УДК 532.5

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ ВЯЗКОЙ МИКРОПОЛЯРНОЙ ЖИДКОСТИ ЧЕРЕЗ ПОРИСТУЮ СРЕДУ

С. Ахмад, М. Ашраф, К. Али*

Университет им. Бахауддина Закария, 60800 Мултан, Пакистан

* Инженерно-технологический университет им. Мухаммеда Наваза Шарифа, 60000 Мултан, Пакистан

E-mails: sohailkhan1058@gmail.com, muhammadashraf@bzu.edu.pk, kshifali_381@yahoo.com

С учетом диссипации энергии численно исследуется тепломассоперенос в течении вязкой несжимаемой микрополярной жидкости через резистивную пористую среду, находящуюся в канале с плоскими стенками. С использованием преобразования подобия система дифференциальных уравнений в частных производных сводится к системе обыкновенных дифференциальных уравнений, численное решение которой для различных значений параметров задачи построено методом квазилинеаризации. Установлено, что вследствие диссипации энергии в вязкой жидкости скорости переноса тепла и массы как на верхней стенке канала, так и на нижней увеличиваются.

Ключевые слова: вязкая диссипация, микрополярная жидкость, пористая среда, квазилинеаризация.

DOI: 10.15372/PMTF20190603

Введение. Микрополярные жидкости содержат микроструктурированные полимерные добавки и принадлежат к классу неньютоновских жидкостей. Вращение микрочастиц приводит к увеличению интесивности гидродинамического потока, что позволяет использовать микрополярные жидкости в машиностроении и биотехнологиях. Примерами микрожидкостей являются феррожидкости, коллоидные растворы, полимерные материалы, кровь животных, краски и т. п. В работах [1, 2] впервые предложены уравнения, описывающие течение микрополярных жидкостей. В модели течения микрополярной жидкости содержится дополнительное уравнение, выражающее закон сохранения локального момента импульса. Эта модель развита в работах [3, 4], там же приведены примеры применения микрополярных жидкостей.

Результаты исследований процессов тепломассопереноса применяются при решении прикладных задач биотехнологий и геофизики (циркуляция воздуха в дыхательных системах, диффузия в бинарных газах, сушка пористых твердых поверхностей, процессы горения в ракетных двигателях, производство керамики, полимерных материалов и т. п.). В последнее время проводятся интенсивные исследования процессов тепломассопереноса в течениях микрополярных жидкостей в каналах. В работе [5] при изучении течения микрополярной жидкости в канале использовались методы гомотопии. В [6] с помощью метода

дифференциальных преобразований исследовано течение микрополярной жидкости в канале с пористыми стенками. Установлено, что число Рейнольдса практически не влияет на температуру и концентрацию жидкости. В работе [7] численно исследовано течение микрополярной жидкости в канале, одна стенка которого сжимается, а вторая — неподвижна. В [8] при изучении течения микрополярной жидкости использовались метод наименьших квадратов и метод Рунге — Кутты четвертого порядка. В работе [9] решена задача, поставленная в [8] с использованием метода гомотопических возмущений [10], найденные решения сравнивались с решением, полученным методом Рунге — Кутты четвертого порядка. В [11] методом гомотопического анализа исследовано течение микрополярной жидкости в канале с расширяющимися и сжимающимися стенками. Течение магнитогидродинамической микрополярной жидкости через пористую среду изучено в [12]. На основе результатов численного моделирования в работах [13, 14] установлено, что в случае течения микрополярной жидкости поверхностное трение на стенках канала меньше, чем в случае течения ньютоновской жидкости.

В данной работе с учетом диссипации энергии численно исследуется тепломассоперенос в течении вязкой несжимаемой микрополярной жидкости через резистивную пористую среду, находящуюся в канале с плоскими стенками.

1. Физическая модель. Рассматривается установившееся ламинарное течение вязкой несжимаемой микрополярной жидкости через канал, заполненный резистивной пористой средой. Температура и концентрация раствора на нижней стенке канала обозначены через T_1 и C_1 , на верхней — через T_2 и C_2 (рис. 1). Стенки канала параллельны оси x и имеют координаты $y=\pm h~(2h$ — ширина канала).

Дифференциальные уравнения, описывающие течение, перенос тепла и изменение концентрации, имеют вид

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0;$$

$$\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} + (\mu + k) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\mu + k}{k^*} u + k \frac{\partial N}{\partial y},$$

$$\rho \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + (\mu + k) \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \frac{\mu + k}{k^*} v - k \frac{\partial N}{\partial x},$$

$$\rho \left(u \frac{\partial N}{\partial x} + v \frac{\partial N}{\partial y} \right) = -\frac{k}{j} \left(2N + \frac{\partial u}{\partial x} - v \frac{\partial v}{\partial y} \right) + \frac{\mu_s}{j} \left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2} \right),$$
(1)

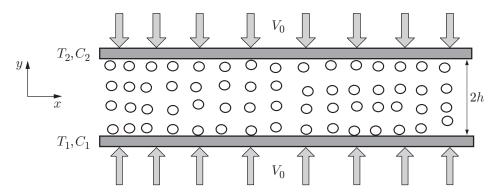


Рис. 1. Геометрия задачи

$$\rho C_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k_1 \frac{\partial^2 T}{\partial y^2} + \mu \left(\frac{\partial u}{\partial y} \right)^2,$$
$$u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D^* \frac{\partial^2 C}{\partial y^2},$$

где x,y — координаты осей, направленных вдоль и поперек канала; u,v — компоненты вектора скорости в направлениях x,y соответственно; ρ — плотность жидкости; μ — динамическая вязкость; N — угловая скорость микрочастиц; p — давление; k^* — коэффициент проницаемости; C_p — удельная теплоемкость; k — вихревая вязкость; j — микроинерция; $\mu_s = \mu + k/2$ — вязкость микровращения; k_1 — теплопроводность; D^* — коэффициент молекулярной диффузии; T — температура; C — концентрация.

При $y = \pm h$ ставятся следующие краевые условия:

$$y = -h$$
: $u = 0$, $v = -v_0$, $N = 0$, $T = T_1$, $C = C_1$, $y = h$: $u = 0$, $v = v_0$, $N \to 0$, $T \to T_2$, $C \to C_2$.

Введем преобразования подобия

$$\eta = \frac{y}{h}, \quad \psi = -v_0 x f(\eta), \quad N = \frac{v_0 x}{h^2} g(\eta), \quad \theta(\eta) = \frac{T - T_2}{T_1 - T_2}, \quad \varphi(\eta) = \frac{C - C_2}{C_1 - C_2},$$
(2)

где $T_2 = T_1 - Ax$; $C_2 = C_1 - Bx$; A, B — константы. Используя преобразования (2) в уравнениях (1), получаем систему обыкновенных дифференциальных уравнений

$$(1+C_1)f^{iv} - \operatorname{Re} f f''' + \operatorname{Re} f' f'' - \varepsilon (1+C_1)f'' - C_1 g'' = 0,$$

$$C_2 g'' + C_1 (f'' - 2g) - C_3 \operatorname{Re} (f g' - f' g) = 0;$$
(3)

$$\theta'' + \operatorname{Pe}_h(\operatorname{Ec} f''^2 + f'\theta - f\theta') = 0, \qquad \varphi'' + \operatorname{Pe}_m(f'\varphi - f\varphi') = 0 \tag{4}$$

с краевыми условиями

$$\eta = -1:$$
 $f = 1,$
 $f' = 0,$
 $g = 0,$
 $\theta = 1,$
 $\varphi = 1,$
 $\eta = 1:$
 $f = -1,$
 $f' = 0,$
 $g = 0,$
 $\theta = 0,$
 $\varphi = 0.$
(5)

В уравнениях (3), (4) определены следующие константы:

$$Re = \frac{v_0}{v} h, \quad C_1 = \frac{k}{\mu}, \quad C_2 = \frac{\mu_s}{\mu h^2}, \quad C_3 = \frac{j}{h^2}, \quad \varepsilon = \frac{h^2}{k^*},$$

$$Pr = \frac{v\rho C_p}{k_1}, \quad Pe_h = Pr Re, \quad Ec = \frac{v_0^2 x v}{h^3 C_p}, \quad Sc = \frac{\nu}{D^*}, \quad Pe_m = Sc Re.$$

Здесь Re — число Рейнольдса; C_1 — параметр вихревой вязкости; C_2 — параметр вязкости, обусловленной градиентом вращения; C_3 — параметр плотности микроинерции; ε — параметр пористости; Pr — число Прандтля; Pe_h, Pe_m — числа Пекле, характеризующие диффузию тепла и массы соответственно; Ec — число Эккерта; Sc — число Шмидта. Наибольший интерес представляют числа Нуссельта и Шервуда

$$\operatorname{Nu}_{x} = \frac{q''x}{(T_{1} - T_{2})k_{1}}\Big|_{y=-h} = -\theta'(-1), \qquad \operatorname{Sh}_{x} = \frac{m''x}{(C_{1} - C_{2})k_{1}}\Big|_{y=-h} = -\varphi'(-1)$$

(q'', m'' — локальные потоки тепла и массы соответственно).

2. Метод квазилинеаризации. Методом линеаризации строятся последовательности функций $\{f^{(k)}\}, \{g^{(k)}\}, \{\theta^{(k)}\}, \{\varphi^{(k)}\},$ сходящиеся к решению системы уравнений

(3), (4). Для построения последовательности $\{f^{(k)}\}$ линеаризуем уравнение (3). Определим функцию

$$G(f, f', f'', f''', f^{iv}) = (1 + C_1)f^{iv} - \operatorname{Re} f f'''' + \operatorname{Re} f' f'' - \varepsilon (1 + C_1)f''.$$

Разлагая функцию G в ряд Тейлора и удерживая в нем только члены первого порядка, находим

$$\begin{split} G(f^{(k)},f^{(k)\prime},f^{(k)\prime\prime},f^{(k)\prime\prime\prime},f^{(k)\prime\prime\prime},f^{(k)iv}) + & \left(f^{(k+1)}-f^{(k)}\right)\frac{\partial G}{\partial f^{(k)}} + \left(f^{(k+1)\prime}-f^{(k)\prime}\right)\frac{\partial G}{\partial f^{(k)\prime\prime}} + \\ & + \left(f^{(k+1)\prime\prime}-f^{(k)\prime\prime\prime}\right)\frac{\partial G}{\partial f^{(k)\prime\prime\prime}} + & \left(f^{(k+1)\prime\prime\prime}-f^{(k)\prime\prime\prime}\right)\frac{\partial G}{\partial f^{(k)\prime\prime\prime}} + & \left(f^{(k+1)iv}-f^{(k)iv}\right)\frac{\partial G}{\partial f^{(k)iv}} = 0. \end{split}$$

В результате вычислений получаем

$$(1+C_1)f^{(k+1)iv} - \operatorname{Re} f^{(k)}f^{(k+1)'''} + \left[\operatorname{Re} f^{(k)'} - \varepsilon(1+C_1)\right]f^{(k+1)''} + + \operatorname{Re} f^{(k)''}f^{(k+1)'} - \operatorname{Re} f^{(k)'''}f^{(k+1)} = \operatorname{Re} (f^{(k)'}f^{(k)''} - f^{(k)}f^{(k)'''}) + C_1g^{(k)''}.$$
(6)

Заменяя в обыкновенных дифференциальных уравнениях (6) производные центральными разностями, получаем уравнения для определения последовательности $\{f^{(k)}\}$:

$$[(1+C_{1})+h\operatorname{Re} f_{i}^{(k)}]f_{i-2}^{(k+1)}+[-4(1+C_{1})-2h\operatorname{Re} f_{i}^{(k)}+0.5h\operatorname{Re} (f_{i+1}^{(k)}-f_{i-1}^{(k)})-\\-\varepsilon(1+C_{1})h^{2}-0.5h\operatorname{Re} (f_{i+1}^{(k)}-2f_{i}^{(k)}+f_{i-1}^{(k)})]f_{i-1}^{(k+1)}+[6(1+C_{1})+h\operatorname{Re} (f_{i+1}^{(k)}-f_{i-1}^{(k)})+\\+2\varepsilon(1+C_{1})h^{2}-h\operatorname{Re} (f_{i+2}^{(k)}-2f_{i+1}^{(k)}+2f_{i-1}^{(k)}-2f_{i-2}^{(k)})]f_{i}^{(k+1)}+\\+[-4(1+C_{1})+2h\operatorname{Re} f_{i}^{(k)}+0.5h\operatorname{Re} (f_{i+1}^{(k)}-f_{i-1}^{(k)})-\varepsilon(1+C_{1})h^{2}+\\+0.5h\operatorname{Re} (f_{i+1}^{(k)}-2f_{i}^{(k)}+f_{i-1}^{(k)})]f_{i+1}^{(k+1)}+[(1+C_{1})-h\operatorname{Re} f_{i}^{(k)}]f_{i+2}^{(k+1)}=\\=0.5h\operatorname{Re} (f_{i+1}^{(k)}-f_{i-1}^{(k)})(f_{i+1}^{(k)}-2f_{i}^{(k)}+f_{i-1}^{(k)})-h\operatorname{Re} f_{i}^{(k)}(f_{i+2}^{(k)}-2f_{i+1}^{(k)}+2f_{i-1}^{(k)}-2f_{i-2}^{(k)})+\\+h^{2}C_{1}(g_{i+1}^{(k)}-2g_{i}^{(k)}+g_{i-1}^{(k)}).$$
(7)

Аналогично линеаризуются уравнения (4). В результате имеем систему уравнений для определения последовательностей $\{g^{(k)}\}, \{\theta^{(k)}\}, \{\varphi^{(k)}\}:$

$$C_{2}g^{(k+1)"} + C_{1}(f^{(k)"} - 2g^{(k+1)}) - C_{3}\operatorname{Re}(f^{(k)}g^{(k+1)'} - f^{(k)'}g^{(k+1)}) = 0,$$

$$\theta^{(k+1)"} - \operatorname{Pe}_{h}(f^{(k)}\theta^{(k+1)'} - f^{(k)'}\theta^{(k+1)} - \operatorname{Ec}f^{(k)"2}) = 0,$$

$$\varphi^{(k+1)"} - \operatorname{Pe}_{m}(f^{(k)}\varphi^{(k+1)'} - f^{(k)'}\varphi^{(k+1)}) = 0.$$
(8)

Для того чтобы получить решение систем уравнений (7), (8), используем следующую итерационную процедуру.

- 1. Выбирается начальное приближение $f^{(0)}$, $g^{(0)}$, $\theta^{(0)}$, $\varphi^{(0)}$, удовлетворяющее краевым условиям (5).
 - 2. С использованием решения линейной системы (7) определяется приближение $f^{(1)}$.
- 3. Производные в системе уравнений (8) заменяются конечными разностями и из по-
- лученной алгебраической системы находятся приближения $g^{(1)}$, $\theta^{(1)}$, $\varphi^{(1)}$.

 4. После того как функции $f^{(1)}$, $g^{(1)}$, $\theta^{(1)}$, $\varphi^{(1)}$ определены, процедура повторяется. В результате строятся последовательности $\{f^{(k)}\}$, $\{g^{(k)}\}$, $\{\theta^{(k)}\}$, $\{\varphi^{(k)}\}$, сходящиеся к функциям f, g, θ, φ соответственно.
 - 5. Вычисления прекращаются, если выполняются неравенства

$$\max (\|f^{(k+1)} - f^{(k)}\|_{L_2}, \|g^{(k+1)} - g^{(k)}\|_{L_2}, \|\theta^{(k+1)} - \theta^{(k)}\|_{L_2}, \|\varphi^{(k+1)} - \varphi^{(k)}\|_{L_2}) < 10^{-8}.$$

3. Результаты численного решения и их обсуждение. Нелинейная система обыкновенных дифференциальных уравнений (3), (4) с краевыми условиями (5) решалась численно с использованием метода квазилинеаризации при различных значениях числа Рейнольдса Re, параметра пористости ε , параметров микрополярной среды C_1 , C_2 , C_3 , числа Пекле Pe_h , числа Эккерта Ec и числа Пекле Pe_m . Ниже приводятся результаты исследования влияния этих параметров на поле скорости $F'(\eta)$, параметр микровращения $G(\eta)$, температуру $\theta(\eta)$, концентрацию $\varphi(\eta)$, а также на величины $f''(\pm 1)$, $\theta'(\pm 1)$, $\varphi'(\pm 1)$. Шаг по безразмерной координате η выбирался таким образом, чтобы скорость потока, скорость микровращения, температура и пористость были близки к их асимптотическим значениям. В табл. 1 представлены результаты вычислений при различных значениях величины шага η .

В табл. 2 приведены значения сдвигового напряжения f''(-1), f''(1), скорости теплопереноса $\theta'(-1)$, $\theta'(1)$ и скорости массопереноса $\varphi'(-1)$, $\varphi'(1)$ на обеих стенках канала при $\varepsilon = 2.5$, $C_1 = 4$, $C_2 = 3$, $C_3 = 2$, $\operatorname{Pe}_h = 4$, $\operatorname{Ec} = 5$, $\operatorname{Pe}_m = 6$ и различных значениях числа Рейнольдса, в табл. 3 — при $\operatorname{Re} = 10$, $C_1 = 4$, $C_2 = 3$, $C_3 = 2$, $\operatorname{Pe}_h = 4$, $\operatorname{Ec} = 5$, $\operatorname{Pe}_m = 6$ и

Безразмерные значения температуры $\theta(\eta)$ при $\mathrm{Re}=10$, $\varepsilon=2.5$, $C_1=4,~C_2=3,~C_3=2,~\mathrm{Pe}_h=4,~\mathrm{Ec}=5,~\mathrm{Pe}_m=6$ и различных значениях $\eta,~h$

	θ				
	h = 0.01	h = 0.005	h = 0.0025		
-0.8	4,623 886	4,623 075	4,622 887		
-0.4	$5,\!473856$	5,473 752	5,473 746		
0	3,923333	3,923 930	3,924 093		
0,4	$5{,}014426$	5,014 323	5,014 316		
0,8	3,758 809	3,757 999	3,757 811		

 $\label{eq:Tadiff}$ Значения сдвиговых напряжений, скоростей тепло- и массопереноса при $\varepsilon=2,5,~C_1=4,~C_2=3,~C_3=2,~\mathrm{Pe}_h=4,~\mathrm{Ec}=5,~\mathrm{Pe}_m=6$ и различных значениях Re

Re	f''(-1)	$\theta'(-1)$	$\varphi'(-1)$	f''(1)	$\theta'(1)$	$\varphi'(1)$
6	-2,9171	25,3783	-0,3865	2,9171	-25,8847	-0,004496
12	-2,7226	23,8979	-0,3740	2,7226	-24,3923	-0,004419
18	-2,6037	22,9303	-0,3654	2,6037	$-23,\!4165$	-0,004364
24	-2,5277	22,2763	-0.3595	2,5277	-22,7565	-0,004325
30	-2,4763	21,8165	-0,3552	2,4763	$-22,\!2925$	-0,004297

 $\label{eq:Tadiff}$ Значения сдвиговых напряжений, скоростей тепло- и массопереноса при $C_1=4,~C_2=3,~C_3=2,~{\rm Pe}_h=4,~{\rm Ec}=5,~{\rm Pe}_m=6,~{\rm Re}=10$ и различных значениях ε

ε	f''(-1)	$\theta'(-1)$	$\varphi'(-1)$	f''(1)	$\theta'(1)$	$\varphi'(1)$
9	-3,4462	29,8477	-0,4197	3,4462	-30,3856	-0,00470
18	-4,2297	37,0049	-0,4634	4,2297	-37,5836	-0,00498
27	-4,8982	43,5481	-0,4967	4,8982	-44,1574	-0,00520
36	-5,4853	49,5547	-0,5232	5,4853	$-50,\!1879$	-0,00537
45	-6,0116	55,1120	-0,5450	6,0116	-55,7648	-0,00551

 ${\rm Taf}\,\pi\pi\pi\,a\,4$ Значения сдвиговых напряжений, скоростей тепло- и массопереноса при ${\rm Re}=-6,\, \varepsilon=2,\! 5,\, {\rm Pe}_h=4,\, {\rm Ec}=5,\, {\rm Pe}_m=6$ и различных значениях $C_1,\, C_2,\, C_3$

№ п/п	Параметры жидкости	f''(-1)	$\theta'(-1)$	$\varphi'(-1)$	f''(1)	$\theta'(1)$	$\varphi'(1)$
1	$C_1 = C_2 = C_3 = 0$ (ньютоновская жидкость)	-9,3689	88,2389	-0,6350	9,3689	-88,9670	-0,00602
2	$C_1 = 0.6, C_2 = 0.8, C_3 = 0.6$	-6,2452	53,7636	-0,5366	6,2452	-54,4063	-0,00540
3	$C_1 = 1, 2, C_2 = 1, 2, C_3 = 0, 9$	-5,0668	42,5491	-0,4904	5,0668	-43,1507	-0,00511
4	$C_1 = 1.8, C_2 = 1.6, C_3 = 1.2$	-4,5051	37,5985	-0,4660	4,5051	$-38,\!1780$	-0,00496
5	$C_1 = 2.4, C_2 = 2.0, C_3 = 1.5$	-4,1889	34,9254	-0,4513	4,1889	-35,4916	-0,00487

 $\label{eq:Tadpin}$ Значения скорости теплопереноса при ${
m Re}=10,~\varepsilon=2,\!5,~C_1=4,~C_2=3,~C_3=2,$ ${
m Ec}=5,~{
m Pe}_m=6~{\rm u}~{
m pa}$ различных значениях ${
m Pe}_h$

Pe_h	$\theta'(-1)$	$\theta'(1)$
0,2	2,1858	-3,1460
0,4	4,4931	-5,4157
0,6	6,5229	-7,4098
0,8	8,3385	-9,1917
1,0	9,9824	-10,8036

Значения скорости теплопереноса при ${
m Re}=10$, $\varepsilon=2,$ 5, $C_1=4$, $C_2=3$, $C_3=2$, ${
m Pe}_h=4$, ${
m Pe}_m=6$ и различных значениях ${
m Ec}$

Таблица 6

Ec	$\theta'(-1)$	$\theta'(1)$
0,3	0,4157	-1,1005
0,6	1,4380	-2,1227
0,9	2,4602	-3,1449
1,2	3,4824	-4,1672
1,5	4,5047	-5,1894

 $\label{eq:Tadpin}$ Значения скорости массопереноса при ${
m Re}=10,~\varepsilon=2,\!5,~C_1=4,~C_2=3,~C_3=2,$ ${
m Pe}_h=4,~{
m Ec}=5~{\rm u}~{\rm pas}$ личных значениях ${
m Pe}_m$

$-$ Pe $_m$	$\varphi'(-1)$	$\varphi'(1)$
0	-0,5000	-0,4999
0,3	-0,5850	-0.3560
0,6	-0.6247	-0,2621
0,9	-0,6395	-0,1974
1,2	-0,6397	-0,1512

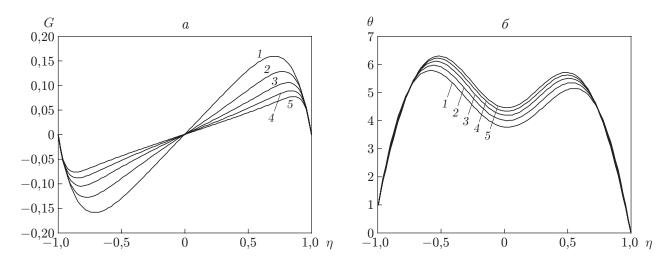


Рис. 2. Зависимости $G(\eta)$ (a) и $\theta(\eta)$ (б) при $\varepsilon=2,5,$ $C_1=4,$ $C_2=3,$ $C_3=2,$ $\operatorname{Pe}_h=4,$ $\operatorname{Ec}=5,$ $\operatorname{Pe}_m=6$ и различных значениях Re : $1-\operatorname{Re}=6,$ $2-\operatorname{Re}=12,$ $3-\operatorname{Re}=18,$ $4-\operatorname{Re}=24,$ $5-\operatorname{Re}=30$

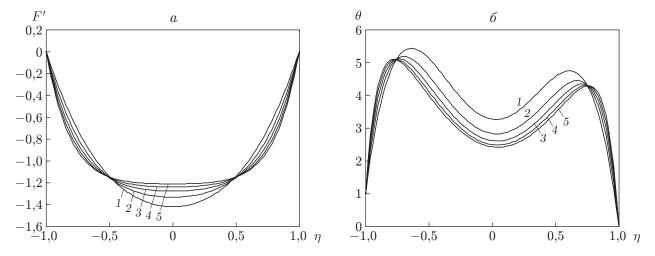


Рис. 3. Зависимости $F'(\eta)$ (a) и $\theta(\eta)$ (б) при Re = 10, $C_1=4$, $C_2=3$, $C_3=2$, $\operatorname{Pe}_h=4$, Ec = 5, $\operatorname{Pe}_m=6$ и различных значениях ε : $1-\varepsilon=9$, $2-\varepsilon=18$, $3-\varepsilon=27$, $4-\varepsilon=36$, $5-\varepsilon=45$

различных значениях параметра пористости ε , в табл. 4 — при Re = -6, $\varepsilon = 2.5$, Pe_h = 4, Ec = 5, Pe_m = 6 и различных значениях параметров микрополярной среды C_1 , C_2 , C_3 .

В табл. 5–7 приведены значения скоростей тепло- и массопереноса при $\mathrm{Re}=10, \varepsilon=2,5,$ $C_1=4, C_2=3, C_3=2$ и различных значениях $\mathrm{Pe}_h, \mathrm{Ec}, \mathrm{Pe}_m.$

Число Рейнольдса практически не оказывает влияния на сдвиговые напряжения f''(-1) и f''(1), скорости теплопереноса $\theta'(-1)$ и $\theta'(1)$ и скорости массопереноса $\varphi'(-1)$ и $\varphi'(1)$ (см. табл. 2). С увеличением параметра пористости сдвиговые напряжения f''(-1) и f''(1), скорости теплопереноса $\theta'(-1)$ и $\theta'(1)$ и скорости массопереноса $\varphi'(-1)$ и $\varphi'(1)$ увеличиваются. На обеих стенках канала величины $\theta'(-1)$ и $\theta'(1)$ увеличиваются с увеличением числа Пекле Pe_h и числа Эккерта Ес. При увеличении числа Пекле Pe_m скорость массопереноса на верхней стенке канала увеличивается, на нижней — уменьшается (см. табл. 7).

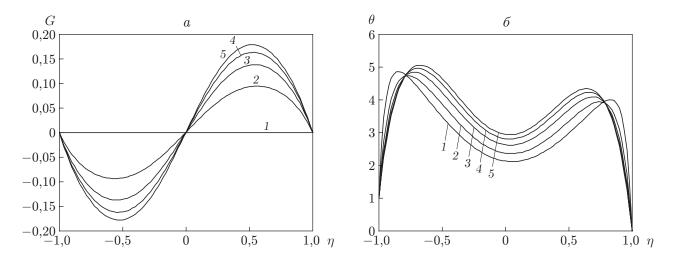


Рис. 4. Зависимости $G(\eta)$ (a) и $\theta(\eta)$ (б) при $\mathrm{Re}=-6$, $\varepsilon=2.5$, $\mathrm{Pe}_h=4$, $\mathrm{Ec}=5$, $\mathrm{Pe}_m=6$ и различных параметрах жидкости (см. табл. 4): 1 — жидкость 1, 2 — жидкость 2, 3 — жидкость 3, 4 — жидкость 4, 5 — жидкость 5

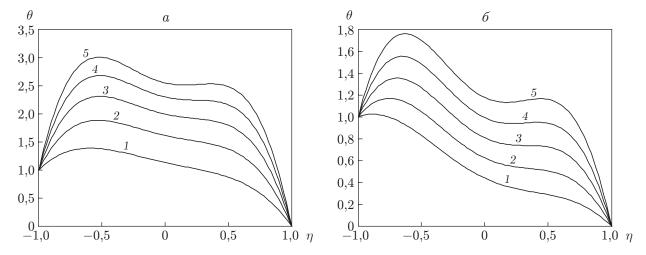


Рис. 5. Зависимости $\theta(\eta)$ при Re = 10, ε = 2,5, C_1 = 4, C_2 = 3, C_3 = 2, Pe_m = 6 и различных значениях чисел Пекле Pe_h (a) и Эккерта Ec (δ): a — Ec = 5 (1 — Pe_h = 0,2, 2 — Pe_h = 0,4, 3 — Pe_h = 0,6, 4 — Pe_h = 0,8, 5 — Pe_h = 1,0), δ — Pe_h = 2 (1 — Ec = 0,3, 2 — Ec = 0,6, 3 — Ec = 0,9, 4 — Ec = 1,2, 5 — Ec = 1,5)

С увеличением числа Рейнольдса абсолютное значение функции параметра микровращения $G(\eta)$ уменьшается, а температура на обеих стенках канала увеличивается (рис. 2). При этом скорость и концентрация вещества практически не зависят от числа Рейнольдса.

Зависимости скорости потока F' и температуры θ от координаты η при различных значениях параметра пористости ε представлены на рис. 3, зависимости $G(\eta)$, $\theta(\eta)$ при различных значениях параметров микрополярной среды C_1 , C_2 , C_3 (см. табл. 4) — на рис. 4. Из зависимостей, приведенных на рис. 3, следует, что скорость потока и температура уменьшаются при увеличении параметра пористости. На рис. 5 приведены зависимости температуры θ от координаты η при различных значениях чисел Пекле Pe_h и Эккерта Ес. Видно, что с увеличением обоих параметров температура увеличивается. Концентрация уменьшается с увеличением числа Пекле Pe_m (рис. 6).

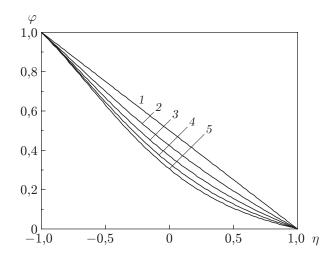


Рис. 6. Зависимости $\varphi(\eta)$ при Re = 10, ε = 2,5, C_1 = 4, C_2 = 3, C_3 = 2, Pe $_h$ = 4, Ec = 5 и различных значениях Pe $_m$: 1 — Pe $_m$ = 0, 2 — Pe $_m$ = 0,3, 3 — Pe $_m$ = 0,6, 4 — Pe $_m$ = 0,9, 5 — Pe $_m$ = 1,2

Заключение. С учетом вязкой диссипации в работе исследовано ламинарное течение микрополярной жидкости через резистивную пористую среду, находящуюся в канале с плоскими стенками. С использованием преобразования подобия система дифференциальных уравнений в частных производных сведена к системе обыкновенных дифференциальных уравнений, которая решена численно методом квазилинеаризации. Результаты проведенного исследования позволяют сделать следующие выводы. С увеличением числа Рейнольдса и параметров микрополярной жидкости коэффициент поверхностного трения, скорости тепло- и массопереноса на нижней и верхней стенках канала уменьшаются. С увеличением параметров микрополярной жидкости скорость потока, скорость микровращения и температура увеличиваются, а с увеличением параметра пористости — уменьшаются. С увеличением как числа Эккерта, так и числа Пекле скорость теплопереноса на обеих стенках канала увеличивается.

ЛИТЕРАТУРА

- 1. Eringen A. C. Theory of micropolar fluids // J. Math. Mech. 1966. V. 16. P. 1–18.
- 2. Eringen A. C. Theory of thermo-microfluids // J. Math. Anal. Appl. 1972. V. 38. P. 480–496.
- 3. Ariman T., Turk M. A., Sylvester N. D. Microcontinuum fluids mechanics a review // Intern. J. Engng Sci. 1973. V. 11. P. 905–930.
- 4. Ariman T., Turk M. A., Nicholas D. S. Applications of microcontinuum fluid mechanics // Intern. J. Engng Sci. 1974. V. 12. P. 273–293.
- 5. **Ziabakhsh Z., Domairry G.** Homotopy analysis solution of micro-polar flow in a porous channel with heat mass transfer // Adv. Theor. Appl. Mech. 2008. V. 1. P. 79–94.
- Mirzaaghaian A., Ganji D. D. Application of differential transformation method in micropolar fluid flow and heat transfer through permeable walls // Alexandria Engng J. 2016. V. 55. P. 2183–2191.
- Ali K., Ashraf M. Numerical simulation of the micropolar fluid flow and heat transfer in a channel with a shrinking and a stationary wall // J. Theor. Appl. Mech. 2014. V. 52, N 2. P. 557–569.

- 8. Fakour M., Vahabzadeh A., Ganji D. D., Hatami M. Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls // J. Molecular Liquids. 2015. V. 204. P. 198–204.
- 9. Mirgolbabaee H., Ledari S. T., Ganji D. D. Semi-analytical investigation on micropolar fluid flow and heat transfer in a permeable channel using AGM // J. Assoc. Arab Univ. Basic Appl. Sci. 2017. V. 24. P. 213–222.
- 10. Sheikholeslami M., Hatami M., Ganji D. D. Micropolar fluid flow and heat transfer in a permeable channel using analytical method // J. Molecular Liquids. 2014. V. 194. P. 30–36.
- 11. **Xinhui Si, Liancun Zheng, Ping Lin, et al.** Flow and heat transfer of a micropolar fluid in a porous channel with expanding or contracting walls // Intern. J. Heat Mass Transfer. 2013. V. 67. P. 885–895.
- 12. **Nwabuzor P. O., Ngiangia A. T., Chukwuocha E. O.** MHD flow of micropolar fluid in a porous medium provoked by heat function and radiation // Asian J. Phys. Chem. Sci. 2018. V. 6, N 2. P. 1–20.
- 13. Ashraf M., Kamal M. A., Syed K. S. Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel // Comput. Fluids. 2009. V. 38, N 10. P. 1895–1902.
- 14. Shrestha G. M., Terrill R. M. Laminar flow with large injection through parallel and uniformly porous walls of different permeability // Quart. J. Mech. Appl. Math. 1968. V. 21, N 4. P. 413–432.

Поступила в редакцию 1/IV 2019 г., после доработки — 1/IV 2019 г. Принята к публикации 24/VI 2019 г.