ЛИТЕРАТУРА

2. Гершукин Г. З., Жуховицкий Е. М. Конвективная устойчивость. — Механика жидкости и газа (Итоги науки и техники), 1978, т. 11.
10. Таруши Е. Л. Определение границы конвективной устойчивости равновесия методом сеток. — В сб.: Алгоритмы и программы для ЭВМ. Пермь, 1978, деп. ВИНИТИ 31.05.78, № 1903–78.

УДК 533.6.013.2

АВТОМОДЕЛЬНЫЕ РЕШЕНИЯ УРАВНЕНИЯ ПОГРАНИЧНОГО СЛОЯ С ВЗАИМОДЕЙСТВИЕМ

В. В. Бозолотов, И. И. Липатов

(Москва)

В работе [1] построена классификация режимов течений около малых двумерных верностей на поверхности тела, обтекаемого сверхзвуковым потоком взаимного газа, при стремлении характерного числа Рейнольдса Re, посчитанного по параметрам необъемного потока, к бесконечности. При использовании известного метода схематизированных асимптотических разложений установлены основные параметры подобия, определяющие фазовые особенности течений, вид уравнений и краевых условий. В частности, получено, что зависимость с характерной протяженностью x = a/2, b = b/2, уравнение и характерным размером l/2 = O(l/2), где l = Re, l = Re, обозначается присоединенной динамической частью ненассеемого пограничного слоя. Течение около таких верностей в первом приближении при ε → 0 описывается уравнениями пограничного слоя Прандтля для несжимаемого газа. Распределение давления при этом определяется в процессе счета из условия взаимодействия верности с присоединенной частью ненассеемого пограничного слоя, т. е. дифференцируемого режима течения в первом приближении нет взаимодействия с внешним потоком и изменение толщины верности компенсируется изменением тол-
щины вытеснения пристеночной части невозвушенного пограничного слоя. Поэтому за исследуемым режимом течения начинает закрепляться название «компенсационного».

В [2] также описана постановка краевой задачи для «компенсационного» режима обтекания неровностей и получено решение в следе за плоской неровностью на поверхности тела. Полное решение плоской краевой задачи получено в [3].

В данной работе исследуются автоматизированные решения «компенсационного» режима обтекания малых неровностей на поверхности тела.

1. «Компенсационный» режим обтекания малых неровностей описывается следующей краевой задачей (см., например, [3]):

\[
\begin{align*}
\Pi \Phi'''' &= \rho' + \psi' \psi'' - \psi' \psi', \quad H''''/\Pr = -\psi' H'' + H' \psi', \\
\Pi = \mu \beta / \rho \omega a^2, \quad \psi = \psi' = H = 0 \quad (y = f(x)), \\
\psi'' &\to 1, \quad H = \sqrt{2} \psi, \quad p(x) - \psi - 2(y - \infty), \quad f(x) \to 0, \quad p(x) \to 0, \\
\psi &\to 2^{\psi/2}, \quad H \to y(x - \infty),
\end{align*}
\]

где \(x, y \) — обычные декартовы координаты; \(\cdot' \) и \(\cdot'' \) — дифференцирование по продольной и поперечной переменным; \(\psi(x, y), \quad H(x, y), \quad p(x) \) — функции тока, возмущение энтальпии относительно ее значения на поверхности тела и давление; \(\Pr \) и \(f(x) \) — число Прандтля и отнормированная форма неровности; \(\mu, \quad \rho, \quad A \) — значения коэффициента динамической вязкости, плотности и напряжения трения у поверхности тела в невозмущенном пограничном слое в точке, где находится малая неровность; \(a_t \) и \(b_t \) — поперечный и продольный размеры неровности. В принятых переменных напряжение трения \(\tau \) и тепловой поток \(q \) в невозмущенном пограничном слое у поверхности тела равны 1.

Вводятся новые переменные

\[
\begin{align*}
y &= c(x) N + f(x), \quad p(x) = d(x) - f'(x)/2, \\
\psi(x, y) &= d(x) \psi(x, N) + \psi(x) N^2/2 + c(x) f(x) N, \\
H(x, y) &= d(x) g(x, N) c(x) + c(x) N,
\end{align*}
\]

в которых краевая задача (1.1) принимает удобный для исследования вид

\[
\begin{align*}
\Pi \Phi'''' &= \frac{\psi'^2}{x^2} - (\psi'(c f)^2 N + e^2 c^2 N^2 + c d \psi) \psi'''' + \left(c^2 f' + \frac{c f}{c} (c d') - \\
&- c f' d + \frac{c d^2}{x} N + (c d' - c d') \psi) \psi'' - \frac{c d}{x} \psi c + c^2 \left(\psi'(N + \frac{f}{c} + \frac{d}{x} \psi') - \\
&- \psi' \left(1 + \frac{d}{x} \psi^2 \right) \right),
\end{align*}
\]

\[
\begin{align*}
\frac{\Pi}{\Pr} g'' &= -\frac{c^2}{c} N - \frac{c^2 d^2}{x} \psi + c \psi' N \psi' - c^2 \psi' - (c f)^2 N + c^2 c^2 N^2 + c d \psi + \\
&+ c d \psi g + \left(\frac{c d^2}{x} - c d \right) \left(N + \frac{f}{c} + \frac{d}{x} \psi' \right) g + c^2 g \left(N + \frac{f}{c} + \frac{d}{x} \psi' \right),
\end{align*}
\]

\[
\begin{align*}
q(x, 0) &= 0, \quad q'(x, 0) = -cf/d, \quad \psi''(x, \infty) = 0, \quad f(x, \infty) = 1, \\
g(x, 0) &= 0, \quad g'(x, \infty) = 0, \quad f(x) \to 0, \quad d(x) \to 0 \quad (x \to -\infty).
\end{align*}
\]

Необходимо отметить, что в краевой задаче (1.2) условие взаимодействия \(\psi(x, \infty) = 1 \) не повышает порядок производных по продольной координате \(x \), входящих в краевую задачу (1.2), уравнения остаются параболическими и в их решении не учитывается передача возмущений вверх по потоку.

Так как проницаемость взаимодействует только с дозвуковой частью невозвушенного пограничного слоя, то при обтекании вмятины на поверхности тела \(f(x) < 0 \) возмущение давления будет положительным: \(\Delta p > 0 \) и \(d(x) > f(x)/2 > 0 \). Если же неровность будет выпуклой \(f(x) > 0 \), то
$\Delta p < 0$ и $d(x) < 0$. В дальнейшем всюду верхний знак относится к случаю обтекания выпуклой неровности, нижний — к случаю обтекания вмятины.

Принимается следующий вид произвольной нормированной функции $c(x) > 0$:

$$c(x) = D \left[1 - d(x) \right]^\gamma.$$

Очевидно, что только при $f(x) = \pm \left[1 - (x/d(x))^\gamma \right]$ краевые условия исследуемой задачи (1.2) принимают автомodelный вид

(1.3)

$$f(0) = 0, \quad f'(0) = D, \quad f'(\infty) = 0, \quad f(\infty) = 1,$$

$$g(0) = 0, \quad g'(\infty) = 0.$$

Для существования нетривиального автомodelного решения краевой задачи (1.2) необходимо выполнение условия

(1.4)

$$c^\prime(x)d'(x)/d(x) = \beta.$$

Интегрирование дифференциального уравнения (1.4) дает (постоянную интегрирования можно задать равной нулю с помощью смещения начала координат $x = 0$)

(1.5)

$$d(x) = -e^{-2\gamma \gamma / D^2}f(x) = -(3\beta_1 \gamma / D^2)^{1/2/\gamma - 1/3},$$

$$c(x) = (3\beta_1 \gamma / D^2)^{1/3}.$$

Теперь можно получить оценку для изменения возмущений напряжения трения или теплового потока у поверхности неровности относительно своих значений в невозмущенном пограничном слое у поверхности тела

(1.6)

$$(x - 1) \sim (y - 1) \sim d(x)/c(x) \sim x^{1/2/\gamma - 1/3}.$$

Из соотношений (1.5) видно, что произведение $\beta_1 \gamma$ должно быть > 0, т. е. при различных сочетаниях знаков величин β и координаты x могут реализоваться различные автомodelные решения краевой задачи (1.2).

2. Пусть сначала $x, \beta, \gamma > 0$, т. е. исследуется распространение возмущений вниз по потоку и при этом возмущения давления возрастают по абсолютной величине $|d(x)| > 0$. Условимся называть такие течения течениями сжатия.

Оценка порядков членов, входящих в уравнения краевой задачи (1.2), по степеням x показывает, что при использовании соотношений (1.5) и значения $\gamma = 1/2$ уравнения (1.2) сводятся к нелинейным автомodelным уравнениям для всех $x > 0$:

(2.1)

$$\Pi \phi'' = \beta \left[1 - \left(\pm \frac{\frac{\phi}{E}}{N} + \frac{\phi}{2E^2} \right) \frac{\phi'}{\phi''} + \left(\pm \frac{N}{D} + N \frac{\phi'}{2E^2} \right) \phi' - \phi \right],$$

$$\Pi \phi' = \beta \left[\frac{\phi}{2} - \frac{\phi}{N} + \frac{\phi'}{2E^2} - \left(\pm \frac{N}{D} + \frac{\phi'}{2E^2} \right) \phi' + \frac{1}{2} \left(\pm \frac{N}{D} + N \frac{\phi'}{2E^2} \right) G' \right].$$

решение которых должно удовлетворять краевым условиям (1.3). В новых переменных

$$N = (\Pi/\beta)^{1/3}n, \quad g(N) = (\beta/\Pi)^{1/3}G(n)$$

уравнения (2.1) и краевые условия (1.3) принимают вид, удобный для численного интегрирования:

(2.2)

$$\phi'' = 1 - \left(\pm \frac{\phi}{E} + \frac{\phi}{2E^2} \right) \phi' + \left(\pm \frac{1}{E} + \pm \frac{\phi}{2E^3} \right) \phi' - \phi,$$

$$G'' = \frac{G}{2E} - \frac{\phi}{2} - \left(\pm \frac{\phi}{E} + \frac{\phi}{2E^2} \right) G' + \frac{1}{2} \left(\pm \frac{1}{E} + \pm \frac{\phi}{2E^2} \right) G,$$

$$\phi(0) = 0, \quad \phi'(0) = E, \quad \phi'(-\infty) = 0, \quad \phi(\infty) = 1, \quad G(0) = 0, \quad G'(\infty) = 0, \quad E = D(\Pi/\beta)^{1/3}.$$
Численное интегрирование краевой задачи (2.2) позволяет определить величину параметра E, найти форму обтекаемой неровности $f(x) = \pm (3\Pi z/2E^2)^{1/3}$, распределение возмущения давления $d(x) = \mp f'(x)$ и величины возмущения напряжения трения $\tau - 1 = \mp \phi''(0)/E^2$ и теплоотопа $q - 1 = \mp G'(0)/E^2$:

\[
\begin{align*}
\tau - 1 &= 0,7350, \quad q - 1 = 0,1972 \quad (f(x) = 0,6775(Pz)^{1/3}), \\
\tau - 1 &= -0,7182, \quad q - 1 = -0,2569 \quad (f(x) = -0,0503(Pz)^{1/3})
\end{align*}
\]

для всех $x > 0$. Профиля функция $\varphi(n)$, $\varphi'(n)$ и $-G(n)$ для $f(x) > 0$ представлены на фиг. 1 (кривые 1–3), во всех расчетах принималась $Pr = 0,71$. Если же $\gamma = 1/2$, то краевая задача (1.2) будет иметь автомодельный вид только при $x^{1/3} \rho^{-2/3} \ll 1$, т. е. при $x \gg 1$ для $\gamma > 1/2$ и при $x \ll 1$ для $\gamma < 1/2$:

\[(2.3)\]

\[
\begin{align*}
\varphi''' &= 1 - \gamma n^2 \varphi'' + n\varphi' - \varphi,
G''/Pr &= (1 - \gamma)En - \varphi + \gamma n\varphi' - \gamma n^2G' + (1 - \gamma)nG,
\end{align*}
\]

$q(0) = 0$, $\varphi'(0) = E$, $\varphi''(\infty) = 0$, $\varphi(\infty) = 1$, $G(0) = 0$, $G'(\infty) = 0$.

Численное решение краевой задачи (2.3) получено в широком диапазоне изменения величины $\gamma > 0$. На фиг. 2 показаны зависимости E, $-\varphi'(0)$ и $-G'(0)$ от величины γ (кривые 1–3); зависимости $f(x)$, $d(x)$, $\tau - 1$ и $q - 1$ в этом случае будут определяться соотношениями

\[
\begin{align*}
f(x) &= \mp (3\Pi z/E^2)^{1/3} x^{1/3}, \quad d(x) = \mp (3\Pi z/E^2)^{1/3} x^{1/3}, \\
\tau - 1 &= \mp [\varphi'(0)/E^2] (3\Pi z/E^2)^{1/3} \rho^{-2/3}, \quad q - 1 = \mp [G'(0)/E^2] \times \frac{(3\Pi z/E^2)^{1/3} \rho^{-2/3}}{3\Pi z/E^2}. \end{align*}
\]

Из полученных результатов важно отметить, что для $x \gg 1$ при обтекании неровностей ($x^{-2/3} \ll f(x) \ll x^{1/3}$) возмущения давления возрастают $1 < |d(x)| < x^{2/3}$, а возмущения напряжения трения (или теплового потока) убывают $x^{-2/3} < |\tau - 1| < 1$. В частности, при обтекании уступа ($f(x) = +1$) $d(x) \sim x^{1/3}$ и $(\tau - 1) \sim (q - 1) \sim x^{-1/3}$, т. е. возмущения напряжения трения и теплового потока очень слабо убывают с ростом x.

3. Пусть теперь $x > 0$, но $\rho > 0$, $\gamma < 0$, т. е. возмущения давления уменьшаются по абсолютной величине $|d(x)| < 0$ вниз по потоку. Условным называть такие течения течениями разрежения. При этом также справедливы соотношения (1.5) и (1.6), если знаки ρ и γ поменять в них на противоположные:

\[
\begin{align*}
d(x) &= \mp (3\Pi z/D^2)^{-1/3} \gamma, \quad f(x) = \pm (3\Pi z/D^2)^{-1/3} \gamma, \\
c(x) &= (3\Pi z)^{1/3}, \quad (\tau - 1) \sim (q - 1) \sim x^{-1/3} \rho^{-2/3}
\end{align*}
\]

и далее полагать $\beta, \gamma > 0$. Можно видеть, что в этом случае исходная крае-
вая задача (1.2) принимает автомодельный вид только при \(x \gg 1 \):

\[
\psi'''' = -1 - \gamma^2 \psi'' - n \psi' + \psi,
\]

\[
G''/Pr = -(1 + \gamma)Em + \psi + n \psi' - \gamma^2 G' - (1 + \gamma)nG,
\]

\[
\psi(0) = 0, \quad \psi'(0) = E, \quad \psi'''(\infty) = 0, \quad \psi(\infty) = 1, \quad G(0) = 0, \quad G'(\infty) = 0.
\]

Численное решение краевой задачи (3.1) получено в широком диапазоне изменения величины \(\gamma \gg 0 \), зависимости \(E \), \(-\psi''(0) \) и \(-G'(0) \) от величины \(\gamma \) представлены на фиг. 3 (крысы I–3). Зависимости \(f(x) \), \(d(x) \), \(\tau - 1 \) и \(q - 1 \) в этом случае будут определяться соотношениями

\[
f(x) = \pm (3\Pi \gamma x/E^3)^{-1/3}, \quad d(x) = \mp (3\Pi \gamma x/E^3)^{-1/3},
\]

\[
\tau - 1 = \mp (\psi''(0)/E^3)(3\Pi \gamma x/E^3)^{-1/3}, \quad q - 1 = \pm [G'(0)/E^2](3\Pi \gamma x/E^3)^{-1/3}.
\]

из которых видно, что для течений разрежения все возмущения затухают с ростом продольной координаты \(x \) при \(\gamma \gg 0 \). Результаты численных расчетов показывают, что при \(\gamma = 1 \) \(\psi''(0) = G'(0) = 0 \) и, значит,

\[
d(x) \sim x^{-1/3}, \quad \tau = q = 1 \sim (f(x) \sim x^{-2/3}).
\]

Кроме того, оказывается, что при \(\gamma = 1/2 \) \(E = 0 \). Из этого следует, что решение краевой задачи (3.1) имеет смысл только при \(\gamma \gg 1/2 \), когда \(E \gg 0 \), так как значение \(E = 0 \) соответствует предельному случаю — течению в слое за инжекционной неровностью на поверхности тела, т. е. для \(f(x) = 0 \) при \(x \gg 1 \) (в этом случае во всех формуллах надо сразу положить \(f(x) = (x)^{1/3} \), а потом использовать соотношения \(D = 1 \) и \(E = (\Pi/\gamma)^{1/3} \)). Именно такой пример течения рассматривался в [2], при этом возмущения затухают с ростом продольной координаты \(x \) по следующим законам:

\[
d(x) \sim x^{-3/4}, \quad (\tau - 1) \sim (q - 1) \sim x^{1/4}.
\]

Это еще означает, что при обтекании неровностей \(f(x) \ll x^{-1} \) при \(x \gg 1 \) затухание возмущений определяется уже взаимодействием пристеночной части невозвышенного пограничного слоя с поверхностью тела \(f(x) = 0 \), а не с самой неровностью.

При \(\gamma = 1 \) решение краевой задачи (3.1) для функции \(\psi(n) \) удается получить в явном виде

\[
(3.2) \quad \psi''(n) = \psi''(0) \left(1 - n \exp \left(-\frac{n^3}{3} \right) \right)^{1/3}, \quad \xi \exp \left(\frac{1}{3} \right) d\xi = n \exp \left(-\frac{n^3}{3} \right).
\]

Однако это решение неоднозначно, так как величина \(\psi''(0) \) остается неопределенной. Если \(\psi''(0) \neq 0 \), то из анализа решения (3.2) следует \(\psi''(n) \sim \psi''(0)/n^2 \) \((n \to \infty) \).

С другой стороны, результаты численных расчетов показывают, что в окрестности точки \(\gamma = 1 \) величина \(\psi''(0) \) меняет свой знак (см. фиг. 3), и поэтому можно считать, что существует решение, в котором \(\psi''(0) = 0 \) при \(\gamma = 1 \). Тогда возмущение напряжения трения затухает по экспоненциальному закону при \(n \to \infty \) и величина \(E = 3^{-1/3} \Gamma(2/3) = 0,93889 \) (результаты численных расчетов дают \(E = 0,93887 \)).

Отдельные аналитические результаты можно получить еще при использовании преобразования Фурье по продольной координате \(x \) для линеаризованной краевой задачи (1.2) для функции \(\psi(x, N) \). После ряда несложных выкладок (см., например, [21]) получается следующая зависимость величины \(E \) от \(\gamma \):

\[
(3.3) \quad E = (3\Pi/\tau)^{1/3} \Gamma(1+1/3\gamma + 1) \theta - 1/3\gamma + 2/3, \quad \theta = [1-3\Pi/\tau]^{1/4} \approx 0,8272, \quad \gamma \geq 0; \quad \text{только здесь знак} \quad + \quad \text{соответствует решению краевой задачи (2.3), знак} -- \text{решению краевой задачи (3.1).} \]
Значения E, вычисленные по этой формуле, практически совпадают с результатами, представленными на фиг. 2, 3. В частности, для течения разрежения из (3.3) следует, что при $\gamma = 1/2$ $E = 0$.

4. Пусть $x < 0$, тогда как следует из (1.5), величины β и γ должны иметь противоположные знаки. Так как при $x \to -\infty$ толщина неровности $f(x) \to 0$, то $|d(x)|^2 > 0$ и, следовательно, $\beta > 0$ и $\gamma < 0$.

Здесь, как и в п. 3, исходная краевая задача (1.2) может принимать автоволновый вид только при $-x > 1$:

$$
q''' = -1 + \gamma n^2 q'' - nq' + q, \quad q(0) = 0, \quad q'(0) = E,
$$

$$
q''(\infty) = 0, \quad q(\infty) = 1.
$$

Необходимо отметить, что эта краевая задача отличается от (3.1) только знаком перед членом $\gamma n^2 q''$.

Для функции $z(n) = q''(n) \exp\left(-\gamma n^2/6\right)$ при $n \to \infty$ можно получить уравнение $z'' - n^2/4 z = 0$, решение которого выражается через модифицированные функции Бесселя [6]. Учитывая, что при $n \to \infty$ функция $z(n)$ должна убывать, можно получить $z(n) \sim n^{1/2} K_{1/6}(\gamma n^2/6)$.

Тогда из асимптотического представления функции $K_{1/6}(\gamma n^2/6)$ при $n \to \infty$ следует, что $q'''(n) \to \text{const}$. Краевое условие $q''(\infty) = 0$ дает тогда решение вида $q''(n) = 0$, которое не удовлетворяет остальным краевым условиям задачи (4.1), и, значит, краевая задача (4.1) решения не имеет. Это доказывает, что исходная краевая задача (1.2) не имеет автоволновых решений для неровностей, простирающихся неограниченно далеко вверх по потоку.

Поступила 21 VII 1981

ЛИТЕРАТУРА

1. Богословов В. В., Нейланд В. Я. Обтекание малых неровностей на поверхности тела сверхзвуковым потоком вязкого газа.— Труды ЦАГИ, 1971, вып. 1363.

3. Богословов В. В. Расчет взаимодействия сверхзвукового непрозрачного пласта с тонким препятствием.— Уч. зап. ЦАГИ, 1974, т. 5, № 6.

5. Богословов В. В. Исследование автоволновых решений для случая обтекания малых неровностей на поверхности тела сверхзвуковым потоком вязкого газа.— Труды ЦАГИ, 1977, вып. 1812.

УДК 533.6.12

О ВОЗМУЩЕНИЯХ, ГЕНЕРИРУЕМЫХ ОСЦИЛЛЯТОРАМИ
В ПОТОКЕ ВЯЗКОЙ ЖИДКОСТИ
НА ЗАКРИТИЧЕСКИХ ЧАСТОТАХ

Е. В. Богдаanova, O. C. Рыжов

(Москва)

1. Следуя [1, 2], воспользуемся теорией свободного взаимодействия [3—5] для изучения долговечных волн возмущений на входе в плоский полубесконечный канал. Источником возмущений будем считать два гармонических осциллятора, расположенные на противоположных стенках. Чтобы задать характерную частоту генерируемых ими колебаний, введем малый параметр $\varepsilon = R^{-1/3}$, где число Рейнольдса R вычислено по ширине канала b^*, скорости U^* потока на его входе и кинематической вязкости

5 пята M 4, 1982 65