УДК 532.5

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ ВЯЗКОЙ МИКРОПОЛЯРНОЙ ЖИДКОСТИ ЧЕРЕЗ ПОРИСТУЮ СРЕДУ

С. Ахмад, М. Ашраф, К. Али*

Университет им. Бахауддина Закария, 60800 Мултан, Пакистан * Инженерно-технологический университет им. Мухаммеда Наваза Шарифа,

60000 Мултан, Пакистан

E-mails: sohailkhan1058@gmail.com, muhammadashraf@bzu.edu.pk, kshifali_381@yahoo.com

С учетом диссипации энергии численно исследуется тепломассоперенос в течении вязкой несжимаемой микрополярной жидкости через резистивную пористую среду, находящуюся в канале с плоскими стенками. С использованием преобразования подобия система дифференциальных уравнений в частных производных сводится к системе обыкновенных дифференциальных уравнений, численное решение которой для различных значений параметров задачи построено методом квазилинеаризации. Установлено, что вследствие диссипации энергии в вязкой жидкости скорости переноса тепла и массы как на верхней стенке канала, так и на нижней увеличиваются.

Ключевые слова: вязкая диссипация, микрополярная жидкость, пористая среда, квазилинеаризация.

DOI: 10.15372/PMTF20190603

Введение. Микрополярные жидкости содержат микроструктурированные полимерные добавки и принадлежат к классу неньютоновских жидкостей. Вращение микрочастиц приводит к увеличению интесивности гидродинамического потока, что позволяет использовать микрополярные жидкости в машиностроении и биотехнологиях. Примерами микрожидкостей являются феррожидкости, коллоидные растворы, полимерные материалы, кровь животных, краски и т. п. В работах [1, 2] впервые предложены уравнения, описывающие течение микрополярных жидкостей. В модели течения микрополярной жидкости содержится дополнительное уравнение, выражающее закон сохранения локального момента импульса. Эта модель развита в работах [3, 4], там же приведены примеры применения микрополярных жидкостей.

Результаты исследований процессов тепломассопереноса применяются при решении прикладных задач биотехнологий и геофизики (циркуляция воздуха в дыхательных системах, диффузия в бинарных газах, сушка пористых твердых поверхностей, процессы горения в ракетных двигателях, производство керамики, полимерных материалов и т. п.). В последнее время проводятся интенсивные исследования процессов тепломассопереноса в течениях микрополярных жидкостей в каналах. В работе [5] при изучении течения микрополярной жидкости в канале использовались методы гомотопии. В [6] с помощью метода дифференциальных преобразований исследовано течение микрополярной жидкости в канале с пористыми стенками. Установлено, что число Рейнольдса практически не влияет на температуру и концентрацию жидкости. В работе [7] численно исследовано течение микрополярной жидкости в канале, одна стенка которого сжимается, а вторая — неподвижна. В [8] при изучении течения микрополярной жидкости использовались метод наименьших квадратов и метод Рунге — Кутты четвертого порядка. В работе [9] решена задача, поставленная в [8] с использованием метода гомотопических возмущений [10], найденные решения сравнивались с решением, полученным методом Рунге — Кутты четвертого порядка. В [11] методом гомотопического анализа исследовано течение микрополярной жидкости в канале с расширяющимися и сжимающимися стенками. Течение магнитогидродинамической микрополярной жидкости через пористую среду изучено в [12]. На основе результатов численного моделирования в работах [13, 14] установлено, что в случае течения микрополярной жидкости поверхностное трение на стенках канала меньше, чем в случае течения ньютоновской жидкости.

В данной работе с учетом диссипации энергии численно исследуется тепломассоперенос в течении вязкой несжимаемой микрополярной жидкости через резистивную пористую среду, находящуюся в канале с плоскими стенками.

1. Физическая модель. Рассматривается установившееся ламинарное течение вязкой несжимаемой микрополярной жидкости через канал, заполненный резистивной пористой средой. Температура и концентрация раствора на нижней стенке канала обозначены через T_1 и C_1 , на верхней — через T_2 и C_2 (рис. 1). Стенки канала параллельны оси x и имеют координаты $y = \pm h$ (2h — ширина канала).

Дифференциальные уравнения, описывающие течение, перенос тепла и изменение концентрации, имеют вид

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0;$$

$$\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} + (\mu + k) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\mu + k}{k^*} u + k \frac{\partial N}{\partial y},$$

$$\rho \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + (\mu + k) \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \frac{\mu + k}{k^*} v - k \frac{\partial N}{\partial x},$$

$$\rho \left(u \frac{\partial N}{\partial x} + v \frac{\partial N}{\partial y} \right) = -\frac{k}{j} \left(2N + \frac{\partial u}{\partial x} - v \frac{\partial v}{\partial y} \right) + \frac{\mu_s}{j} \left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2} \right),$$
(1)

Рис. 1. Геометрия задачи

$$\rho C_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k_1 \frac{\partial^2 T}{\partial y^2} + \mu \left(\frac{\partial u}{\partial y} \right)^2,$$
$$u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D^* \frac{\partial^2 C}{\partial y^2},$$

где x, y — координаты осей, направленных вдоль и поперек канала; u, v — компоненты вектора скорости в направлениях x, y соответственно; ρ — плотность жидкости; μ — динамическая вязкость; N — угловая скорость микрочастиц; p — давление; k^* — коэффициент проницаемости; C_p — удельная теплоемкость; k — вихревая вязкость; j — микроинерция; $\mu_s = \mu + k/2$ — вязкость микровращения; k_1 — теплопроводность; D^* — коэффициент молекулярной диффузии; T — температура; C — концентрация.

При $y = \pm h$ ставятся следующие краевые условия:

$$y = -h$$
: $u = 0$, $v = -v_0$, $N = 0$, $T = T_1$, $C = C_1$,
 $y = h$: $u = 0$, $v = v_0$, $N \to 0$, $T \to T_2$, $C \to C_2$.

Введем преобразования подобия

$$\eta = \frac{y}{h}, \quad \psi = -v_0 x f(\eta), \quad N = \frac{v_0 x}{h^2} g(\eta), \quad \theta(\eta) = \frac{T - T_2}{T_1 - T_2}, \quad \varphi(\eta) = \frac{C - C_2}{C_1 - C_2}, \tag{2}$$

где $T_2 = T_1 - Ax$; $C_2 = C_1 - Bx$; A, B — константы. Используя преобразования (2) в уравнениях (1), получаем систему обыкновенных дифференциальных уравнений

$$(1+C_1)f^{iv} - \operatorname{Re} f f''' + \operatorname{Re} f' f'' - \varepsilon (1+C_1)f'' - C_1 g'' = 0,$$

$$C_2 g'' + C_1 (f'' - 2g) - C_3 \operatorname{Re} (fg' - f'g) = 0;$$
(3)

$$\theta'' + \operatorname{Pe}_h(\operatorname{Ec} f''^2 + f'\theta - f\theta') = 0, \qquad \varphi'' + \operatorname{Pe}_m(f'\varphi - f\varphi') = 0$$
(4)

с краевыми условиями

$$\eta = -1; \quad f = 1, \quad f' = 0, \quad g = 0, \quad \theta = 1, \quad \varphi = 1, \\ \eta = 1; \quad f = -1, \quad f' = 0, \quad g = 0, \quad \theta = 0, \quad \varphi = 0.$$
(5)

В уравнениях (3), (4) определены следующие константы:

$$\operatorname{Re} = \frac{v_0}{v}h, \quad C_1 = \frac{k}{\mu}, \quad C_2 = \frac{\mu_s}{\mu h^2}, \quad C_3 = \frac{j}{h^2}, \quad \varepsilon = \frac{h^2}{k^*},$$
$$\operatorname{Pr} = \frac{v\rho C_p}{k_1}, \quad \operatorname{Pe}_h = \operatorname{Pr}\operatorname{Re}, \quad \operatorname{Ec} = \frac{v_0^2 x v}{h^3 C_p}, \quad \operatorname{Sc} = \frac{\nu}{D^*}, \quad \operatorname{Pe}_m = \operatorname{Sc}\operatorname{Re}$$

Здесь Re — число Рейнольдса; C_1 — параметр вихревой вязкости; C_2 — параметр вязкости, обусловленной градиентом вращения; C_3 — параметр плотности микроинерции; ε параметр пористости; Pr — число Прандтля; Pe_h, Pe_m — числа Пекле, характеризующие диффузию тепла и массы соответственно; Ec — число Эккерта; Sc — число Шмидта. Наибольший интерес представляют числа Нуссельта и Шервуда

$$\operatorname{Nu}_{x} = \frac{q''x}{(T_{1} - T_{2})k_{1}}\Big|_{y=-h} = -\theta'(-1), \qquad \operatorname{Sh}_{x} = \frac{m''x}{(C_{1} - C_{2})k_{1}}\Big|_{y=-h} = -\varphi'(-1)$$

(q", т" — локальные потоки тепла и массы соответственно).

2. Метод квазилинеаризации. Методом линеаризации строятся последовательности функций $\{f^{(k)}\}, \{g^{(k)}\}, \{\theta^{(k)}\}, \{\varphi^{(k)}\},$ сходящиеся к решению системы уравнений (3), (4). Для построения последовательност
и $\{f^{(k)}\}$ линеаризуем уравнение (3). Определим функцию

$$G(f, f', f'', f''', f^{iv}) = (1 + C_1)f^{iv} - \operatorname{Re} f f''' + \operatorname{Re} f' f'' - \varepsilon (1 + C_1)f''.$$

Разлагая функцию Gв ряд Тейлора и удерживая в нем только члены первого порядка, находим

$$G(f^{(k)}, f^{(k)\prime}, f^{(k)\prime\prime}, f^{(k)\prime\prime\prime}, f^{(k)\prime\prime\prime}, f^{(k)iv}) + (f^{(k+1)} - f^{(k)}) \frac{\partial G}{\partial f^{(k)}} + (f^{(k+1)\prime\prime} - f^{(k)\prime\prime}) \frac{\partial G}{\partial f^{(k)\prime\prime}} + (f^{(k+1)\prime\prime\prime} - f^{(k)\prime\prime}) \frac{\partial G}{\partial f^{(k)\prime\prime\prime}} + (f^{(k+1)\prime\prime\prime} - f^{(k)iv}) \frac{\partial G}{\partial f^{(k)iv}} = 0.$$

В результате вычислений получаем

$$(1+C_1)f^{(k+1)iv} - \operatorname{Re} f^{(k)}f^{(k+1)''} + [\operatorname{Re} f^{(k)'} - \varepsilon(1+C_1)]f^{(k+1)''} + \operatorname{Re} f^{(k)''}f^{(k+1)'} - \operatorname{Re} f^{(k)'''}f^{(k+1)} = \operatorname{Re} (f^{(k)'}f^{(k)''} - f^{(k)}f^{(k)'''}) + C_1g^{(k)''}.$$
 (6)

Заменяя в обыкновенных дифференциальных уравнениях (6) производные центральными разностями, получаем уравнения для определения последовательности $\{f^{(k)}\}$:

$$\begin{split} [(1+C_{1})+h\operatorname{Re} f_{i}^{(k)}]f_{i-2}^{(k+1)} + [-4(1+C_{1})-2h\operatorname{Re} f_{i}^{(k)}+0.5h\operatorname{Re} (f_{i+1}^{(k)}-f_{i-1}^{(k)}) - \\ &-\varepsilon(1+C_{1})h^{2}-0.5h\operatorname{Re} (f_{i+1}^{(k)}-2f_{i}^{(k)}+f_{i-1}^{(k)})]f_{i-1}^{(k+1)} + [6(1+C_{1})+h\operatorname{Re} (f_{i+1}^{(k)}-f_{i-1}^{(k)}) + \\ &+ 2\varepsilon(1+C_{1})h^{2}-h\operatorname{Re} (f_{i+2}^{(k)}-2f_{i+1}^{(k)}+2f_{i-1}^{(k)}-2f_{i-2}^{(k)})]f_{i}^{(k+1)} + \\ &+ [-4(1+C_{1})+2h\operatorname{Re} f_{i}^{(k)}+0.5h\operatorname{Re} (f_{i+1}^{(k)}-f_{i-1}^{(k)}) - \varepsilon(1+C_{1})h^{2} + \\ &+ 0.5h\operatorname{Re} (f_{i+1}^{(k)}-2f_{i}^{(k)}+f_{i-1}^{(k)})]f_{i+1}^{(k+1)} + [(1+C_{1})-h\operatorname{Re} f_{i}^{(k)}]f_{i+2}^{(k+1)} = \\ &= 0.5h\operatorname{Re} (f_{i+1}^{(k)}-f_{i-1}^{(k)})(f_{i+1}^{(k)}-2f_{i}^{(k)}+f_{i-1}^{(k)}) - h\operatorname{Re} f_{i}^{(k)}(f_{i+2}^{(k)}-2f_{i+1}^{(k)}+2f_{i-1}^{(k)}-2f_{i-2}^{(k)}) + \\ &+ h^{2}C_{1}(g_{i+1}^{(k)}-2g_{i}^{(k)}+g_{i-1}^{(k)}). \end{split}$$

Аналогично линеаризуются уравнения (4). В результате имеем систему уравнений для определения последовательностей $\{g^{(k)}\}, \{\theta^{(k)}\}, \{\varphi^{(k)}\}$:

$$C_{2}g^{(k+1)''} + C_{1}(f^{(k)''} - 2g^{(k+1)}) - C_{3}\operatorname{Re}\left(f^{(k)}g^{(k+1)'} - f^{(k)'}g^{(k+1)}\right) = 0,$$

$$\theta^{(k+1)''} - \operatorname{Pe}_{h}(f^{(k)}\theta^{(k+1)'} - f^{(k)'}\theta^{(k+1)} - \operatorname{Ec}f^{(k)''^{2}}) = 0,$$

$$\varphi^{(k+1)''} - \operatorname{Pe}_{m}(f^{(k)}\varphi^{(k+1)'} - f^{(k)'}\varphi^{(k+1)}) = 0.$$
(8)

Для того чтобы получить решение систем уравнений (7), (8), используем следующую итерационную процедуру.

1. Выбирается начальное приближение $f^{(0)}, g^{(0)}, \theta^{(0)}, \varphi^{(0)}$, удовлетворяющее краевым условиям (5).

2. С использованием решения линейной системы (7) определяется приближение $f^{(1)}$.

3. Производные в системе уравнений (8) заменяются конечными разностями и из полученной алгебраической системы находятся приближения $g^{(1)}$, $\theta^{(1)}$, $\varphi^{(1)}$.

4. После того как функции $f^{(1)}, g^{(1)}, \theta^{(1)}, \varphi^{(1)}$ определены, процедура повторяется. В результате строятся последовательности $\{f^{(k)}\}, \{g^{(k)}\}, \{\theta^{(k)}\}, \{\varphi^{(k)}\},$ сходящиеся к функциям f, g, θ, φ соответственно.

5. Вычисления прекращаются, если выполняются неравенства

$$\max\left(\|f^{(k+1)} - f^{(k)}\|_{L_2}, \|g^{(k+1)} - g^{(k)}\|_{L_2}, \|\theta^{(k+1)} - \theta^{(k)}\|_{L_2}, \|\varphi^{(k+1)} - \varphi^{(k)}\|_{L_2}\right) < 10^{-8}.$$

3. Результаты численного решения и их обсуждение. Нелинейная система обыкновенных дифференциальных уравнений (3), (4) с краевыми условиями (5) решалась численно с использованием метода квазилинеаризации при различных значениях числа Рейнольдса Re, параметра пористости ε , параметров микрополярной среды C_1 , C_2 , C_3 , числа Пекле Pe_h, числа Эккерта Ec и числа Пекле Pe_m. Ниже приводятся результаты исследования влияния этих параметров на поле скорости $F'(\eta)$, параметр микровращения $G(\eta)$, температуру $\theta(\eta)$, концентрацию $\varphi(\eta)$, а также на величины $f''(\pm 1)$, $\theta'(\pm 1)$, $\varphi'(\pm 1)$. Шаг по безразмерной координате η выбирался таким образом, чтобы скорость потока, скорость микровращения, температура и пористость были близки к их асимптотическим значениям. В табл. 1 представлены результаты вычислений при различных значениях величины шага η .

В табл. 2 приведены значения сдвигового напряжения f''(-1), f''(1), скорости теплопереноса $\theta'(-1)$, $\theta'(1)$ и скорости массопереноса $\varphi'(-1)$, $\varphi'(1)$ на обеих стенках канала при $\varepsilon = 2,5$, $C_1 = 4$, $C_2 = 3$, $C_3 = 2$, $\text{Pe}_h = 4$, Ec = 5, $\text{Pe}_m = 6$ и различных значениях числа Рейнольдса, в табл. 3 — при Re = 10, $C_1 = 4$, $C_2 = 3$, $C_3 = 2$, $\text{Pe}_h = 4$, Ec = 5, $\text{Pe}_m = 6$ и

Таблица 1

Безразмерные значения температуры $\theta(\eta)$ при Re = 10, $\varepsilon = 2,5$, $C_1 = 4$, $C_2 = 3$, $C_3 = 2$, $\text{Pe}_h = 4$, Ec = 5, $\text{Pe}_m = 6$ и различных значениях η , h

η	θ								
	h = 0,01	h = 0,005	h = 0,0025						
-0,8	4,623 886	4,623075	4,622887						
-0,4	$5,\!473856$	$5,\!473752$	$5,\!473746$						
0	3,923333	3,923930	3,924093						
0,4	5,014426	5,014323	5,014316						
$0,\!8$	3,758809	3,757999	3,757811						

Таблица 2

Значения сдвиговых напряжений, скоростей тепло- и массопереноса при $\varepsilon = 2.5, C_1 = 4, C_2 = 3, C_3 = 2, Pe_h = 4, Ec = 5, Pe_m = 6$ и различных значениях Re

		1,67,91,63	= , i o _n i , ± o	o, i om on		100
Re	f''(-1)	$\theta'(-1)$	$\varphi'(-1)$	f''(1)	$\theta'(1)$	$\varphi'(1)$
6	-2,9171	$25,\!3783$	-0,3865	2,9171	-25,8847	-0,004496
12	-2,7226	$23,\!8979$	-0,3740	2,7226	-24,3923	-0,004419
18	-2,6037	22,9303	-0,3654	$2,\!6037$	$-23,\!4165$	-0,004364
24	-2,5277	$22,\!2763$	-0,3595	2,5277	-22,7565	-0,004325
30	-2,4763	$21,\!8165$	-0,3552	$2,\!4763$	-22,2925	-0,004297

Таблица 3

	3	начен	ИЯ	сдвиг	овь	х нап	іря:	жений	, (скоросте	Й	тепло-	И	массопереноса
~		\sim	~	\sim	~ 7	~		-	_	T	~	T		

	при $C_1 = 4, C_2 = 5, C_3 = 2, 1 C_h = 4, DC = 5, 1 C_m = 0, 1C = 10$ и различных значениях с								
ε	f''(-1)	$\theta'(-1)$	$\varphi'(-1)$	f''(1)	$\theta'(1)$	$\varphi'(1)$			
9	-3,4462	$29,\!8477$	-0,4197	3,4462	-30,3856	-0,00470			
18	-4,2297	37,0049	-0,4634	4,2297	$-37,\!5836$	-0,00498			
27	-4,8982	$43,\!5481$	-0,4967	4,8982	$-44,\!1574$	-0,00520			
36	$-5,\!4853$	$49,\!5547$	-0,5232	$5,\!4853$	-50,1879	-0,00537			
45	-6,0116	$55,\!1120$	-0,5450	6,0116	-55,7648	$-0,\!00551$			

Таблица 4

	-, • ,	- • 111 • • •	P			0
Параметры жидкости	f''(-1)	$\theta'(-1)$	$\varphi'(-1)$	f''(1)	$\theta'(1)$	$\varphi'(1)$
$C_1 = C_2 = C_3 = 0$ (ньютоновская жидкость)	-9,3689	88,2389	-0,6350	9,3689	-88,9670	-0,00602
$C_1 = 0.6, C_2 = 0.8, C_3 = 0.6$	-6,2452	53,7636	-0,5366	6,2452	-54,4063	-0,00540
$C_1 = 1, 2, C_2 = 1, 2, C_3 = 0, 9$	-5,0668	$42,\!5491$	-0,4904	5,0668	$-43,\!1507$	-0,00511
$C_1 = 1,8, C_2 = 1,6, C_3 = 1,2$	-4,5051	$37,\!5985$	-0,4660	4,5051	$-38,\!1780$	-0,00496
$C_1 = 2,4, C_2 = 2,0, C_3 = 1,5$	-4,1889	$34,\!9254$	-0,4513	4,1889	$-35,\!4916$	-0,00487
	Параметры жидкости $C_1 = C_2 = C_3 = 0$ (ньютоновская жидкость) $C_1 = 0.6, C_2 = 0.8, C_3 = 0.6$ $C_1 = 1.2, C_2 = 1.2, C_3 = 0.9$ $C_1 = 1.8, C_2 = 1.6, C_3 = 1.2$ $C_1 = 2.4, C_2 = 2.0, C_3 = 1.5$	Параметры жидкости $f''(-1)$ $C_1 = C_2 = C_3 = 0$ (ньютоновская жидкость) $-9,3689$ $C_1 = 0,6, C_2 = 0,8, C_3 = 0,6$ $C_1 = 1,2, C_2 = 1,2, C_3 = 0,9$ $C_1 = 1,8, C_2 = 1,6, C_3 = 1,2$ $C_1 = 2,4, C_2 = 2,0, C_3 = 1,5$ $-6,2452$ $-5,0668$ $-6,24521$ $-4,50511$ $-4,1889$	Параметры жидкости $f''(-1)$ $\theta'(-1)$ $C_1 = C_2 = C_3 = 0$ (ньютоновская жидкость) $-9,3689$ $88,2389$ $C_1 = 0,6, C_2 = 0,8, C_3 = 0,6$ $-6,2452$ $53,7636$ $C_1 = 1,2, C_2 = 1,2, C_3 = 0,9$ $-5,0668$ $42,5491$ $C_1 = 1,8, C_2 = 1,6, C_3 = 1,2$ $-4,5051$ $37,5985$ $C_1 = 2,4, C_2 = 2,0, C_3 = 1,5$ $-4,1889$ $34,9254$	Параметры жидкости $f''(-1)$ $\theta'(-1)$ $\varphi'(-1)$ $C_1 = C_2 = C_3 = 0$ (ньютоновская жидкость) $-9,3689$ $88,2389$ $-0,6350$ $C_1 = 0,6, C_2 = 0,8, C_3 = 0,6$ $-6,2452$ $53,7636$ $-0,5366$ $C_1 = 1,2, C_2 = 1,2, C_3 = 0,9$ $-5,0668$ $42,5491$ $-0,4904$ $C_1 = 1,8, C_2 = 1,6, C_3 = 1,2$ $-4,5051$ $37,5985$ $-0,4660$ $C_1 = 2,4, C_2 = 2,0, C_3 = 1,5$ $-4,1889$ $34,9254$ $-0,4513$	Параметры жидкости $f''(-1)$ $\theta'(-1)$ $\varphi'(-1)$ $f''(1)$ $C_1 = C_2 = C_3 = 0$ (ньютоновская жидкость) $-9,3689$ $88,2389$ $-0,6350$ $9,3689$ $C_1 = 0,6, C_2 = 0,8, C_3 = 0,6$ $-6,2452$ $53,7636$ $-0,5366$ $6,2452$ $C_1 = 1,2, C_2 = 1,2, C_3 = 0,9$ $-5,0668$ $42,5491$ $-0,4904$ $5,0668$ $C_1 = 1,8, C_2 = 1,6, C_3 = 1,2$ $-4,5051$ $37,5985$ $-0,4660$ $4,5051$ $C_1 = 2,4, C_2 = 2,0, C_3 = 1,5$ $-4,1889$ $34,9254$ $-0,4513$ $4,1889$	Параметры жидкости $f''(-1)$ $\theta'(-1)$ $\varphi'(-1)$ $f''(1)$ $\theta'(1)$ $C_1 = C_2 = C_3 = 0$ (ньютоновская жидкость) $-9,3689$ $88,2389$ $-0,6350$ $9,3689$ $-88,9670$ $C_1 = 0,6, C_2 = 0,8, C_3 = 0,6$ $-6,2452$ $53,7636$ $-0,5366$ $6,2452$ $-54,4063$ $C_1 = 1,2, C_2 = 1,2, C_3 = 0,9$ $-5,0668$ $42,5491$ $-0,4904$ $5,0668$ $-43,1507$ $C_1 = 1,8, C_2 = 1,6, C_3 = 1,2$ $-4,5051$ $37,5985$ $-0,4660$ $4,5051$ $-38,1780$ $C_1 = 2,4, C_2 = 2,0, C_3 = 1,5$ $-4,1889$ $34,9254$ $-0,4513$ $4,1889$ $-35,4916$

Значения сдвиговых напряжений, скоростей тепло- и массопереноса при Re = -6, $\varepsilon = 2.5$, $\text{Pe}_b = 4$, Ec = 5, $\text{Pe}_m = 6$ и различных значениях C_1 , C_2 , C_3

Таблица 5

Значения скорости теплопереноса при ${
m Re}=10,\,\varepsilon=2,5,\,C_1=4,\,C_2=3,\,C_3=2,$ ${
m Ec}=5,\,{
m Pe}_m=6$ и различных значениях ${
m Pe}_h$

$\theta'(-1)$	heta'(1)
2,1858	-3,1460
4,4931	-5,4157
6,5229	-7,4098
8,3385	-9,1917
9,9824	$-10,\!8036$
	$\begin{array}{r} \theta'(-1) \\ 2,1858 \\ 4,4931 \\ 6,5229 \\ 8,3385 \\ 9,9824 \end{array}$

Таблица б

Значения скорости теплопереноса при ${
m Re}=10,\,\varepsilon=2,5,\,C_1=4,\,C_2=3,\,C_3=2,$ ${
m Pe}_h=4,\,{
m Pe}_m=6$ и различных значениях ${
m Ec}$

Ec	$\theta'(-1)$	heta'(1)
0,3	0,4157	-1,1005
$0,\!6$	1,4380	-2,1227
0,9	2,4602	-3,1449
1,2	3,4824	-4,1672
1,5	4,5047	-5,1894

Таблица 7

Значения скорости массопереноса при ${\rm Re}=10,\,\varepsilon=2,5,\,C_1=4,\,C_2=3,\,C_3=2,$ ${\rm Pe}_h=4,\,{\rm Ec}=5$ и различных значениях ${\rm Pe}_m$

	10 , 1	110
Pe_m	$\varphi'(-1)$	$\varphi'(1)$
0	-0,5000	-0,4999
$0,\!3$	-0,5850	-0,3560
$0,\!6$	-0,6247	-0,2621
0,9	-0,6395	-0,1974
$1,\!2$	-0,6397	-0,1512

Рис. 2. Зависимости $G(\eta)$ (a) и $\theta(\eta)$ (б) при $\varepsilon = 2,5$, $C_1 = 4$, $C_2 = 3$, $C_3 = 2$, $\operatorname{Pe}_h = 4$, $\operatorname{Ec} = 5$, $\operatorname{Pe}_m = 6$ и различных значениях Re : $1 - \operatorname{Re} = 6$, $2 - \operatorname{Re} = 12$, $3 - \operatorname{Re} = 18$, $4 - \operatorname{Re} = 24$, $5 - \operatorname{Re} = 30$

Рис. 3. Зависимости $F'(\eta)$ (a) и $\theta(\eta)$ (б) при Re = 10, $C_1 = 4, C_2 = 3, C_3 = 2,$ Pe_h = 4, Ec = 5, Pe_m = 6 и различных значениях ε : $1 - \varepsilon = 9, 2 - \varepsilon = 18, 3 - \varepsilon = 27, 4 - \varepsilon = 36, 5 - \varepsilon = 45$

различных значениях параметра пористости ε , в табл. 4 — при Re = -6, ε = 2,5, Pe_h = 4, Ec = 5, Pe_m = 6 и различных значениях параметров микрополярной среды C_1, C_2, C_3 .

В табл. 5–7 приведены значения скоростей тепло- и массопереноса при $\text{Re} = 10, \varepsilon = 2,5, C_1 = 4, C_2 = 3, C_3 = 2$ и различных значениях Pe_h , Ec, Pe_m .

Число Рейнольдса практически не оказывает влияния на сдвиговые напряжения f''(-1) и f''(1), скорости теплопереноса $\theta'(-1)$ и $\theta'(1)$ и скорости массопереноса $\varphi'(-1)$ и $\varphi'(1)$ (см. табл. 2). С увеличением параметра пористости сдвиговые напряжения f''(-1) и f''(1), скорости теплопереноса $\theta'(-1)$ и $\theta'(1)$ и скорости массопереноса $\varphi'(-1)$ и $\varphi'(1)$ увеличиваются. На обеих стенках канала величины $\theta'(-1)$ и $\theta'(1)$ увеличиваются с увеличением числа Пекле Ре_h и числа Эккерта Ес. При увеличении числа Пекле Ре_m скорость массопереноса на верхней стенке канала увеличивается, на нижней — уменьшается (см. табл. 7).

Рис. 4. Зависимости $G(\eta)$ (*a*) и $\theta(\eta)$ (*б*) при Re = -6, ε = 2,5, Pe_h = 4, Ec = 5, Pe_m = 6 и различных параметрах жидкости (см. табл. 4): 1 — жидкость 1, 2 — жидкость 2, 3 — жидкость 3, 4 — жидкость 4, 5 — жидкость 5

Рис. 5. Зависимости $\theta(\eta)$ при Re = 10, $\varepsilon = 2,5$, $C_1 = 4$, $C_2 = 3$, $C_3 = 2$, Pe_m = 6 и различных значениях чисел Пекле Pe_h (a) и Эккерта Ec (δ): $a - \text{Ec} = 5 (1 - \text{Pe}_h = 0,2, 2 - \text{Pe}_h = 0,4, 3 - \text{Pe}_h = 0,6, 4 - \text{Pe}_h = 0,8, 5 - \text{Pe}_h = 1,0),$ $\delta - \text{Pe}_h = 2 (1 - \text{Ec} = 0,3, 2 - \text{Ec} = 0,6, 3 - \text{Ec} = 0,9, 4 - \text{Ec} = 1,2, 5 - \text{Ec} = 1,5)$

С увеличением числа Рейнольдса абсолютное значение функции параметра микровращения $G(\eta)$ уменьшается, а температура на обеих стенках канала увеличивается (рис. 2). При этом скорость и концентрация вещества практически не зависят от числа Рейнольдса.

Зависимости скорости потока F' и температуры θ от координаты η при различных значениях параметра пористости ε представлены на рис. 3, зависимости $G(\eta)$, $\theta(\eta)$ при различных значениях параметров микрополярной среды C_1 , C_2 , C_3 (см. табл. 4) — на рис. 4. Из зависимостей, приведенных на рис. 3, следует, что скорость потока и температура уменьшаются при увеличении параметра пористости. На рис. 5 приведены зависимости температуры θ от координаты η при различных значениях чисел Пекле Pe_h и Эккерта Ес. Видно, что с увеличением обоих параметров температура увеличивается. Концентрация уменьшается с увеличением числа Пекле Pe_m (рис. 6).

Рис. 6. Зависимости $\varphi(\eta)$ при Re = 10, ε = 2,5, $C_1 = 4$, $C_2 = 3$, $C_3 = 2$, Pe_h = 4, Ec = 5 и различных значениях Pe_m: 1 — Pe_m = 0, 2 — Pe_m = 0,3, 3 — Pe_m = 0,6, 4 — Pe_m = 0,9, 5 — Pe_m = 1,2

Заключение. С учетом вязкой диссипации в работе исследовано ламинарное течение микрополярной жидкости через резистивную пористую среду, находящуюся в канале с плоскими стенками. С использованием преобразования подобия система дифференциальных уравнений в частных производных сведена к системе обыкновенных дифференциальных уравнений, которая решена численно методом квазилинеаризации. Результаты проведенного исследования позволяют сделать следующие выводы. С увеличением числа Рейнольдса и параметров микрополярной жидкости коэффициент поверхностного трения, скорости тепло- и массопереноса на нижней и верхней стенках канала уменьшаются. С увеличением параметров микрополярной жидкости скорость потока, скорость микровращения и температура увеличиваются, а с увеличением параметра пористости — уменьшаются. С увеличением как числа Эккерта, так и числа Пекле скорость теплопереноса на обеих стенках канала увеличивается.

ЛИТЕРАТУРА

- 1. Eringen A. C. Theory of micropolar fluids // J. Math. Mech. 1966. V. 16. P. 1–18.
- 2. Eringen A. C. Theory of thermo-microfluids // J. Math. Anal. Appl. 1972. V. 38. P. 480–496.
- Ariman T., Turk M. A., Sylvester N. D. Microcontinuum fluids mechanics a review // Intern. J. Engng Sci. 1973. V. 11. P. 905–930.
- Ariman T., Turk M. A., Nicholas D. S. Applications of microcontinuum fluid mechanics // Intern. J. Engng Sci. 1974. V. 12. P. 273–293.
- 5. Ziabakhsh Z., Domairry G. Homotopy analysis solution of micro-polar flow in a porous channel with heat mass transfer // Adv. Theor. Appl. Mech. 2008. V. 1. P. 79–94.
- Mirzaaghaian A., Ganji D. D. Application of differential transformation method in micropolar fluid flow and heat transfer through permeable walls // Alexandria Engng J. 2016. V. 55. P. 2183–2191.
- Ali K., Ashraf M. Numerical simulation of the micropolar fluid flow and heat transfer in a channel with a shrinking and a stationary wall // J. Theor. Appl. Mech. 2014. V. 52, N 2. P. 557–569.

- Fakour M., Vahabzadeh A., Ganji D. D., Hatami M. Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls // J. Molecular Liquids. 2015. V. 204. P. 198–204.
- Mirgolbabaee H., Ledari S. T., Ganji D. D. Semi-analytical investigation on micropolar fluid flow and heat transfer in a permeable channel using AGM // J. Assoc. Arab Univ. Basic Appl. Sci. 2017. V. 24. P. 213–222.
- Sheikholeslami M., Hatami M., Ganji D. D. Micropolar fluid flow and heat transfer in a permeable channel using analytical method // J. Molecular Liquids. 2014. V. 194. P. 30–36.
- Xinhui Si, Liancun Zheng, Ping Lin, et al. Flow and heat transfer of a micropolar fluid in a porous channel with expanding or contracting walls // Intern. J. Heat Mass Transfer. 2013. V. 67. P. 885–895.
- Nwabuzor P. O., Ngiangia A. T., Chukwuocha E. O. MHD flow of micropolar fluid in a porous medium provoked by heat function and radiation // Asian J. Phys. Chem. Sci. 2018. V. 6, N 2. P. 1–20.
- Ashraf M., Kamal M. A., Syed K. S. Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel // Comput. Fluids. 2009. V. 38, N 10. P. 1895–1902.
- 14. Shrestha G. M., Terrill R. M. Laminar flow with large injection through parallel and uniformly porous walls of different permeability // Quart. J. Mech. Appl. Math. 1968. V. 21, N 4. P. 413–432.

Поступила в редакцию 1/IV 2019 г., после доработки — 1/IV 2019 г. Принята к публикации 24/VI 2019 г.