их основе наноэлементов памяти [7]. Экспериментальные и теоретические исследования доказали возможность относительного вращения оболочек наночастицы $C_n(a)C_m$, которое может осуществляться направленной подачей энергии [8,9]. Например, эмпирически установлено, что в твердой фазе Sc₂C₈₄ молекула C₂, заключенная в фуллерене C₈₄, обладает квантованным вращательным движением [10]. Это демонстрирует рамановский спектр в диапазоне 50—150 см⁻¹. Будет ли вращаться инкапсулированная молекула, зависит от величины потенциального барьера. Если барьер внутреннего вращения нулевой или, по крайней мере, очень незначителен, то вращение возможно, в том числе, и при достаточно высокой температуре (до 200 K [10]).

Цель работы — изучение стабильности соединения $C_{60} @ C_{450}$ и детальное исследование двух типов движения молекулы C_{60} : поступательного вдоль оси нанотрубки и вращательного внутри нее. Необходимость изучения первого типа движения вызвана возможностью конструирования наноэлемента памяти (при наличии для молекулы в капсуле двух потенциальных ям одной глубины). Во втором случае наличие малого "трения" — благоприятный фактор для создания наногироскопа.

МЕТОД ИЗУЧЕНИЯ СТРУКТУРЫ И СВОЙСТВ УГЛЕРОДНЫХ НАНОКЛАСТЕРОВ

Метод сильной связи хорошо известен и успешно применяется в изучении многоатомных молекул и кристаллов [9, 11—13]. Предложенная в [13] модификация параметров метода (атомных термов, межатомных матричных элементов гамильтониана) позволяет рассчитывать атомную и электронную структуры углеродных кластеров (фуллеренов, нанотрубок, наноторов,

^{*} E-mail: glukhova@info.squ.ru

О.Е. ГЛУХОВА

Таблица 1

Атомные термы углерода и равновесные интегралы перекрытия, эВ

€ _s	ϵ_p	$V_{ss\sigma}^{0}$	$V_{sp\sigma}^{0}$	$V_{pp\sigma}^0$	$V^0_{pp\pi}$	
-10,932	-5,991	-4,344	3,969	5,457	-1,938	

эндоэдральных соединений и др.) при различных локальных изменениях каркаса и в случае относительного движения компонент соединения. Матрица гамильтониана формируется в реальном пространстве, в базисе *s*- и *p*орбиталей внешних электронных слоев атомов углерода. Новая параметриза-

ция [13] хорошо зарекомендовала себя в вычислениях таких важных характеристик кластеров как длины связей, энергетическая щель, ионизационный потенциал. Их значения для ряда фуллеренов и нанотрубок подтверждаются экспериментальными данными [9, 13, 16].

Полная энергия кластера Е_n задается суммой

$$E_n = E_{\rm rep} + E_{\rm bond},\tag{1}$$

где E_{rep} — феноменологическая энергия, E_{bond} — энергия заполненных электронных уровней. Минимизацией E_n по характерным линейным параметрам каркаса кластера определяется его геометрия и энергетика, соответствующие основному состоянию.

Феноменологическая энергия, учитывающая межэлектронное и межъядерное взаимодействия, представляется суммой парных отталкивательных потенциалов

$$E_{\rm rep} = \sum_{i < j} V_{\rm rep} \left(\left| r_i - r_j \right| \right), \tag{2}$$

где i, j — номера взаимодействующих атомов; r_i, r_j — декартовы координаты. Функция V_{rep} определяется выражением

$$V_{\rm rep}(r) = V_{\rm rep}^0 \left(\frac{1,54}{r}\right)^{4,455} \exp\left\{4,455 \left[-\left(\frac{r}{2,32}\right)^{22} + \left(\frac{1,54}{2,32}\right)^{22}\right]\right\},\tag{3}$$

где $V_{\rm rep}^0 = 10,92$ эВ. Энергия заполненных уровней определяется формулой

$$E_{\text{bond}} = 2\sum_{n} \varepsilon_n,\tag{4}$$

где ε_n — энергия заполненного состояния с номером *n*, собственное значение гамильтониана (цифра 2 учитывает спин электрона). Межатомные матричные элементы гамильтониана задаются в виде

$$V_{ij\alpha}(r) = V_{ij\alpha}^{0} \left(\frac{1,54}{r}\right)^{2,796} \exp\left\{2,796\left[-\left(\frac{r}{2,32}\right)^{22} + \left(\frac{1,54}{2,32}\right)^{22}\right]\right\},$$
(5)

где r — расстояние между атомами; i, j — орбитальные моменты волновых функций; α — индекс, указывающий тип связи (σ или π). Значения атомных термов ε_s , ε_p и равновесных интегралов перекрытия $V_{ss\sigma}^0$, $V_{sp\sigma}^0$, $V_{pp\pi}^0$, $V_{pp\pi}^0$ приведены в табл. 1 [13].

АТОМНАЯ СТРУКТУРА И ЭНЕРГЕТИКА НАНОЧАСТИЦЫ С60@С450

Технология синтеза углеродных наностручков хорошо отработана, и уже проведен ряд экспериментов по изучению герметизации нанотрубок различными фуллеренами. В основном, внимание уделяется открытым нанотрубкам, начиненным фуллеренами [3—6]. Закрытые трубки с одной-двумя "горошинами" исследуются много меньше.

Молекула С₄₅₀, взятая в качестве капсулы фуллерена, представляет собой закрытую нанотрубку симметрии *D*_{5h}. Каркас С₄₅₀ образован трубкой (15,0), содержащей 300 атомов, и

Puc.	1.	Углеродные	кластеры:	<i>a</i> —	нанотрубка	C ₄₅₀ ,	б		
тубелен C ₆₀									

двумя фуллереновыми шапочками. На рис. 1, a — половина нанотрубки: серыми гексагонами "выложен" остов трубки (15,0), белыми и темносерыми многоугольниками — фуллереновая шапочка (темно-серой заливкой обозначены правильные пятии шестиугольники). Показаны оси C_5 и C_2 и горизонтальная плоскость симметрии σ_h . Строение каркаса C_{450} было определено минимизацией его энергии (1). Фуллереновый фрагмент образован $\overline{\sigma_h}$ шестью правильными пятиугольниками и пятью

правильными шестиугольниками (соответствующие длины связей отмечены цифрами 1 и 2). Шапочка насчитывает еще три характерных линейных параметра, включающих длины связей области стыка ее с трубкой (15,0). Они обозначены на рисунке цифрами 3, 4 и 5. Цилиндрический фрагмент молекулы собран из неправильных гексагонов (стороны обозначены 6 и 7) и характеризуется диаметром 11,64 Å. В табл. 2 приведены длины связей и энергетические параметры: потенциал ионизации I, энергетическая щель E_g , энергия на атом E_1 , энергия атомизации E_a , энтальпия молекулы $\Delta H(\mathbf{C}_n)$.

Известно, что молекула С₆₀ может быть и фуллереном, и тубеленом.

Молекула C₆₀ как фуллерен в свободном состоянии обладает симметрией I_h ; диаметр фуллерена равен 6,7 Å. Инкапсулирование фуллерена в нанотрубку C₄₅₀, построенную на основе *zigzag* (15,0), эндотермично и ведет к его изомеризации с понижением группы симметрии каркаса с I_h до D_{5d} . Действительно, авторы [3] показали, что энергетически выгодным для фуллерена C₆₀ является размещение в трубке (17,0) с расстоянием фуллерен—стенка 3,11 Å. Инкапсулирование в трубки большего диаметра также будет экзотермичным.

Молекула С₆₀ как тубелен детально изучена в [13]. Каркас (см. рис. 1, δ) соответствует группе симметрии D_{6h} и характеризуется пятью длинами связей С—С: стороной правильного шестиугольника на крышке тубелена (1 - 1,421 Å), ребром, смежным двум пятиугольникам (2 - 1,505 Å), и тремя различными сторонами гексагона, не лежащего на крышке кластера (3 - 1,434, 4 - 1,430, 5 - 1,441 Å). В длину каркас имеет 9,451 Å, в поперечнике — 4,916 Å.

Таблица 2

Параметр	$C_{450}(D_{5h})$	$C_{60}(D_{6h})$	$C_{60}(D_{6h})@C_{450}$		
$r_1, Å$	1,388	1,421	_		
<i>r</i> ₂ , Å	1,405	1,504	_		
<i>r</i> 3, Å	1,386	1,434	_		
<i>r</i> 4, Å	1,425	1,430	_		
<i>r</i> 5, Å	1,540	1,440	_		
<i>r</i> ₆ , Å	1,405	_	_		
<i>r</i> ₇ , Å	1,420	_	_		
$I(\mathbf{C}_n), \mathfrak{B}$	6,482	7,081	6,544		
$E_g(\mathbf{C}_n)$	0,213	0,701	0,082		
E_1 , (C _n), эВ/атом	-43,038	-42,867	-43,150		
E_a , (С _n), эВ/атом	7,005	6,834	7,114		
$\Delta H(C_n)$, ккал/моль атом ⁻¹	9,775	13,715	7,268		

Геометрические и энергетические характеристики наночастицы $C_{60}@C_{450}$

Рис. 2. Наночастица С₆₀@С₄₅₀

В результате инкапсулирования тубелена C_{60} в трубку C_{450} образовалось стабильное соединение $C_{60}@C_{450}$ (рис. 2). Основное состояние наночастицы определено минимизацией энергии C_{60} в потенциальной яме. В нулевом приближении центры масс

 C_{60} и C_{450} задавались в одной точке, которая была принята за начало координат. Оси пятого порядка капсулы и шестого порядка фуллерена совпадали с осью Z. Перемещением C_{60} в поле удерживающего потенциала вдоль оси Z от середины к шапочке трубки было найдено положение фуллерена с минимумом энергии (область фуллереновой шапочки трубки) и рассчитано атомное строение C_{60} минимизацией его полной энергии E_{60} по координатам всех атомов. E_{60} задавали суммой энергии зонной структуры и феноменологической энергии фуллерена (1) и энергии E_{1-2} межмолекулярного взаимодействия компонент наночастицы. E_{1-2} складывалась, в свою очередь, из энергии, учитывающей межъядерное и межэлектронное взаимодействия атомов фуллерена и трубки, и потенциала U Леннард-Джонса:

$$E_{1-2} = \sum_{i=1}^{N_{1-2}} \left(E_{\text{rep}_i} + U_i \right).$$
(6)

Здесь *i* — счетчик пар атомов, принадлежащих разным оболочкам наночастицы; $N_{1-2} = 27000$ — число пар. E_{rep_i} рассчитывается по формуле (2) с учетом того, что *i*, *j* — номера атомов двух разных объектов соединения C₆₀@C₄₅₀. U_i — потенциал взаимодействия Ван-дер-Ваальса [15]

$$U_{i} = \frac{A}{\sigma^{6}} \left(\frac{1}{2} y_{o}^{6} \frac{1}{(r_{i} / \sigma)^{12}} - \frac{1}{(r_{i} / \sigma)^{6}} \right),$$
(7)

где r_i — расстояние между атомами *i*-й пары; $\sigma = 1,42$ Å — длина связи С—С, $y_o = 2,7$ и $A = 24,3 \cdot 10^{-79}$ Дж·м⁶ — эмпирически подобранные параметры.

В поле капсулы C_{450} каркас тубелена C_{60} остался неизменным с сохранением группы симметрии D_{6h} . Значения длин связей и энергетических параметров тубелена $C_{60}(D_{6h})$ и соответствующей наночастицы $C_{60}@C_{450}$ приведены в табл. 2.

Установлено [16], что необходимыми условиями возможности существования движений (поступательного или вращательного) молекулы C_{60} внутри нанотрубки являются экзотермичность инкапсулирования C_{60} и слабая (оптимально — нулевая) деформируемость нанотрубки. Также методом сильной связи были рассчитаны соответствующие характеристики $C_{60}@C_{450}$. Выяснилось, что диаметр каркаса нанотрубки остался неизменным 11,64 Å при инкапсулировании тубелена C_{60} , а численное значение энтальпии составляет $\Delta H = -3,125$ ккал/моль атом⁻¹.

На рис. 3 приведена зависимость энергии взаимодействия тубелена C_{60} с полем трубки E_{1-2} , рассчитанная по формуле (6); Z — координата центра масс молекулы C_{60} , движущейся от середины (Z = 0) нанотрубки C_{450} к ее периферии. Из-за симметрии наносоединения

потенциальные ямы глубиной 0,42 эВ симметрично расположены относительно центра тяжести. Отсюда видно, что на основе таких наночастиц возможно конструирование элемента памяти. Поступательное движение тубелена C₆₀ возможно в случае преодоления им небольшого потенциального барьера.

Рассчитана полная энергия тубелена С₆₀ при по-

Рис. 3. Изменение энергии взаимодействия тубелена C₆₀ с полем капсулы в ходе перемещения от середины к фуллереновому концу тубуса

Рис. 4. Изменение полной энергии тубелена С₆₀ при вращении в поле нанотрубки С₄₅₀ вокруг оси *Z*

воротах в капсуле C_{450} вокруг оси Z (рис. 4); вращательный барьер — практически нулевой (несколько сотых электронвольта). Поворот около осей X и Y невозможен из-за высокого потенциального барьера. Можно сказать, что ориентация тубелена, характеризующаяся совпадением осей шестого порядка C_{60} и пятого порядка C_{450} с осью Z, является устойчивой, и ось C_6 тубелена — главная ось инерции. Тубулярный C_{60} может свободно вращаться около оси Z и быть наногироскопом.

КВАНТОВЫЙ НАНОГИРОСКОП С₆₀ В ПОЛЕ С₄₅₀

Идея создания наногироскопа основывается на следующем. Молекула должна иметь возможность свободно вращаться в поле внешней оболочки (вращательный барьер — нулевой или очень незначителен), но иметь одно фиксированное положение оси вращения. Такую ориентацию оси гироскопа может обеспечить удерживающий внешний потенциал, не оказывающий заметного деформирующего дефекта на молекулу фуллерена и не допускающий при этом сколько-нибудь существенной переориентации оси вращения. Последнее условие реализуется, когда в основном состоянии конфигурация соединения характеризуется совпадением осей симметрии трубки и молекулы (предполагаемого гироскопа). Для такой конфигурации расстояние молекула—стенка должно составлять 3,1÷3,4 Å. Этим требованиям, когда внешней оболочкой выступает нанотрубка С₄₅₀, удовлетворяет, кроме тубелена С₆₀, фуллерен С₃₆ (на базе которого и строится тубелен С₆₀ [13]). Другие миниатюрные кластеры С₂₈ и С₂₀, по-видимому, могут также быть наногироскопами, но в трубках меньшего диаметра. Перечисленным условиям отвечают соединения С20@(8,8) и С28@(8,8) [20, 21]: фуллерены С20 и C₂₈ в трубке (8,8) ориентированы вдоль ее оси, расстояние фуллерен—стенка ~3,1 Å. В трубках меньшего диаметра, как например в (6, 6), С₂₀ образует химическую связь со стенками [21]; в более просторных трубках (10,10), (11,11), (12,12) фуллерены стремятся образовать друг с другом новые комплексы одно-, двух- и трехмерные (спиральные) [20]. Сейчас трубкам, заполненным фуллеренами С20, С28 и С36, уделяется все большее внимание: предсказаны уникальные механические свойства структур типа С₂₀@(10,10) и С₃₆@(9,9) [22], изучаются электронные свойства гипотетических гибридных наноструктур (C₂₀, C₂₈)@BN-трубка [23].

В качестве квантового наногироскопа тубелен C_{60} изучали по модели симметричного волчка (два из главных моментов инерции волчка совпадают: $I_A = I_B \neq I_C$): $I_X = I_Y = 4,92 \cdot 10^{-44}$, $I_Z = 3,66 \cdot 10^{-44}$ кг·м². Стационарные вращательные состояния характеризуются тремя квантовыми числами: моментом вращения *J*, его проекцией J_{ζ} на ось волчка и его проекцией J_z на фиксированную в пространстве ось *z*. В нашем случае J_{ζ} и J_z совпадают. Собственные значения J_{ζ} обозначим буквой *k*: k = -J, ..., + J, где *J* (целое число) — величина момента волчка. Тогда в состоянии с определенными значениями *J* и *k* энергия равна [24]

$$E_k^J = \frac{\hbar^2}{2I_A} J(J+1) + \frac{\hbar^2}{2} (\frac{1}{I_C} - \frac{1}{I_A}) k^2.$$
(8)

Вырождение будет наблюдаться при одинаковых по модулю значениях k (что соответствует взаимно противоположным направлениям момента относительно оси волчка): при $k \neq 0$ уровни энергии симметричного волчка будут двукратно вырожденными. Вращательные уровни, рассчитанные для 40 K, представлены в табл. 3. Для сравнения, при том же значении J = 12 и 40 K эксперимент дает квантованный набор значений от 11 до 76 см⁻¹ вращающейся молекулы C₂ в поле фуллерена C₈₄ [10] с моментом инерции 1,617·10⁻⁴⁶ кг·м².

Таблица 3

k	0	+1	2	3	4	5	6	7	8	9	10	11	12
Частота, см ⁻¹	34,87	34,95	35,18	35,57	36,10	36,79	37,64	38,69	39,79	41,10	42,56	44,17	45,94

Вращательные уровни тубелена C₆₀, инкапсулированного в нанотрубку C₄₅₀

выволы

Инкапсулирование тубелена С₆₀ экзотермично и приводит к образованию наночастицы $C_{60}@C_{450}$, основному состоянию которой соответствует положение молекулы C_{60} в приконцевых потенциальных ямах — в областях фуллереновых шапочек нанотрубки. На основе наночастицы С₆₀@С₄₅₀ можно конструировать как наноэлемент памяти, так и наногироскоп. Вращение внутренней оболочки, по-видимому, является нередким явлением [9, 10], хотя и трудным для экспериментального изучения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kataura H., Maniwa Y., Fujiwara M. et al. // Appl. Phys. A. 2002. 74. P. 349 354.
- 2. Dubay O., Kresse G. // Phys. Rev. B. 2004. 70, N 16. P. 165424(1-10).
- 3. Otani M., Okada S., Oshiyama A. // Ibid. 2003. 68, N 12. P. 125424(1-8).
- 4. Suenaga K., Okazaki T., Hirahara K. et al. // Appl. Phys. A. 2003. 76. P. 445 447.
- 5. Nova E.G., Srivastava D., Chernozatonskii L.A. et al. // Phys. Rev. B. 2004. 70, N 11. P. 115416 (1-5).
- 6. Girifalco L.A., Hodak M. // Appl. Phys. A. 2003. 76, N 19. P. 487 498.
- 7. Lee C.H., Kang K.T., Park K.S. et al. // Jpn. Appl. Phys. 2003. 42, N 8. P. 5392 5394.
- 8. Porto M., Urbakh M., Klafter J. // Phys. Rev. Lett. 2000. 84, N 26(I). P. 6058 6061.
- 9. Глухова О.Е., Жбанов А.И., Резков А.Г. // Физика тверд. тела. 2005. 47, № 2. С. 376 382.
- 10. Krause M., Hulman M., Kuzmany H. et al. // Phys. Rev. Lett. 2004. 93, N 13. P. 137403(1-4).
- 11. Goodwin L. // J. Phys.: Condens. Matter. 1991. 3. P. 3869 3878.
- 12. Хохряков Н.В., Савинский С.С., Молина Дж.М. // Письма в ЖЭТФ. 1995. 62, № 7. С. 595 598.
- 13. Глухова О.Е., Жбанов А.И. // Физика тверд. тела. 2003. 45, № 1. С. 180 186.
- 14. Copley J.R.D., Neumann D.A., Cappelletti R.L., Kamitakahara W.A. // Phys. Chem. Solids. 1992. 53, N 11. – P. 1353 – 1371.
- 15. *Qian D., Liu W.K., Ruoff R.S.* // J. Phys. Chem. B. 2001. **105**, N 44. P. 10753 10758.
- 16. Глухова О.Е., Дружинин А.А., Жбанов А.И., Резков А.Г. // Журн. структур. химии. 2005. 46, № 3. C. 514 – 520.
- 17. Лозовик Ю.Е., Попов А.М. // Физика тверд. тела. 2002. 44, № 1. С. 180 187.
- 18. Xia Y., Xing Y., Tan C., Mei L. // Phys. Rev. B. 1996. 53, N 20. P. 13871 13876.
- 19. Киттель Ч., Наит У., Рудерман М. Механика. М.: Наука, 1978.
- 20. Zhou I., Pan Z.Y., Wang Y.X. et al. // Nanothechnology. 2006. 17. P. 1891 1894.
- 21. Lu J., Nagase S., Zhang S. et al. // Phys. Rev. B. 2003. 68, N 12. P. 121402(4).
- 22. Zhang Z.X., Pan Z.Y., Wei Q. et al. // Intern. J. Modern Phys. B. 2003. 17, N 26. P. 4667 4674.
- 23. Ивановская В.В., Еняшин А.Н., Софронов А.А. // Журн. общ. химии. 2004. 74, № 5. С. 778 785.
- 24. Ландау Л.Д., Лившиц Е.М. Квантовая механика. Нерелятивистская теория. Теоретическая физика. Т. 3. – М.: Наука, 1989.