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Рассматриваются результаты моделирования распространения сейсмоакустических волн на основе
численного решения двумерной прямой динамической задачи для слоистой пористой среды. Распро-
странение сейсмических волн в пористой среде, насыщенной флюидом, при отсутствии потери энергии
описывается системой дифференциальных уравнений первого порядка в декартовой системе координат.
Исходная система записывается в виде гиперболической системы в терминах скоростей упругой вмещаю-
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сложно-построенной пористой среде и исследовать возникающие в таких средах волновые эффекты.
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The results of seismoacoustic wave propagation modeling based on a numerical solution of a direct dynamic
problem for a porous medium are considered. The propagation of seismic waves in a porous medium saturated
with a fluid in the absence of energy loss is described by a system of first-order differential equations in a
Cartesian coordinate system. The initial system is written as a hyperbolic system in terms of the velocities
of the elastic host medium, the velocity of the saturating fluid, the components of the stress tensor, and the
pressure of the fluid. For the numerical solution of the problem, a method of complexing the integral Laguerre
transform in time with a finite-difference approximation in the spatial coordinates is used. The solution
algorithm makes it possible to efficiently carry out calculations of modeling in a complexly constructed porous
medium and to investigate the wave effects that arise in such media.
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Введение

Изучение взаимосвязей между волновыми процессами, происходящими в различных
слоях Земли, является одним из важнейших направлений в геофизике. Значительный
интерес представляют волны низких частот в задачах гидроакустики, что связано с осо-
бенностями их распространения: начиная с определенного соотношения между длиной
упругой волны и глубиной бассейна, волны распространяются не только в водной тол-
ще океана, но и в его поддонных слоях. При этом часть излучаемой волновой энергии
уносится поверхностными волнами на границе раздела этих сред. Увеличение числа ис-
следуемых типов волн, характеризующихся разными скоростями распространения, су-
щественно расширяет возможности дистанционного акустического мониторинга как ха-
рактеристик источников излучения, так и параметров водного и поддонных слоев. На
практике это необходимо для решения многих задач, таких как сейсмическая разведка и
предсказание землетрясений и цунами. В первую очередь, значительный интерес пред-
ставляет исследование возбуждения сейсмическими источниками акустических волн в
океане с целью выявления на основе анализа волновых полей признаков назревающего
подводного землетрясения [1].

Важные для практики вопросы теории взаимодействия акустических и сейсмических
волн возникают уже в рамках простых моделей, например, когда океан представляет-
ся однородным жидким слоем, покрывающим однородное изотропное пористое полу-
пространство. Рассмотрение таких моделей позволяет детально изучить возбуждение и
распространение различных типов объёмных и поверхностных волн и получить относи-
тельно простые аналитические выражения для волновых полей и энергетических харак-
теристик сейсмоакустического излучения. Кроме того, результаты анализа моделей сред
с небольшим числом однородных слоев необходимы для контроля правильности работы
алгоритмов решения более сложных задач расчёта волновых полей в слоистых средах. В
более ранних работах уже решалась задача о распространении волн в жидком слое, ле-
жащем на упругом полупространстве, для случаев гармонических звуковых источников:
монопольного (типа пульсирующей сферы [2]) и дипольного (две близко расположенные
пульсирующие в противофазе сферы [3]). В указанных работах [2] и [3] рассмотрена си-
туация, когда толщина слоя очень мала по сравнению с длинами излучаемых волн. Для
данного предельного случая вычислены мощности излучения продольной и поперечной
волн в твердой среде, а также поверхностной волны Рэлея, в которую при малой толщине
слоя переходит фундаментальная мода.

Известно, что многие породы являются пористыми с различными свойствами пори-
стостьи и проницаемостьи. При этом базовые математические модели фильтрации до-
полняются уравнением упругости Ламе для скорости перемещений среды. Важнейшей
особенностью математических моделей пороупругости является сильная связь между
уравнениями модели. Так, уравнение упругости включает объёмную силу, которая про-
порциональна градиенту давления, а уравнение фильтрации, в свою очередь, содержит
сжимаемость среды, пропорциональную дивергенции скорости перемещений в обрати-
мом гидродинамическом приближении.

Используемый в данной работе алгоритм решения поставленной динамической зада-
чи на основе преобразования Лагерра по времени можно рассматривать как аналог из-
вестного спектрального метода при использовании Фурье-преобразования, только вместо
частоты ω мы имеем параметр m — степень полиномов Лагерра. Однако, в отличие от
преобразования Фурье, применение интегрального преобразования Лагерра позволяет
свести исходную задачу к решению системы уравнений, в которой параметр разделе-
ния присутствует только в правой части уравнений и имеет рекуррентную зависимость
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от этого параметра. В отличие от конечно-разностного метода, в спектральном мето-
де с помощью аналитического преобразования можно свести исходную задачу к реше-
нию дифференциальной системы уравнений, в которой имеются производные только по
пространственным координатам. Это позволяет применить известные устойчивые раз-
ностные схемы для последующего решения подобных систем. Такой подход является эф-
фективным при решении нестационарных динамических задач для резко-контрастных
и пористых сред. Так как из-за наличия второй продольной волны с малой скоростью
при использовании разностных схем по всем координатам для устойчивости решения
необходимо задание согласованного малого шага дискретизации и по времени, и по про-
странству, что неизбежно увеличивает объём требуемых вычислений. В отличие от спек-
трально метода на основе преобразования Фурье используемый алгоритм решения дина-
мических задач позволяет в итоге получить систему алгебраических уравнений, матрица
системы которых имеет хорошую обусловленность, что улучшает сходимость итерацион-
ного метода их решения. Данный метод решения динамических задач теории упругости
был впервые рассмотрен в работах [4, 5], а затем развит для задач вязко-упругости
[6, 7]. В указанных работах рассматриваются отличия описанного метода от принятых
подходов и обсуждаются преимущества применения преобразования Лагерра в отличие
от разностного метода и спектрального метода Фурье, а также приводится сравнение
точности аналитического решения и решения, получаемого на основе преобразования
Лагерра для решения прямых задач распространения колебаний в однородной среде.

В данной работе исследуются результаты численного моделирования распростране-
ния сейсмоакустических волн от сингулярного источника. Решена задача о возбуждении
сейсмоакустических волн в системе однородного изотропного пористого полупростран-
ства, покрытого жидким слоем, при действии на поверхность пористой среды перпенди-
кулярного к ней сингулярного источника, т. е. рассматривается идеальная среда. Деталь-
но проанализировано возбуждение мод с помощью численного моделирования. Обнару-
жена зависимость распределения энергии между разными типами волн от расположения
источника относительно границы жидкого слоя и пористого полупространства.

1. Постановка задачи

Пусть слой жидкости ΠL = {~x = (x1, x2) | x1 ∈ R1, 0 < x2 < L} лежит в полуплос-
кости R2

− = {(x1, x2) | x1 ∈ R1, x2 < 0}, заполненной пористой средой, насыщенной
жидкостью. Тогда распространение сейсмических волн в жидком слое и пористом полу-
пространстве при отсутствии потери энергии описывается следующей начально-краевой
задачей [8–12]: для слоя жидкости

∂~v

∂t
+

1

ρ
∇p = ~F ,

∂p

∂t
− ρc2

p div~v = 0, t > 0, ~x ∈ ΠL,

и пористого полупространства

∂ui
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∂xk

+
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∂xi
= Fi, t > 0, ~x ∈ R2

−,
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∂σik
∂t

+µ

(
∂uk
∂xi

+
∂ui
∂xk

)
+

(
ρ0l

ρ0
K − 2

3
µ

)
δik div ~u− ρ0s

ρ0
Kδik div~v = 0, t > 0, ~x ∈ R2

−, (1)

∂p

∂t
−
(
K − (γ +K)

ρ0s

ρ0

)
div ~u+ (γ +K)

ρ0l

ρ0
div~v = 0, t > 0, ~x ∈ R2

−,

ui |t=0= vi |t=0= σik |t=0= p |t=0= 0, ~x ∈ ΠL

⋃
R2
−, (2)

p |x2=L= 0, t > 0, x1 ∈ R1, (3)

где ~u = (u1, u2) — вектор скорости упругого пористого тела, ~v = (v1, v2) — вектор скоро-
сти жидкости в слое и в пористом полупространстве, p — давление в порах и в жидком
слое, σik — тензор напряжений двухскоростной среды, ~F = (F1, F2) — вектор массовых
сил, ρ0 = ρ0l + ρ0s — плотность насыщенной пористой среды, ρ0s = ρf0s(1 − d0) — пар-
циальная плотность пористого тела, ρ0l = ρf0ld0 — парциальная плотность жидкости в
порах, ρf0s и ρf0l — физические плотности упругого пористого тела и жидкости соответ-
ственно, d0 — пористость, ρ — плотность жидкости в слое, δik — символ Кронекера, cp —
скорость продольной волны в жидкости, K = λ+2µ/3, где λ > 0, µ > 0 — коэффициенты
Ламе, γ > 0 — упругий модуль гетерофазной среды. Упругие модули K, µ, γ выража-
ются через скорость распространения поперечной волны cs и скорость продольных волн
cp1 , cp2 [13, 14]:

µ = ρ0sc
2
s,

K =
ρ0

2

ρ0s

ρ0l

(
c2
p1 + c2

p2 −
8

3

ρ0l

ρ0
c2
s −

√(
c2
p1 − c2

p2

)2 − 64

9

ρ0lρ0s

ρ2
0

c4
s

)
,

γ =
ρ0

2

(
c2
p1 + c2

p2 −
8

3

ρ0s

ρ0
c2
s +

√(
c2
p1 − c2

p2

)2 − 64

9

ρ0lρ0s

ρ2
0

c4
s

)
.

Отметим, что на границе между слоем ΠL и полупространством R2
− выполняются усло-

вия склейки

[Σi2] = 0 (i = 1, 2),

[
ρ0l

ρ0
p

]
= 0, [(1− d0)u2 + d0 v2] = 0, [v2] = 0, t > 0, x1 ∈ R1,

где Σi2 = σik + p δik, [u] = u |x2=0+ −u |x2=0−.
Вторая (медленная) продольная волна впервые зарегистрирована T. Plona в 1980 г.

[15] в водонасыщенных пористых средах искусственного происхождения. В пористой сре-
де естественного происхождения с жестким скелетом, заполненной жидкостью, вторая
продольная волна впервые зарегистрирована в работах O. Kelder, D. Smeulders [16, 17].
Из работ [9, 18, 19] следует, что величина второй продольной волны на порядок меньше
первой продольной волны.

2. Алгоритм решения

Для решения поставленной задачи (1)–(3) применим интегральное преобразование
Лагерра по времени [4, 5]

−→
Wm(x1, x2) =

∫ ∞
0

−→
W (x1, x2, t)(ht)

−α2 lαm(ht) d(ht) (4)

с формулами обращения
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−→
W (x1, x2, t) = (ht)

α
2

∞∑
m=0

m!

(m+ α)!

−→
Wm(x1, x2)lαm(ht), (5)

где lαm(ht) — функции Лагерра.
В результате данного преобразования исходная задача (1)–(3) в полупространстве

сводится к двумерной пространственной дифференциальной задаче в спектральной об-
ласти:

h

2
umi +

1

ρ0s

∂σmik
∂xk

+
1

ρ0

∂Pm

∂xi
= fmi − h

m−1∑
n=0

uni ,

h

2
vmi +

1

ρ0

∂Pm

∂xi
= fmi − h

m−1∑
n=0

vni ,

h

2
σmik + µ

(
∂umk
∂xi

+
∂umi
∂xk

)
+

(
λ− ρs

ρ0
K

)
δik div ~um − ρs

ρ0
Kδik div ~vm = −h

m−1∑
n=0

σnik, (6)

h

2
Pm −

(
K − (γ +K)

ρ0s

ρ0

)
div ~um + (γ +K)

ρ0l

ρ0
div ~vm = −h

m−1∑
n=0

Pn,

Pm |x2=L= 0.

Отметим, что система (6) содержит в себе преобразованную линеаризованную систе-
му Эйлера. Для решения полученной задачи (6) воспользуемся конечно-разностной ап-
проксимацией производных по пространственным координатам на сдвинутых сетках с
четвертым порядком точности. Для этого в расчётной области введём в направлении ко-
ординаты z = x1 сетки ωz1 и ωz1/2 с шагом дискретизации ∆z, сдвинутые относительно
друг друга на ∆z/2:

ωz1 = (x, j∆z) , ωz1/2 =

(
x, j∆z +

∆z

2

)
, j = 0, . . . ,M.

Аналогично, введём в направлении координаты x = x2 сетки ωx1 и ωx1/2 с шагом дис-
кретизации ∆x, сдвинутые относительно друг друга на ∆x/2:

ωx1 = (i∆x, z) , ωx1/2 =

(
i∆x+

∆x

2
, z

)
, i = 0, . . . , N.

На данных сетках введём операторы дифференцирования Dx и Dz, аппроксимиру-
ющие производные ∂

∂x
и ∂

∂z
с четвертым порядком точности по координатам z = x1 и

x = x2:

Dxu(x, z)=
9

8∆x

[
u

(
x+

∆x

2
, z

)
− u
(
x− ∆x

2
, z

)]
− 1

24∆x

[
u

(
x+

3∆x

2
, z

)
− u
(
x− 3∆x

2
, z

)]
,

Dzu(x, z)=
9

8∆x

[
u

(
x, z +

∆z

2

)
− u
(
x, z − ∆z

2

)]
− 1

24∆x

[
u

(
x, z +

3∆z

2

)
− u
(
x, z − 3∆z

2

)]
.
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Определим искомые компоненты вектора решения в соответствующих узлах сеток:

um1 (x, z), νm1 (x, z) ∈ ωx1 × ωz1,

um2 (x, z), νm2 (x, z) ∈ ωx1/2 × ωz1/2,

σm11(x, z), σm22(x, z), Pm(x, z) ∈ ωx1/2 × ωz1,

σm12(x, z) ∈ ωx1 × ωz1/2.

В результате конечно-разностной аппроксимации задачи (6) получим систему линей-
ных алгебраических уравнений. Представим искомый вектор решения ~W в следующем
виде:

~W (m) =
(
~V0(m), ~V1(m), . . . , ~VM+N (m)

)>
,

~Vi+j =

(
ui,j1 , u

i+ 1
2
,j+ 1

2
2 , νi,j1 , ν

i+ 1
2
,j+ 1

2
2 , σ

i+ 1
2
,j

11 , σ
i+ 1

2
,j

22 , σ
i,j+ 1

2
12 , P i+

1
2
,j

)>
.

Тогда данная система линейных алгебраических уравнений в векторной форме может
быть записана как (

A∆ +
h

2
E

)
~W (m) = ~F∆ (m− 1) ,

здесь A∆ — квадратная матрица (M + N + 1)-го порядка, E — единичная матрица
(M + N + 1)-го порядка, ~F∆ — известный вектор-столбец размерности (M + N + 1).
В силу громоздкости мы их опускаем. В результате матрица системы сведённой задачи
имеет хорошую обусловленность, что позволяет использовать быстрые методы решения
систем линейных алгебраических уравнений на основе итерационных методов, типа со-
пряжённых градиентов, сходящиеся к решению с требуемой точностью всего за несколь-
ко итераций [5–7].

3. Численные результаты

В данной работе рассматриваются результаты численного моделирования распро-
странения сейсмоакустических волн в системе однородного изотропного пористого по-
лупространства, покрытого жидким слоем. Моделировалось возбуждение сейсмоакусти-
ческих волн от сингулярного источника, расположенного на границе пористой среды и
водного слоя и действующего перпендикулярно к границе раздела. Физические характе-
ристики среды были заданы следующими:

1) верхний слой (вода): ρ = 1 г/см3, cp = 1.5 км/с;

2) нижние полупространство (песчаник Berea SandStone [19, 20]): ρf0s = 2 г/см3, ρf0l =
1 г/см3, cp1 = 2 км/с, cp2 = 0.5 км/с, cs = 1.3км/с, d0 = 0.1.

Толщина верхнего водного слоя — 3 км.
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Волновое поле моделировалось от точечного источника, типа “вертикальная сила”,
расположенного на границе водного слоя и пористого полупространства. Временной сиг-
нал в источнике задавался в виде

f(t) = exp

(
−2π fo(t− t0)2

γ̃2

)
sin(2π f0(t− t0)),

где γ = 4, f0 = 10Гц, t0 = 0.15 с.

На рисунке 1 представлены мгновенные снимки волнового поля для вертикальной
компоненты скорости смещений uz(x, z) в фиксированный момент времени T = 2 с для
двух вариантов характеристики нижнего полупространства: в случае упругой (слева) и
пористой (справа) сред. Координаты точки источника x0 = 4км, z0 = 3км.

Из рис. 1 видно, что при возбуждении волн источником, расположенным на грани-
це раздела, образуются соответствующие типы волн для упругой и пористой среды. В
случае пористой среды — две продольных волны (быстрая и медленная) и поперечная
волна. По нижней границе водного слоя распространяется волна Стоунли, которая в
пористой среде генерирует коническую медленную продольную волну.

Рис. 1. Мгновенные снимки волнового поля для uz(x, z) компоненты в момент времени T= 2 с.
Слева (а) нижнее полупространство — упругая среда, справа (б) — пористая среда

На рис. 2 представлены мгновенные снимки волнового поля для вертикальной ком-
поненты скорости смещений uz(x, z) в фиксированный момент времени T = 2 с для двух
случаев координат точек расположения источника. Слева (а) — источник расположен в
воде на 10 метров выше границы раздела. Справа (б) — источник в пористой среде на
10 метров ниже границы раздела.

Из рис. 2 видно, что глубина проникновения волн Стоунли в слои выше и ниже грани-
цы раздела больше в случае расположения источника в воде, а значит, больше начальная
амплитуда генерации этих волн. Граница раздела воды и пористой среды изображена на
рис. 2 сплошной горизонтальной линией. При удалении точки возбуждения волн от гра-
ницы раздела сред амплитуда генерируемых волн Стоунли значительно уменьшается.
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Рис. 2. Мгновенные снимки волнового поля для uz(x, z) компоненты в момент времени T= 2 с.
Слева (а) — источник в воде, справа (б) — источник в пористой среде

На рис. 3 представлены расчётные сейсмотрассы для вертикальной компоненты ско-
рости смещений uz(x, z) для двух случаев координат точек расположения источника.
Слева (а) — источник располагается на границе раздела воды и пористой среды с ко-
ординатами x0 = 4 км, z0 = 3 км. Справа (б) — источник в воде на 10 метров выше
границы раздела. Точки регистрации сейсмоакустических колебаний были расположены
по линии, проходящей перпендикулярно границе раздела через точку расположения ис-
точника. Из представленных на рис. 3 сейсмотрасс видно, что амплитуда генерируемой
в пористой среде медленной продольной волны больше в случае расположения источни-
ка в воде вблизи границы с пористой средой, чем в случае расположения источника на
границе, так как тогда большая часть энергии находится в быстрой продольной волне.

Рис. 3. Сейсмотрассы для компоненты uz(x, z) для двух случаев координат источника. Слева
(а) — источник на границе пористой среды. Справа (б) — источник в воде на 10 метров выше
границы
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