УДК 536.46+531

ТВЕРДОФАЗНОЕ ГОРЕНИЕ В УСЛОВИЯХ ПЛОСКОГО НАПРЯЖЕННОГО СОСТОЯНИЯ 1. СТАЦИОНАРНАЯ ВОЛНА ГОРЕНИЯ

А. Г. Князева

Институт физики прочности и материаловедения СО РАН, 634021 Томск E-mail: anna@ispms.tsc.ru

Предложена модель, описывающая распространение фронта превращения в случае обобщенного плоского напряженного состояния, типичного для технологических условий синтеза покрытий на подложке, с учетом связанного характера процессов теплопереноса и деформирования в отсутствие внешнего механического нагружения. В приближении узкого фронта превращения получено стационарное решение. Выделены области параметров модели, в которых изменения температуры продуктов реакции и компонент тензоров напряжений и деформаций имеют различный характер.

Ключевые слова: синтез покрытий на подложке, твердофазное горение, плоское напряженное состояние.

Введение. В широком смысле процесс горения представляет собой послойное распространение зоны экзотермического превращения. Такое определение справедливо и для газов, и для жидкостей, и для твердых тел. Если характерные размеры области, в которой происходит химическая реакция, велики по сравнению с размерами зоны горения, то тепловая часть задачи может быть отделена от гидродинамической [1]. По той же причине при проведении теоретических исследований зона реакции заменяется поверхностью разрыва, при переходе через которую температура остается непрерывной. Разрыв в потоке тепла обусловлен тепловыделением в ходе реакции. Распространяющийся фронт реакции может быть неустойчивым к малым возмущениям, приводящим к искривлению фронта, изменению скорости и т. д. Эта проблема, широко обсуждавшаяся в 60–80-х гг. XX в. при изучении газофазных, гетерогенных и твердофазных реакций, не утратила актуальности и в настоящее время, что обусловлено развитием новых технологий получения материалов, нанесения покрытий или поверхностной обработки.

Многие технологические процессы (или их отдельные стадии) получения материалов и нанесения покрытий сопровождаются физическими и химическими превращениями различного типа или основаны на использовании энергии химических реакций. Поэтому математические модели высокотемпературных технологических процессов подобны моделям, используемым в теории горения. Однако реальные технологические процессы значительно сложнее процессов, описываемых тепловой теорией горения. Так, для твердофазного горения характерны протекание реакции в твердой (конденсированной) фазе и отсутствие газификации. На использовании этого процесса, получившего название безгазового горения [2], основана, например, технология синтеза покрытия на подложке, инициируемого и управляемого сканирующим электронным лучом. Оказалось, что режим превращения на

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 08-08-90008_бел_а).

подложке не всегда устойчив и зависит от ряда факторов: свойств и толщины подложки, характера внешнего воздействия, состава и структуры реагента [3]. В любом случае синтез новых материалов сопровождается различными взаимосвязанными физическими и химическими процессами, которые оказывают непосредственное или косвенное влияние на режимы превращения. Если превращения протекают в твердой фазе, важную роль играют различные механические напряжения и деформации: микро- и макронапряжения; термические концентрационные и структурные; упругие и вязкие и т. д. (см., например, [4, 5]).

Одно из первых теоретических исследований твердофазного горения проведено в работе [6]. Характеристики стационарного режима превращения можно получить из решения стационарной системы уравнений

$$c\rho V_{n0} \frac{dT}{dx} = \lambda_T \frac{d^2T}{dx^2} + Q_0 \Phi(T,\eta),$$

$$V_{n0} \frac{d\eta}{dx} = \Phi(T,\eta),$$

$$(1)$$

$$\rightarrow -\infty: \quad T = T_0, \quad \eta = 0, \qquad x \to +\infty: \quad T = T_{b0}, \quad \eta = 1,$$

где T — температура; η — степень превращения; x — пространственная координата; V_{n0} — скорость движения стационарного фронта; c, ρ, λ_T — теплоемкость, плотность и теплопроводность; T_0 — начальная температура, или температура реагентов; Q_0 — тепловой эффект суммарной экзотермической реакции реагент — продукт; функция $\Phi(T, \eta)$ принимается в виде

$$\Phi(T,\eta) = k_0 \varphi_1(\eta) \varphi_2(T), \qquad (2)$$

 k_0 — предэкспоненциальный множитель; φ_1 — кинетическая функция; $\varphi_2(T) = \exp(-E_a/(RT))$; E_a — энергия активации химической реакции; R — универсальная газовая постоянная; T_{b0} — температура продуктов реакции в чисто тепловой модели твердофазного горения, определяемая из первого интеграла системы (1):

$$T_{b0} = T_0 + Q_0/(c\rho). \tag{3}$$

В приближении узкого реакционного фронта из (1) получаем задачу без учета объемных источников тепла в уравнениях. На границе раздела между реагентами и продуктами реакции выполняются условия непрерывности температуры и потока тепла

$$T_1 = T_2, \qquad \frac{dT_1}{dx}\Big|_{x=x_0} - \frac{dT_2}{dx}\Big|_{x=x_0} = \frac{Q_0}{\lambda_T} V_{n0}, \tag{4}$$

где индекс 1 соответствует реагентам, 2 — продуктам реакции. Таким образом, разрыв в потоке тепла обусловлен тепловыделением в ходе химической реакции.

При использовании такого подхода решением задачи является михельсоновский профиль температуры в реагентах

$$T = T_0 + (T_{b0} - T_0) \exp(xV_{n0}/\varkappa_T), \qquad x < 0$$

 $(\varkappa_T = \lambda_T / (c\rho)$ — температуропроводность). Скорость движения стационарного фронта зависит от вида кинетической функции [6].

В ряде работ исследовалась тепловая устойчивость фронта к малым одномерным и двумерным возмущениям при твердофазном горении [7, 8]. В течение длительного времени не анализировалось влияние теплового расширения и подвижности среды на распространение реакции горения в твердой фазе. Однако взаимовлияние процессов переноса тепла и деформирования может быть одной из причин возникновения различных режимов превращения, в том числе быстрых (твердофазная детонация) и медленных (твердофазное

x

горение). Обзор работ по этой теме автора данной статьи содержится в [9]. В [10] на основе термодинамических расчетов показана возможность твердофазной детонации, а в работах [11, 12] фактически подтверждено существование этого явления. Задача об устойчивости стационарных режимов к термомеханическим возмущениям в связанной формулировке впервые поставлена в [13].

Целью настоящей работы является исследование устойчивости фронта твердофазного превращения к малым одномерным возмущениям при нанесении покрытия на подложку.

Общая постановка задачи. Предположим, что фронт реакции движется по покрытию в направлении оси x (рис. 1). Такая ситуация может реализоваться, если, например, реакция инициируется электронным лучом, развернутым в линию [3], а потери тепла на торцах пластины пренебрежимо малы. Предположим также, что реакция описывается суммарной схемой реакции, суммарная толщина пластины значительно меньше ее ширины и длины:

$$h + h_s \ll H, \qquad h + h_s \ll L,\tag{5}$$

контакт между покрытием и подложкой идеальный.

В пренебрежении потерями тепла вследствие теплового излучения термокинетическую часть задачи запишем в виде

$$c_{\varepsilon}\rho \frac{\partial T}{\partial t} = \lambda_T \Delta T + Q_0 \frac{\partial \eta}{\partial t} - 3K\alpha_T T \frac{\partial \varepsilon_{kk}}{\partial t}; \qquad (6)$$
$$\frac{\partial \eta}{\partial t} = k_0 \varphi_1(\eta) \varphi_2(T, \Pi),$$
$$T = T_0, \quad \eta = 0, \qquad \nabla T = 0, \quad \eta = 1.$$

Здесь c_{ε} — теплоемкость при постоянных деформациях; α_T — температурный коэффициент линейного расширения; K — изотермический модуль всестороннего сжатия; $\varepsilon_{kk} = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}$ — первый инвариант тензора деформаций. В данном случае, в отличие от (2), скорость реакции Φ зависит от работы механических напряжений Π : $\Phi = \Phi(T, \eta, \Pi)$.

Реакция происходит только в покрытии, свойства материалов покрытия и подложки различны. В общем случае это приводит к необходимости решения сопряженной задачи теплопроводности. Однако, учитывая условие (5), уравнение (6) можно проинтегрировать по всей толщине образца:

$$c_{eff}\rho_{eff}\frac{\partial \tilde{T}}{\partial t} = \lambda_{T,eff} \left(\frac{\partial^2 \tilde{T}}{\partial x^2} + \frac{\partial^2 \tilde{T}}{\partial y^2}\right) + Q_0 \frac{\partial \tilde{\eta}}{\partial t} - 3(K\alpha_T)_{eff} \tilde{T} \frac{\partial \tilde{\varepsilon}_{kk}}{\partial t}.$$
(7)

Рис. 1. Схема задачи: 1 — покрытие; 2 — зона реакции

Здесь $c_{eff}\rho_{eff} = c_c\rho_c + c\rho h/h_c$; $\lambda_{T,eff} = \lambda_{T,c} + \lambda_T h/h_c$; $(K\alpha_T)_{eff} = K_s\alpha_{T,s} + K\alpha_T h/h_c$; индекс c соответствует параметрам покрытия; знак "~" означает осреднение по толщине. В случае если фронт реакции является плоским, получаем задачу в одномерной постановке.

Для того чтобы найти компоненты тензора деформаций ε_{ij} и работу П, необходимо решить задачу о механическом равновесии. Так как тепловые и механические процессы характеризуются существенно различными масштабами и скоростями, традиционно решается квазистатическая задача. Однако, поскольку динамические эффекты могут привести к возникновению новых режимов превращения, в том числе режима твердофазной детонации [5, 9], при формулировке второй части задачи будем учитывать силы инерции. Полагая, что деформации малы, уравнения равновесия с учетом сил инерции запишем в виде

$$\nabla \cdot \boldsymbol{\sigma} = \rho \, \frac{\partial^2 \boldsymbol{u}}{\partial t^2},$$

где σ — тензор напряжений с компонентами $\sigma_{ij} = f(\varepsilon_{kl}, T, \eta); u$ — вектор перемещений. В обобщенной теории термомассоупругости имеет место равенство

$$d\sigma_{ij} = 2\mu \, d\varepsilon_{ij} + \delta_{ij} (\lambda \, d\varepsilon_{kk} - K \, dw), \tag{8}$$

где в случае единственной реакции $dw = 3[\alpha_T dT + (\alpha_2 - \alpha_1) d\eta]; \lambda, \mu$ — коэффициенты Ламе; $K = \lambda + 2\mu/3; \delta_{ij}$ — символ Кронекера; α_2, α_1 — коэффициенты концентрационного расширения продукта и реагента соответственно. Разность $\alpha_2 - \alpha_1$ показывает, происходит ли реакция с увеличением объема или с его уменьшением.

Из (8) следует соотношение

$$d\varepsilon_{ij} = d\varepsilon_{ij}^e + d\varepsilon_{ij}^T + d\varepsilon_{ij}^{ch},$$

где $d\varepsilon_{ij}^e = d\sigma_{ij}/(2\mu) - \delta_{ij}\lambda \, d\sigma_{kk}/(6K\mu)$ — обратимые деформации, вызванные упругими напряжениями; $d\varepsilon_{ij}^T = \delta_{ij}\alpha_T \, dT$ — термические деформации; $d\varepsilon_{ij}^{ch} = \delta_{ij}(\alpha_2 - \alpha_1) \, d\eta$ концентрационные или (в данном случае) химические деформации. Вязкие напряжения в модели не учитываются. Внешнее механическое нагружение отсутствует.

В случае плоского напряженного состояния с учетом условий (5) задачу можно упростить. В результате тензоры напряжений и деформаций принимают вид

$$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0 \\ \sigma_{yx} & \sigma_{yy} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & 0 \\ \varepsilon_{yx} & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{pmatrix}.$$

Тогда в случае малых деформаций находим

$$\sigma_{yy} = \frac{2\mu}{\lambda + 2\mu} [\lambda \varepsilon_{xx} + 2(\lambda + \mu)\varepsilon_{yy} - Kw],$$

$$\sigma_{xx} = \frac{2\mu}{\lambda + 2\mu} [\lambda \varepsilon_{yy} + 2(\lambda + \mu)\varepsilon_{xx} - Kw],$$

$$\varepsilon_{zz} = \frac{Kw}{\lambda + 2\mu} - \frac{\lambda}{\lambda + 2\mu} (\varepsilon_{xx} + \varepsilon_{yy}).$$
(9)

Дифференцируя первые два уравнения в (9) дважды по у и х и учитывая

$$\varepsilon_{ij} = \frac{1}{2} \Big(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \Big),$$

получим уравнения движения относительно деформаций $\varepsilon_{xx}, \varepsilon_{yy}$ для покрытия и подложки

$$\frac{2\mu}{\lambda+2\mu} \left(\lambda \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} + 2(\lambda+\mu) \frac{\partial^2 \varepsilon_{xx}}{\partial x^2} - K \frac{\partial^2 w}{\partial x^2} \right) + \mu \left(\frac{\partial^2 \varepsilon_{xx}}{\partial y^2} + \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} \right) = \rho \frac{\partial^2 \varepsilon_{xx}}{\partial t^2}; \tag{10}$$

$$\frac{2\mu}{\lambda+2\mu} \Big(\lambda \frac{\partial^2 \varepsilon_{xx}}{\partial y^2} + 2(\lambda+\mu) \frac{\partial^2 \varepsilon_{yy}}{\partial y^2} - K \frac{\partial^2 w}{\partial y^2} \Big) + \mu \Big(\frac{\partial^2 \varepsilon_{xx}}{\partial y^2} + \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} \Big) = \rho \frac{\partial^2 \varepsilon_{yy}}{\partial t^2}. \tag{11}$$

Вследствие неоднородности свойств пластины по толщине в общем случае имеем $\sigma_{yy} = \sigma_{yy}(x, y, z), \sigma_{xx} = \sigma_{xx}(x, y, z)$ и т. д. Однако, поскольку контакт между покрытием и подложкой идеальный, а пластина тонкая, интегрируя (10) по толщине пластины, получаем

$$\frac{2\mu_c}{\lambda_c + 2\mu_c} h_c \Big(\lambda_{c,eff} \frac{\partial^2 \tilde{\varepsilon}_{yy}}{\partial x^2} + 2(\lambda_c + \mu_c)_{eff} \frac{\partial^2 \tilde{\varepsilon}_{xx}}{\partial x^2} - K_{c,eff} \frac{\partial^2 \tilde{w}}{\partial x^2} \Big) + \\ + \mu_{c,eff} h_c \Big(\frac{\partial^2 \tilde{\varepsilon}_{xx}}{\partial y^2} + \frac{\partial^2 \tilde{\varepsilon}_{yy}}{\partial x^2} \Big) = (\rho_c h_c + \rho h) \frac{\partial^2 \tilde{\varepsilon}_{xx}}{\partial t^2},$$

где $\lambda_{c,eff}$, $K_{c,eff}$, $\mu_{c,eff}$ — эффективные свойства, зависящие от соотношения параметров материалов и их толщин. Далее символ "~" опускается.

Аналогично интегрируем уравнение (11).

Так же как и в случае тепловой задачи, если фронт реакции является плоским, задача о распространении фронта реакции становится одномерной [13].

Очевидно, что если свойства покрытия и подложки идентичны или h = 0, имеет место более простая задача. В первом случае наличие подложки приводит к уменьшению эффективного тепловыделения в ходе реакции в $1 + h/h_c$ раз, а во втором лишь способствует сохранению плоского напряженного состояния. Ниже проводится анализ упрощенной задачи. В этом случае наличие подложки приводит к уменьшению суммарного тепловыделения в ходе реакции.

Первым этапом решения задачи является анализ стационарной (невозмущенной) картины.

Стационарный фронт реакции. Так как фронт реакции является плоским и движется в направлении оси x, а образец имеет большие размеры в направлениях x и y, то

$$T = T(x,t), \quad \eta = \eta(x,t), \quad \varepsilon_{ij} = \varepsilon_{ij}(x,t), \quad \sigma_{ij} = \sigma_{ij}(x,t)$$

И

$$\varepsilon_{xy} = 0, \qquad \sigma_{xy} = 0.$$

В системе координат, связанной с фронтом, уравнения (7), (10), (11) принимают вид

$$\begin{aligned} \frac{\partial \eta}{\partial t} + V_n \frac{\partial \eta}{\partial x} &= k_0 \varphi_1(\eta) \varphi_2(T, \Pi), \\ c_{\varepsilon} \rho \Big(\frac{\partial T}{\partial t} + V_n \frac{\partial T}{\partial x} \Big) &= \lambda_T \frac{\partial^2 T}{\partial x^2} + Q_{eff} \Big(\frac{\partial \eta}{\partial t} + V_n \frac{\partial \eta}{\partial x} \Big) - 3K \alpha_T T \Big(\frac{\partial \varepsilon_{kk}}{\partial t} + V_n \frac{\partial \varepsilon_{kk}}{\partial x} \Big), \\ \frac{2\mu}{\lambda + 2\mu} \Big(\lambda \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} + 2(\lambda + \mu) \frac{\partial^2 \varepsilon_{xx}}{\partial x^2} - K \frac{\partial^2 w}{\partial x^2} \Big) + \mu \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} = \\ &= \rho \Big(\frac{\partial^2 \varepsilon_{xx}}{\partial t^2} + 2V_n \frac{\partial^2 \varepsilon_{xx}}{\partial t \partial x} + V_n^2 \frac{\partial^2 \varepsilon_{xx}}{\partial x^2} \Big), \\ \mu \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} &= \rho \Big(\frac{\partial^2 \varepsilon_{yy}}{\partial t^2} + 2V_n \frac{\partial^2 \varepsilon_{yy}}{\partial t \partial x} + V_n^2 \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} \Big), \end{aligned}$$
(12)
где $Q_{eff} = Q_0 (1 + h/h_c)^{-1}.$

Из (12) следует стационарная задача

$$V_{n0} \frac{d\eta}{dx} = k_0 \varphi_1(\eta) \varphi_2(T, \Pi),$$

$$c\rho V_{n0} \frac{dT}{dx} = \lambda_T \frac{d^2 T}{dx^2} + Q_0 V_{n0} \frac{d\eta}{dx} - 3K \alpha_T T V_{n0} \frac{d\varepsilon_{kk}}{dx},$$

$$\frac{2\mu}{\lambda + 2\mu} \left(\lambda \frac{d^2 \varepsilon_{yy}}{dx^2} + 2(\lambda + \mu) \frac{d^2 \varepsilon_{xx}}{dx^2} - K \frac{d^2 w}{dx^2}\right) + \mu \frac{d^2 \varepsilon_{yy}}{dx^2} = \rho V_{n0}^2 \frac{d^2 \varepsilon_{xx}}{dx^2},$$

$$\mu \frac{d^2 \varepsilon_{yy}}{dx^2} = \rho V_{n0}^2 \frac{d^2 \varepsilon_{yy}}{dx^2},$$
(13)

где V_{n0} — стационарная скорость движения фронта (как и в задаче (1)).

Из последнего уравнения в (13) следует

$$\frac{d^2\varepsilon_{yy}}{dx^2} = 0$$

или

$$\varepsilon_{yy} = C_1 x + C_2,$$

где постоянные интегрирования могут быть найдены из условия равенства нулю результирующей силы и момента сил [14]. В случае если пластина имеет большие размеры, постоянные интегрирования C_1 и C_2 стремятся к нулю. В результате из (13), (9) находим

$$\varepsilon_{yy} \approx 0, \qquad \varepsilon_{xx} = \frac{2\mu}{\lambda + 2\mu} \frac{Kw}{C_0}, \qquad \varepsilon_{zz} = \frac{Kw}{\lambda + 2\mu} \frac{2\mu - \rho V_{n0}^2}{C_0},$$
$$\sigma_{xx} = \frac{2\mu Kw}{\lambda + 2\mu} \frac{\rho V_{n0}^2}{C_0}, \qquad \sigma_{yy} = -\frac{2\mu Kw}{\lambda + 2\mu} \frac{2\mu + \rho V_{n0}^2}{C_0},$$

где

$$C_0 = \frac{4\mu(\lambda+\mu)}{\lambda+2\mu} - \rho V_{n0}^2.$$

Следовательно, по аналогии с простейшей моделью (1) задача сводится к решению системы двух уравнений — первого уравнения системы (13) и стационарного уравнения теплопроводности

$$c\rho V_{n0} \frac{dT}{dx} = \lambda_T \frac{d^2T}{dx^2} + Q_{eff} V_{n0} \frac{d\eta}{dx} - 3K\alpha_T T V_{n0} \frac{4\mu - \rho V_{n0}^2}{C_0} \frac{K}{\lambda + 2\mu} \frac{dw}{dx}.$$
 (14)

Полагая $(\alpha_2 - \alpha_1)/\alpha_T \ll 1$, имеем

$$\frac{dw}{dx} = 3\alpha_T \frac{dT}{dx}.$$

Интегрируя уравнение (14), аналогично [5, 9, 13] получаем уравнение для температуры продуктов реакции. В результате стационарная задача сводится к исследованной выше, но вследствие наличия плоского напряженного состояния ее решение имеет иные области существования различных режимов превращения. С помощью метода сращиваемых асимптотических разложений найдем скорость стационарного фронта [15]. В данном случае более подходящим является упрощенный вариант модели, подобный модели, используемой в [16].

Рис. 2. Зависимость $\delta_0(\theta_b)$ при различных значениях параметра σ : 1 — $\sigma = 0.65$; 2 — $\sigma = 0.35$; 3 — $\sigma = 0.15$

Для дальнейшего исследования устойчивости стационарного фронта проведем линеаризацию в уравнении теплопроводности:

$$T\frac{dT}{dx} \approx T_b \left(\frac{dT}{dx}\right)_{T_b} + \left(\frac{dT}{dx}\right)_{T_b} (T - T_b) + T_b \left[\frac{dT}{dx} - \left(\frac{dT}{dx}\right)_{T_b}\right] \approx T_b \frac{dT}{dx}.$$

В этом случае уравнение для температуры продуктов реакции принимает вид

$$\delta_0 \theta_b^2 + (1 + \delta_0 \sigma) \theta_b - 1 = 0, \tag{15}$$

где

$$\delta_{0} = \frac{\omega(2\gamma_{2} - \alpha^{2})}{\gamma_{2}(1 + \gamma_{1}) - \alpha^{2}}, \quad \theta_{b} = \frac{T_{b} - T_{b0}}{T_{b0} - T_{0}}, \quad \sigma = \frac{T_{0}}{T_{b0} - T_{0}}, \quad \alpha = \frac{V_{n0}^{2}}{(\lambda + 2\mu)/\rho},$$
$$\gamma_{1} = \frac{\lambda}{\lambda + 2\mu}, \qquad \gamma_{2} = \frac{2\mu}{\lambda + 2\mu}, \qquad \gamma_{1} + \gamma_{2} \equiv 1,$$

 ω — коэффициент связанности:

$$\omega = \frac{(3K\alpha_T)^2}{\lambda + 2\mu} \frac{T_{b0} - T_0}{c\rho},$$

 T_{b0} — температура продуктов реакции в чисто тепловой модели (3), когда $\theta_b = \theta_{b0} = 1$.

Нетрудно заметить, что в зависимости от значений параметров уравнение (15) может иметь два решения, одно решение либо не иметь решений (рис. 2). Кривые $\delta_0(\theta_b)$ на рис. 2 имеют минимум, величина и положение которого зависят от σ :

$$\theta_{b*} = 1 + \sqrt{1 + \sigma}, \qquad \delta_{0*} = -\frac{\sqrt{1 + \sigma}}{2(1 + \sigma) + (2 + \sigma)\sqrt{1 + \sigma}}$$

С увеличением σ значения θ_{b*} , δ_{0*} увеличиваются (рис. 3).

При $\delta_0 < \delta_{0*}$ уравнение (15) не имеет вещественных корней. При $\delta_0 > 0$ решение является единственным, причем $\theta_b < 1$. В интервале $\delta_0 \in (\delta_{0*}, 0)$ уравнение (15) имеет два положительных корня, которые, как и в [5], по-видимому, определяют структуру волны горения. Знак δ_0 зависит от других параметров модели. Нетрудно показать, что $\delta_0 > 0$, если $\alpha < \gamma_* = \sqrt{\gamma_2(1+\gamma_1)} = \sqrt{\gamma_2(2-\gamma_2)}$ или $\alpha > \sqrt{2\gamma_2}$. После перехода к физическим величинам уравнение для температуры продуктов реакции будет иметь единственное решение при $\rho V_{n0}^2 < 4\mu$ или $\rho V_{n0}^2 > 4\mu(\lambda + \mu)/(\lambda + 2\mu)$.

Рис. 3. Зависимость критических параметров существования стационарного решения $\delta_{0*}(a)$ и $\theta_{b*}(b)$ от перепада температуры σ

В интервале $\alpha \in (\gamma_*, \sqrt{2\gamma_2})$ имеем $\delta_0 < 0$. Точки $\alpha = \sqrt{2\gamma_2}$ и $\alpha = \gamma_*$ являются особыми. Так, если $\alpha = \sqrt{2\gamma_2}$, модель оказывается несвязанной при $\omega \neq 0$.

В приближении узкой зоны реакции стационарная задача включает линеаризованные уравнения теплопроводности (14) без учета химического источника тепла

$$c\rho V_{n0} \frac{dT_i}{dx} = \lambda_T \frac{d^2 T_i}{dx^2} - T_b V_{n0} \frac{4\mu - \rho V_{n0}^2}{C_0} \frac{(3\alpha_T K)^2}{\lambda + 2\mu} \frac{dT_i}{dx},$$

граничные условия (4), в которых вместо Q_0 используется Q_{eff} , и условия, аналогичные условиям в (1).

Перейдем к безразмерным переменным

$$\theta_i = \frac{T_i - T_0}{T_{b0} - T_0}, \qquad X = \frac{V_{n0}x}{\varkappa_T}$$

В результате с учетом (3) рассматриваемая задача принимает вид

$$\frac{d\theta_i}{dX} (1+\delta) = \frac{d^2\theta_i}{dX^2}, \qquad i = 1, 2,$$

$$X = 0: \quad \theta_1 = \theta_2, \quad \frac{d\theta_1}{dX} = \frac{d\theta_2}{dX} + 1,$$

$$X \to -\infty: \quad \theta_1 = 0, \qquad X \to \infty: \quad \theta_2 = \theta_b$$

где $\delta = \delta_0(\theta_b + \sigma).$

Решение стационарной задачи, которому далее соответствует верхний индекс 0, существует при $1+\delta>0$ и имеет вид

$$\theta_1^0 = \theta_b \exp\left[(1+\delta)X\right], \qquad \theta_2^0 = \theta_b$$

Нетрудно получить выражения

$$e_{xx,i}^{0} = \frac{\gamma_{2}\theta_{i}^{0}}{\gamma_{2}(1+\gamma_{1})-\alpha^{2}}, \qquad e_{zz,i}^{0} = \frac{(\gamma_{2}-\alpha^{2})\theta_{i}^{0}}{\gamma_{2}(1+\gamma_{1})-\alpha^{2}}, \\ S_{xx,i}^{0} = \frac{\gamma_{2}\alpha^{2}\theta_{i}^{0}}{\gamma_{2}(1+\gamma_{1})-\alpha^{2}}, \qquad S_{yy,i}^{0} = -\frac{\gamma_{2}(\gamma_{2}+\alpha^{2})\theta_{i}^{0}}{\gamma_{2}(1+\gamma_{1})-\alpha^{2}},$$

где

$$S_{ij} = \frac{\sigma_{ij}}{\sigma_*}, \quad e_{ij} = \frac{\varepsilon_{ij}}{\varepsilon_*}, \quad \sigma_* = 3K\alpha_T(T_{b0} - T_0), \quad \varepsilon_* = \frac{3K\alpha_T(T_{b0} - T_0)}{\lambda + 2\mu}$$

Рис. 4. Распределения температуры (a) и компонент тензоров деформаций (б, в) и напряжений (г, д), отличных от нуля, в зоне прогрева при $\sqrt{\gamma_2} < \alpha < \gamma_*$ ($\omega = 0.1, \sigma = 0.25, \gamma_2 = 0.35$): 1 — $\alpha = -0.6; 2 - \alpha = -0.7; 3 - \alpha = -0.75$

Рис. 5. Распределения температуры (a) и компонент тензоров деформаций (б, 6) и напряжений (г, ∂), отличных от нуля, в зоне прогрева при $\gamma_* < \alpha < \sqrt{2\gamma_2}$ ($\omega = 0,1, \sigma = 0,25, \gamma_2 = 0,35$): $1 - \alpha = -0,79; 2 - \alpha = -0,8; 3 - \alpha = -0,81$

lpha	$ heta_{b1}$	$ heta_{b2}$
0,79	1,353	4,54
0,80	1,160	9,01
0,81	1,080	$16,\!57$

Значения $heta_{b1}$, $heta_{b2}$ при различных значениях lpha

Анализ полученного решения. Поскольку зависимость температуры продуктов реакции от параметров является сложной, а на область существования решения накладываются ограничения ($\delta_0 > \delta_{0*}$, $\alpha < \alpha_*$), в разных областях изменения параметров γ_2 (или γ_1), α , ω , σ стационарные решения различны. В частности, разные режимы превращения характеризуются различными шириной зоны прогрева, значениями θ_b , знаками компонент тензоров напряжений и деформаций, отличных от нуля. Так, при $\omega = 0,1$, $\gamma_1 = 0,65$ ($\gamma_2 = 0,35$), $\sigma = 0,25$ имеем $\sqrt{2\gamma_2} \approx 0,837$, $\gamma_* = 0,76$. При $\alpha < \sqrt{\gamma_2}$ $\delta_0 > 0$, значение θ_b единственно и слабо зависит от α , $e_{xx,1}^0 > 0$, $e_{zz,1}^0 > 0$, $S_{xx}^0 > 0$, $S_{yy}^0 < 0$. Если $\alpha \ll 1$, то $S_{xx}^0 \to 0$.

При $\alpha > \sqrt{\gamma_2}$ деформации $e_{zz,1}^0$ меняют знак, температура θ_b уменьшается с ростом α , причем тем быстрее, чем ближе значение α к значению γ_* . Для этого случая распределение различных величин в стационарной волне показано на рис. 4.

В области $\gamma_* < \alpha < \sqrt{2\gamma_2}$ уравнение (15) имеет два корня θ_b , причем меньшая температура θ_{b1} уменьшается с ростом α , а большая θ_{b2} увеличивается (см. таблицу). Для этой области параметров на рис. 5 показаны распределения всех величин в зоне прогрева, построенные по меньшему значению температуры θ_b . Видно, что в отличие от случая, рассмотренного выше (см. рис. 4), напряжения S_{xx}^0 в зоне прогрева являются растягиваюцими. При $\alpha \to \sqrt{2\gamma_2}$ $1 + \delta < 0$ и стационарного решения не существует. При значениях $\alpha > \sqrt{2\gamma_2}$ имеется единственное решение уравнения (15); в дальнейшем с увеличением α температура θ_b практически не изменяется, а $e_{xx} \to 0$.

Заключение. Таким образом, в работе предложена модель самоподдерживающегося синтеза покрытия на подложке. Анализ стационарного решения показал, что даже в линеаризованной постановке возможны различные режимы синтеза, характеризующиеся разными скоростями: медленный режим твердофазного горения, при котором температура продуктов реакции меньше температуры продуктов реакции в волне горения без учета напряжений и деформаций; промежуточные режимы с высокими скоростями, но с различной структурой зоны реакции; режимы синтеза со скоростью, большей скорости распространения механических возмущений в исходном веществе. Вопрос об устойчивости таких режимов превращения пока остается нерешенным и требует проведения дополнительных исследований.

ЛИТЕРАТУРА

- 1. Ландау Л. Д. Гидродинамика / Л. Д. Ландау, Е. М. Лифшиц. М.: Наука, 1988.
- 2. **Мержанов А. Г.** Теория волн горения в гомогенных средах / А. Г. Мержанов, Б. И. Хайкин. Черноголовка: Ин-т структур. макрокинетики АН, 1992.
- 3. Поболь И. Л. Обработка конструкционных и инструментальных материалов и получение изделий электронно-лучевым воздействием: Дис. ... д-ра техн. наук. Минск, 2007.
- Knyazeva A. G. Влияние реологических свойств среды на характеристики зажигания и горения // Proc. of the Intern. workshop "Unsteady combustion and interior ballistics", Saint Petersburg, June 26–30, 2001. St. Petersburg: Baltic State Tech. Univ., 2001. V. 1. P. 30–40.

- 5. Knyazeva A. G. The stationary modes of the reaction front and their stability for solid media with regard to chemically induced internal stresses and strains // Combustion of energetic materials: Select. papers of the 5th Intern. symp. on special topics in chemical propulsion, Stresa, Italy, 18–22 June 2000. S. l.: Kluwer Acad. Publ., 2001. P. 867–878.
- 6. Новожилов Б. В. Скорость распространения фронта экзотермической реакции в конденсированной среде // Докл. АН СССР. 1961. Т. 141, № 1. С. 151–153.
- 7. Махвиладзе Г. М., Новожилов Б. В. Двумерная устойчивость горения конденсированных систем // ПМТФ. 1971. № 5. С. 51–59.
- 8. Шкадинский К. Г., Хайкин Б. И. Влияние теплопотерь на распространение фронта экзотермической реакции в *k*-фазе // Горение и взрыв. М.: Наука, 1972. С. 104–109.
- Князева А. Г. Решение задачи термоупругости в форме бегущей волны и его приложение к анализу возможных режимов твердофазных превращений // ПМТФ. 2003. Т. 44, № 2. С. 14–26.
- 10. Гордополов Ю. А., Трофимов В. С., Мержанов А. Г. О возможности безгазовой детонации конденсированных систем // Докл. АН. 1995. Т. 341, № 3. С. 327–329.
- 11. Бацанов С. С., Гордополов Ю. А. Пределы скорости твердофазной детонации // Физика горения и взрыва. 2007. Т. 43, № 5. С. 104–106.
- 12. Болховитинов Л. Г., Бацанов С. С. К теории твердофазной детонации // Физика горения и взрыва. 2007. Т. 43, № 2. С. 108–110.
- Knyazeva A. G. Thermomechanical stability of the reaction front in the technology conditions // Proc. of the 4th Europ. combustion meeting, Vienna, 14–17 Apr. 2009. [Электрон. pecypc]. Vienna: Vienna Univ. of Technol., 2009. P811400.
- 14. Боли Б. Теория температурных напряжений / Б. Боли, А. Уайнер. М.: Мир, 1964.
- 15. Князева А. Г. Скорость волны твердофазного горения. Асимптотический анализ // Физ. мезомеханика. 2004. Т. 7, № 3. С. 63–70.
- Князева А. Г. Распространение волны горения в деформируемой сплошной среде // Физика горения и взрыва. 1993. Т. 29, № 3. С. 48–53.

Поступила в редакцию 19/V 2009 г.