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Предлагается конструктивный метод решения линейно-квадратичных задач

пространственно-временно́го управления с амплитудными ограничениями управля-
ющих воздействий в системах с распределёнными параметрами параболического типа

при заданной точности равномерного приближения конечного состояния объекта к требу-
емому пространственному распределению управляемой величины. Развиваемый подход
базируется на ранее разработанном альтернансном методе построения параметризуемых

алгоритмов программного управления. Показано, что уравнения оптимальных регулято-
ров сводятся к линейным с ограничениями алгоритмам обратной связи по измеряемому

состоянию объекта с предварительно определяемыми нестационарными коэффициентами
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Введение. Известные аналитические решения базовых линейно-квадратичных задач
оптимального управления (ЗОУ) системами с распределёнными параметрами (СРП) полу-
чены в основном применительно к формулировке ЗОУ СРП со свободным правым концом

траектории движения объекта в условиях открытой области определения рассматривае-
мых управляющих воздействий [1–7]. При подобной постановке ЗОУ СРП, во-первых, кри-
терий оптимальности уже содержит требования по минимизации квадратичной ошибки

приближения к желаемому конечному состоянию СРП, что снимает существенные затруд-
нения, связанные с достижением заданных пространственных распределений управляемых
величин в конце процесса оптимального управления. Во-вторых, решение ЗОУ СРП в от-
крытой области изменения управляющих воздействий позволяет определить экстремаль-
ную величину оптимизируемого функционала качества и установить по полученным ре-
зультатам предельные значения управляющих воздействий, обеспечивающие реализацию
максимального эффекта по значению квадратичного критерия оптимальности.

Однако в целом ряде типичных для приложений и представляющих самостоятель-
ный интерес ситуаций требования к СРП в конце оптимального процесса ограниченной

продолжительности предъявляются в чебышевской метрике в форме допустимой точно-
сти равномерного приближения пространственного распределения управляемой величины

к заданному состоянию [8]. Классические условия трансверсальности неприменимы на
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негладкой границе соответствующего целевого множества в бесконечномерном фазовом

пространстве СРП, что существенно усложняет решение краевой задачи оптимального
управления. В целях опознания конечной точки оптимального процесса здесь могут быть
использованы её специальные альтернансные свойства, определяемые по схеме конструк-
тивного альтернансного метода, распространяющего на задачи параметрической оптими-
зации результаты теории нелинейных чебышевских приближений [8].

Решения ряда линейно-квадратичных задач равномерной оптимизации (ЛКЗРО)
управляемых СРП в открытой области определения граничных и внутренних, сосредо-
точенных и пространственно-временны́х управляющих воздействий получены в [8, 9]. В
то же время существенный интерес представляют ЗОУ СРП с изначально заданными

амплитудными ограничениями на управляющие воздействия, если они нарушаются алго-
ритмами оптимального управления, найденными без учёта этих ограничений. Решения со-
ответствующих ЛКЗРО в замкнутой области изменения искомых управлений отличаются

целым рядом значительных особенностей. В частности, здесь появляется самостоятель-
ная проблема компоновки алгоритмов программного управления на широком множестве

возможных вариантов, содержащих участки выхода управляющих воздействий на задан-
ные ограничения. При использовании пространственно-временны́х управлений возникает
необходимость декомпозиции их амплитудных ограничений на предельно допустимые ве-
личины каждого из модальных управляющих воздействий [10].

В данной работе рассматривается указанная задача оптимизации с заданными ампли-
тудными ограничениями на внутренние пространственно-временны́е управления. Некото-
рые частные случаи в задачах минимизации энергопотребления с ограниченными внут-
ренними управляющими воздействиями представлены в [8, 11].

Постановка задачи. Пусть управляемая величина Q(x, t) объекта с распределённы-
ми параметрами описывается в зависимости от пространственной координаты x ∈ [x0, x1]
и времени t ∈ [0, t∗] одномерным линейным уравнением второго порядка в частных произ-
водных параболического типа с самосопряжённым дифференциальным оператором в его

правой части:

∂Q(x, t)

∂t
= b(x)

∂Q(x, t)

∂x
+ c(x)

∂2Q(x, t)

∂x2
+ c1(x)Q(x, t) + u(x, t) (1)

с начальными

Q(x, 0) = Q0(x) = Q0 = const > 0 (2)

и граничными условиями

α0Q(x0, t) + β0
∂Q(x0, t)

∂x
= 0, α1Q(x1, t) + β1

∂Q(x1, t)

∂x
= 0 (3)

при кусочно-непрерывном [3] внутреннем пространственно-временно́м управляющем воз-
действии u(x, t), стесняемом амплитудными ограничениями

0 6 umin 6 u(x, t) 6 umax, x ∈ [x0, x1], t ∈ (0, t∗) (4)

с заданными предельно допустимыми величинами umax и umin. Здесь в (1)–(3) b(x), c(x),
c1(x) — достаточно гладкие функции своих аргументов и α0, α1 > 0, β0, β1 > 0 — посто-
янные коэффициенты. В соответствии с оценкой целевых множеств конечных состояний
объекта в равномерной метрике необходимо обеспечить за фиксируемое заранее ограни-
ченное время t∗ заданную точность ε равномерного приближения результирующего про-
странственного распределения управляемой величины Q(x, t∗) к требуемому Q

∗∗(x) > Q0

∀x ∈ [x0, x1], согласно соотношению [8, 9]:

max
x∈[x0,x1]

|Q(x, t∗)−Q∗∗(x)| 6 ε. (5)
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Известный аппарат конечных интегральных преобразований [12] позволяет получить
аналогично [9] эквивалентное (1)–(3) представление модели объекта в форме бесконечной
системы обыкновенных дифференциальных уравнений первого порядка относительно ко-
эффициентов (временны́х мод) Q̄n(µn, t) разложения Q(x, t) в сходящийся в среднем ряд
по ортонормированной с весом r(x) системе собственных функций ϕn(µn, x), n = 1, 2, . . .,
определяемых вместе с собственными числами µ2

n известными методами [12, 13]:

dQ̄n(µn, t)

dt
= −µ2

nQ̄n(µn, t) + ūn(µn, t), Q̄n(µn, 0) = Q̄
(0)
n (µn), n = 1, 2, . . . ,

Q(x, t) =
∞∑
n=1

Q̄n(µn, t)ϕn(µn, x).

(6)

Здесь Q̄
(0)
n (µn) — моды Q(x, 0) и

ūn(µn, t) =

x1∫
x0

u(x, t)ϕn(µn, x)r(x) dx (7)

— временны́е моды разложения u(x, t) в ряд вида (6)

u(x, t) =
∞∑
n=1

ūn(µn, t)ϕn(µn, x), (8)

рассматриваемые далее в качестве автономных сосредоточенных управляющих воздей-
ствий, стеснённых ограничениями

ūnmin 6 ūn(µn, t) 6 ūnmax, n = 1, 2, . . . , (9)

которые должны выбираться согласно связывающему их общему условию (4).
Подобно [9] здесь и далее в условиях выполнения усиленных условий Коши — Лип-

шица будем учитывать N1 слагаемых в суммах (6), (8). Здесь N1 = ∞ или N1 = N <∞
в зависимости от используемой схемы анализа и возможности практической реализации

исследуемых алгоритмов управления, ограничиваясь в случае N1 = N с любой требуемой

точностью решением «укороченной» системы N первых уравнений в (6) при достаточно
большой величине N , полагая при этом Q̄n(µn, t) = 0, n > N [14].

Пусть далее эффективность процесса управления объектом (1)–(5) оценивается ти-
пичным квадратичным функционалом качества с постоянным весовым коэффициентом

ρQ > 0:

I(u) =

t∗∫
0

x1∫
x0

r(x)(ρQQ
2(x, t) + u2(x, t)) dx dt→ min

u(x,t)
.

Переход к описанию объекта (6) в терминах модальных переменных приводит в силу
ортонормированности собственных функций к представлению критерия оптимальности

I(u) в следующем виде:

I1(ū) =

t∗∫
0

[
ρQ

N1∑
n=1

Q̄2
n(µn, t) +

N1∑
n=1

ū2
n(µn, t)

]
dt→ min

ū
, ū = (ūn), n = 1, N1, (10)
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а требования (5) к конечному состоянию представляются условием

max
x∈[x0,x1]

∣∣∣ N1∑
n=1

Q̄n(µn, t∗)ϕn(µn, x)−Q∗∗(x)
∣∣∣ 6 ε. (11)

Рассматриваемая задача оптимизации сводится к определению программного опти-
мального управления ū∗(t) и алгоритма синтеза обратной связи ū∗(Q̄, t), Q̄ = (Q̄n),
n = 1, N1, обеспечивающих при N1 =∞ перевод объекта (6) за заданное время t∗ в требу-
емое конечное состояние (11) при минимально возможном значении критерия оптималь-
ности (10) в условиях амплитудных ограничений (4), (9) на управляющие воздействия.
При использовании усечённой модели объекта при N1 = N < ∞ все получаемые далее

результаты следует считать субоптимальными.
Программное оптимальное управление.
Модальное управление в открытой области определения управляющих воздействий.

При отсутствии ограничений (9) задача (6)–(8), (10), (11) решалась в [9]. Согласно по-
лученным в [9] результатам, стандартная процедура принципа максимума Понтрягина,
распространяемого на бесконечномерный объект управления (6) при N1 =∞ [15], опреде-
ляет в открытой области изменения модальных управлений линейную зависимость ū∗n(t)
от соответствующей оптимальному процессу сопряжённой переменной ψ∗n(t):

ū∗n(t) =
1

2
ψ∗n(t), n = 1, N1. (12)

При этом краевая задача принципа максимума, образуемая уравнениями (6) после под-
становки (12) совместно с известными уравнениями, описывающими поведение сопряжён-
ных функций, представляет собой линейную программно-управляемую систему второго

порядка относительно двух переменных Q̄n, ψn для каждого n = 1, N1:

dψn
dt

= 2ρQQ̄n + µ2
nψn,

dQ̄n
dt

= −µ2
nQ̄n +

1

2
ψn, (13)

замыкаемую требованиями к её конечному состоянию (11).
Решение этой системы путём прогонки в конечный момент времени t∗ определяет

следующее выражение для ψ∗n(t) в зависимости от ψ∗n(t∗) и начального состояния объекта
Q̄n(µn, 0) [9]:

ψ∗n(t) = Kn(t, t∗)ψ
∗
n(t∗) +K1n(t, t∗)Q̄n(µn, 0), n = 1, N1, (14)

где

Kn(t, t∗) = Ân11(t∗ − t) + Ân12(t∗ − t)Bn(t∗), K1n(t, t∗) = Ân12(t∗ − t)B1n(t∗),

Bn(t∗) = An21(t∗)A
−1
n11(t∗), B1n(t∗) = An22(t∗)− An21(t∗)A

−1
n11(t∗)An12(t∗).

(15)

Здесь Anks, k, s = 1, 2 — заданные в соответствии со структурой уравнений (13) элемен-

ты матрицы (матричной экспоненты) системы (13) и Ânks, k, s = 1, 2 — подобные Anks
элементы обратной матрицы.

В работе [8] применительно к требованиям (11), предъявляемым к Q̄∗(t∗), предложен
конструктивный метод последовательной конечномерной параметризации управляющих
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воздействий (ψ-параметризация) на множестве M -мерных векторов ψ(M) = (ψ̃i), i = 1,M ,

M < N1, ψ̃i = ψi(t∗), конечных значений первых M сопряжённых функций при равных

нулю всех остальных значениях ψi(t∗):

ψ(t∗) = (ψi(t∗)), i = 1, N1;

ψi(t∗) = ψ̃i, ψ(M) = (ψ̃i), i = 1,M ; ψi(t∗) = 0, i > M.

(16)

С возрастаниемM обеспечивается попадание под действием параметризуемых на мно-
жестве параметров (16) управлений в целевое множество, сужающееся к заданному состо-
янию Q∗∗(x) в пространстве (Q̄n), гарантируя тем самым выполнение условий (11) для
достижимых значений ε при некоторых M > 1 [8].

После подстановки в (12) ψ∗n(t) в виде (14) с определением ψ∗n(t∗) в форме (16)
ψ-параметризованные оптимальные модальные управления принимают следующий вид:

ū∗n(µn, t) =
1

2
[Kn(t, t∗)ψ̃

∗
n +K1n(t, t∗)Q̄n(µn, 0)], n 6M ;

ū∗n(µn, t) =
1

2
K1n(t, t∗)Q̄n(µn, 0), n > M.

(17)

Последующая подстановка (17) в (8) приводит к оптимальному пространственно-
временно́му программному управлению

u∗(x, t) =
1

2

M∑
n=1

Kn(t, t∗)ψ̃
∗
nϕn(µn, x) +

1

2

N1∑
n=1

K1n(t, t∗)Q̄n(µn, 0)ϕn(µn, x), (18)

определённому с точностью до выбора ψ̃∗n, n = 1,M .
Интегрирование системы уравнений (6) с модальным управлением вида (17) позволяет

получить зависимости для Q(x, t∗) и критерия оптимальности I1(ū) в (10) в форме явных

функций Q(x, ψ(M)) и I1(ψ(M)) только своих аргументов для каждого значения Q̄(0) =
= (Q̄n(µn, 0)). В результате осуществляется точная редукция исходной задачи оптималь-
ного управления к задаче полубесконечной оптимизации (ЗПО) [8, 9]:

I1(ψ(M))→ min
ψ(M)

; max
x∈[x0,x1]

|Q(x, ψ(M))−Q∗∗(x)| 6 ε (19)

на минимум функции I1(ψ(M)) конечного числа M переменных ψi, i = 1,M , в (16) с бес-
конечным числом ограничений для всех x ∈ [x0, x1], заменяемых эквивалентным ограни-
чением на функцию максимума в (19).

РазмерностьM вектора ψ(M) = (ψ̃i), i = 1,M , однозначно определяется в зависимости
от заданной величины ε, согласно соотношению [8, 9]:

M = ω∀ε: ε
(ω)
min 6 ε < ε

(ω−1)
min , где ε

(ω)
min = min

ψ(ω)

{
max

x∈[x0,x1]
|Q(x, ψ(ω))−Q∗∗(x)|

}
, (20)

и значения минимакса ε
(ω)
min образуют убывающую с возрастанием ω цепочку неравенств.

Задача (19) оказывается разрешимой, если точная нижняя грань достижимых зна-
чений ε в рассматриваемой задаче оптимизации не превышает заданной в (19) величи-

ны [8, 9]. Решение задачи (19) относительно вектора ψ(M), а также априори неизвестной
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величины минимакса ε
(M)
min в случае, когда ε = ε

(M)
min , получено в [9] альтернансным ме-

тодом [8]. Согласно альтернансным свойствам искомого вектора ψ
(M)
∗ = (ψ̃∗i ), i = 1,M ,

выполняется замкнутая относительно всех неизвестных система соотношений:

|Q(x0
j , ψ

(M)
∗ )−Q∗∗(x0

j)| = ε, j = 1, R;

R =

 M, если ε
(M)
min < ε < ε

(M−1)
min ;

M + 1, если ε = ε
(M)
min

(21)

в некоторых R точках x0
j , j = 1, R на отрезке [x0, x1], число R которых фиксируется в

зависимости от M указанным в (21) соотношением.
При наличии дополнительной информации из предметной области о форме кривой

Q(x, ψ
(M)
∗ ) на отрезке [x0, x1] 3 x, позволяющей идентифицировать координаты x0

j и знаки

Q(x0
j , ψ

(M)
∗ ), равенства (21), дополненные условиями существования экстремума функции

Q(x, ψ
(M)
∗ )−Q∗∗(x) в точках x

(0)
jg ∈ int [x0, x1], g = 1, R1, где R1 6 R и x0

jg ∈ {x0
j}, перево-

дятся в систему уравнений альтернансного метода:

Q(x0
j , ψ

(M)
∗ )−Q∗∗(x0

j) = ±ε, j = 1, R ;

∂

∂x
[Q(x0

jg, ψ
(M)
∗ )−Q∗∗(x0

jg)] = 0, g = 1, R1

(22)

с однозначно определяемым знаком ε в каждой точке x0
j , которая разрешается в соответ-

ствии с правилом выбора R в (21) относительно ψ̃∗i , i = 1,M и значений x0
jg, g = 1, R1, а

также ε
(M)
min , если в (19) ε = ε

(M)
min .

Явное выражение для зависимости Q(x0
j , ψ

(M)
∗ ) в системе уравнений (22) представля-

ется, согласно (6), в следующем виде [9]:

Q(x0
j , ψ

(M)
∗ ) =

N1∑
n=1

Q̄n(µn, ψ
(M)
∗ )ϕn(µn, x

0
j),

Q̄n(µn, ψ
(M)
∗ ) = Bn(t∗)ψ

∗
n(t∗) +B1n(t∗)Q̄n(µn, 0),

(23)

где Q̄n(µn, ψ
(M)
∗ ) находятся в подобной (14) форме.

В итоге решение системы уравнений (22) с подстановкой (23) полностью определяет
искомые алгоритмы программного управления ū∗n(µn, t) и u

∗(x, t) в (17) и (18).
Модальное управление в замкнутой области определения управляющих воздействий.

Согласно принципу максимума, при достижении амплитудных ограничений (9) для неко-
торых n ∈ {1, N1} программное управление (17) дополняется участками движения на
уровне ūnmax и ūnmin, порождая тем самым многочисленные возможные варианты ком-
поновки пространственно-временно́го управляющего воздействия u∗(x, t) при известных
допустимых пределах изменения ūn(t) в (9).

Центральной проблемой, возникающей при решении рассматриваемой задачи оптими-
зации, является при этом выбор ūnmax и ūnmin из условий выполнения исходного ограни-
чения (4) и построение вычислительных алгоритмов определения u∗(x, t) применительно
к различным конкретным структурам его построения.
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Выберем ūnmax, ūnmin в (9) в виде n-й моды управлений u(x, t) = umax, u(x, t) = umin

соответственно для всех x ∈ [x0, x1], согласно (4), (7):

ūnmax = umaxJn, ūnmin = uminJn, Jn =

x1∫
x0

ϕn(µn, x)r(x) dx, n = 1, 2, . . . . (24)

Используя замену переменной с переходом от ūn(t) к новому управлению ũ(t) с сим-
метричным ограничением

ūn(t) =
ūnmax + ūnmin

2
+
ūnmax − ūnmin

2
ũ(t), −1 6 ũ(t) 6 1, (25)

получаем, что тогда в условиях (24) выполняются неравенства

|ūnmin| 6 |ūn(t)| 6 |ūnmax|, n = 1, 2, . . . (26)

при любом знаке Jn, если −1 6 ũ(t) 6 1.
Подставляя (25) в (8), получим u(x, t) в следующем виде:

u(x, t) =
∞∑
n=1

[ ūnmax + ūnmin

2
+
ūnmax − ūnmin

2
ũ(t)

]
ϕn(µn, x). (27)

Так как здесь, согласно (24), u(x, t) = umax при ũ(t) = 1 и u(x, t) = umin при ũ(t) = −1,
то получаем неравенства (4) для u(x, t) при −1 6 ũ(t) 6 1.

Из изложенного следует, что используемый далее выбор предельно допустимых значе-
ний ūn в (9), согласно (24), является достаточным условием выполнения исходного огра-
ничения на u(x, t) в (4).

Сравнение зависимостей ū∗n(µn, t) в (17) при найденных в результате решения си-

стемы уравнений (22) значениях ψ̃∗n, n = 1,M , с заданными величинами ūnmax, ūnmin в

(24) позволяет определить структуру программного модального управления ū∗1n(µn, t) с
достигаемыми ограничениями (9), (24) и способ её компоновки на всём протяжении опти-
мального процесса из участков вида (17), на которых ū∗1n(µn, t) не стесняется ограниче-
ниями (9), и интервалов стабилизации ū∗1n(µn, t) на уровнях ūnmax, ūnmin с точностью до

выбора hn моментов tjn, j = 1, hn, tjn < t(j+1)n, их сопряжения. Тем самым находится яв-

ная форма ū1n(Tn, t), Tn = (tjn), j = 1, hn, параметрического представления ū∗1n(µn, t) при
сохранении на участках его изменения в пределах строгих неравенств в (9) в форме (17),
минимизирующей соответствующие составляющие критерия оптимальности (10). Выход
на ограничения (9) осуществляется в общем случае путём скачкообразного перехода от
ū∗n(t) в точках tjn. В частных вариантах при определённом выборе unmax, unmin в (4) реа-
лизуется непрерывный переход к ūnmax, ūnmin в моменты времени, заранее фиксируемые
достижением соответствующих равенств в (17). В таких случаях эти моменты исклю-
чаются из числа искомых параметров tjn. Пример такого рода для задачи минимизации
энергопотребления приведён в [11].

Многочисленные возможные варианты конкретного описания ū1n(Tn, t) могут быть
реализованы при различной размерности hn вектора Tn со значениями hn: hn > 1; hn 6M

или hn > M , где M — размерность вектора ψ
(M)
∗ в (17), (18), (21). Упорядочивание по

возрастанию моментов сопряжения tjn, j = 1, hn для всех n, на которых ū∗1n(µn, t) отлича-

ется от ū∗n(µn, t), образует на временно́й оси последовательность параметров t̃i, i = 1, P ,
t̃i+1 > t̃i. В случае P = M с суммарным числом M параметров t̃i интегрирование уравне-
ний (6) с параметризованными управлениями ū1n(Tn, t) позволяет получить зависимости
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конечного состояния Q(x, T̃ ) и критерия оптимальности I1(T̃ ), где T̃ = (t̃i), i = 1,M ,
в виде явных функций своих аргументов, согласно (6), (10), с последующей редукцией,
подобно (19), к вторичной задаче полубесконечной оптимизации:

I1(T̃ )→ min
T̃

; max
x∈[x0,x1]

|Q(x, T̃ )−Q∗∗(x)| 6 ε̃, ε̃
(M)
min 6 ε̃ 6 ε̃

(M−1)
min , (28)

которая решается по схеме (19)–(23) относительно искомого вектора T̃ ∗ и ε̃
(M)
min , если

ε̃ = ε̃
(M)
min , где ε̃

(M)
min = min

T̃

[
max

x∈[x0,x1]
|Q(x, T̃ ) − Q∗∗(x)|

]
. По найденному значению T̃ ∗ опре-

деляются соответствующие векторы параметров T ∗n и находятся оптимальные модальные
уравнения ū∗1n(T ∗n , t) в замкнутой области их определения, по которым u∗(x, t) восстанав-
ливается в форме (8).

Если P = M1 > M , то учитываются только M первых моментов сопряжения t̃i,
i = 1,M , фиксируя остальные непрерывным переходом от ū∗n(t) к ограничениям в (9), и
далее задача опять сводится к виду (28). В случае, когда P = M2 < M , осуществляется
редукция к ЗПО (28), разрешаемой по той же схеме с заменой M на M2 < M в (21)
и (28), которая приводит к базовой системе соотношений вида (21) с меньшим числом
точек альтернанса x0

j по сравнению с (21), соответствующим изменениям формы кривой

Q(x, T̃ ∗)−Q∗∗(x), где T̃ ∗ = (t̃i), i = 1,M2, и расчётной системы уравнений альтернансного
метода. В результате в этой ситуации находятся все t̃∗i , i = 1,M2 и искомые программные

управления ū∗1n(T ∗n , t), u
∗(x, t).

Синтез оптимального управления. Как показано в [9], использование в качестве
условий трансверсальности на негладкой границе целевого множества (5) известных по
результатам расчёта программного управления конечных значений сопряжённых пере-
менных ψ∗n(t∗) и временны́х мод Q̄

∗
n(µn, t∗) в оптимальном процессе приводит в открытой

области определения управляющих воздействий к линейному закону синтеза модального

управления ū∗n(Q̄∗n, t) с нестационарными коэффициентами Wn1(t), Wn2(t) обратной связи
по измеряемому состоянию:

ū∗n(Q̄∗n, t) =
1

2
Wn1(t)Wn2(t)Q̄∗n(µn, t), n = 1, N1 ;

Wn1(t) = [Q̄∗n(µn, t∗)An11(t∗ − t)− ψ∗n(t∗)An21(t∗ − t)]−1; (29)

Wn2(t) = ψ∗n(t∗)An22(t∗ − t)− Q̄∗n(µn, t∗)An12(t∗ − t).

Здесь обозначения Anks, k, s = 1, 2, соответствуют принятым в (15).
Искомое уравнение оптимального регулятора для пространственно-временно́го управ-

ляющего воздействия u∗(Q̄, x, t) восстанавливается в форме (8) по модальным составляю-
щим (29):

u∗(Q̄, x, t) =
1

2

N1∑
n=1

Wn1(t)Wn2(t)Q̄n(µn, t)ϕn(µn, x), Q̄ = (Q̄n). (30)

Переход в (30) от Q̄(t) к измеряемому выходу объекта Qu(xu, t) = (Q(xuj , t)) в r точках
xuj ∈ [x0, x1], j = 1, r, в условиях N1 = N = r = M , гдеM определяется, согласно (20), про-
изводится в соответствии с (6) решением векторно-матричного уравнения наблюдения [9]:
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u∗(Qu, x, t) =
1

2
Φ−1
u Qu(xu, t)ϕ(x, t); Φu = [ϕn(µn, xij)],

ϕ(x, t) = (Wn1Wn2ϕn(µn, x)), n, j = 1,M,

(31)

где Φ−1
u Qu(xu, t) — матрица-строка; ϕ(x, t) — матрица-столбец.
Точное решение задачи синтеза в замкнутой области определения модальных управ-

лений связано с известными затруднениями [16, 17]. В первом приближении с приемле-
мой для большинства приложений точностью [16, 17] можно по аналогии с программным
управлением ū∗1n(T ∗n , t) использовать регулятор (29) на интервалах изменения ū∗1n(T ∗n , t),
не стесняемого ограничениями (9), с переходом на предельно допустимые значения ūnmin

или ūnmax в точках сопряжения t
∗
jn, j = 1, hn, которые опознаются по достижению расчёт-

ных значений Q̄n(µn, t
∗
jn), предварительно определяемых по результатам решения задачи

программного управления. В итоге для каждого из рассматриваемых конкретных вари-
антов структуры программного управления ū1n(T ∗n , t) находится уравнение модального
регулятора ū∗1n(Q̄n, t) и, согласно (8), определяются в условиях (9) законы обратной связи
u∗1(Q̄, x, t) и u∗1(Qu, x, t) вместо (30) и (31):

u∗1(Q̄, x, t) =

N1∑
n=1

ū∗1n(Q̄n, t)ϕn(µn, x); (32)

u∗1(Qu, x, t) =

N1∑
n=1

ū∗1n([Φ−1
u Qu]n, t)ϕn(µn, x), (33)

где [Φ−1
u Qu]n — n-й элемент матрицы-строки [Φ−1

u Qu].

Управление нестационарным процессом теплопроводности. В качестве при-
мера рассмотрим задачу пространственно-временно́го управления процессом нагрева

неограниченной пластины. Пусть температурное поле Q(x, t) пластины в процессе её на-
грева описывается линейным неоднородным уравнением теплопроводности вида (1)–(3) в
относительных единицах:

∂Q(x, t)

∂t
=
∂2Q(x, t)

∂x2
+ u(x, t), 0 6 x 6 1, t ∈ [0, t∗] (34)

с заданными начальными и граничными условиями

Q(x, 0) = Q0 = const > 0;
∂Q(0, t)

∂x
= 0;

∂Q(1, t)

∂x
+ αQ(1, t) = 0, (35)

учитывающими тепловые потери в окружающую среду с нулевой температурой на границе

пластины x = 1 по закону конвективной теплопередачи с заданным значением α критерия
Био.

Здесь u(x, t) — кусочно-непрерывное пространственно-временно́е управляющее воз-
действие, подчинённое ограничению (4) при umin = 0. В пространстве модальных пере-
менных Q̄n(µn, t) объект управления (34), (35) описывается бесконечной системой урав-
нений (6) с автономными управлениями ūn(µn, t), стесняемыми ограничениями (9), (24).
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Температурное поле Q(x, t) представляется его разложением в ряд вида (6) по собствен-
ным функциям ϕn(µn, x) = cos (µnx) [9]:

Q(x, t) =
∞∑
n=1

2α2 cos (µnx)

(µ2
n + α2 + α) sin2 µn

Q̄n(µn, t), (36)

где µn, n = 1, 2, . . . , — бесконечно возрастающая последовательность корней трансцен-
дентного уравнения µ tg µ = α [13, 18].

Задача заключается в определении программного управления u∗(x, t) и алгоритма об-
ратной связи u∗(Q, x, t), обеспечивающих перевод объекта (34), (35) за заданное время t∗ в
требуемое конечное состояние Q∗∗(x) = Q∗∗ = const > Q0 с заданной точностью равномер-
ного приближения ε, согласно (11), при минимальном в условиях (4) значении квадратич-
ного критерия качества (10), где примем для определённости ρQ = 1. В случае отсутствия
ограничений (4) эта задача решалась в [9] по схеме (12)–(23) и (29)–(31) при поиске соот-
ветственно u∗(x, t) и u∗(Q, x, t).
Вычисление программного управления в открытой области определения управля-

ющих воздействий. Ограничимся далее типичным в приложениях случаем ε = ε
(2)
min

в (19), (21) [8, 9], для которого следует принять M = 2, R = 3 в (19), (22).
Как показано в [9], при нестесняемых условиями (4) управлениях u(x, t) физические

закономерности предметной области определяют в таком случае конкретный вариант си-
стемы уравнений (22) в следующем виде при x0

1 = 0, x0
2 ∈ (0, 1), x0

3 = 1:

Q(0, ψ
(2)
∗ )−Q∗∗ = −ε(2)

min; Q(x0
2, ψ

(2)
∗ )−Q∗∗ = ε

(2)
min;

Q(1, ψ
(2)
∗ )−Q∗∗ = −ε(2)

min;
∂Q(x0

2, ψ
(2)
∗ )

∂x
= 0,

(37)

которому отвечает форма кривой Q(x, ψ
(2)
∗ ), показанная на рис. 1, a.
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Рис. 1. Температурные распределения в конце оптимального процесса

пространственно-временно́го управления: a — в задаче без ограничений на

модальные управления (ψ̃∗
1 = 5,14, ψ̃∗

2 = −1,28, ε
(2)
min = 0,019, x02 = 0,67);

b — в задаче с ограничением на ū2(µ2, t) (t̃∗1 = 0,175, ε̃
(1)
min = 0,021, x01 = 0,623)
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Система четырёх уравнений (37) с подстановкой Q(x0
j , ψ

(2)
∗ ), j = 1, 3 в форме (23)

решается относительно четырёх неизвестных ψ
(2)
∗ = (ψ̃∗1, ψ̃

∗
2), ε

(2)
min, x0

2 стандартными чис-

ленными методами. Последующая подстановка найденных значений ψ
(2)
∗ в (17), (18), где

ψ̃∗n = 0 при n > 2, согласно (16), определяет искомые управляющие воздействия ū∗n(µn, t)
и u∗(x, t).
Программное управление с амплитудными ограничениями на управляющие воздей-

ствия. Примем для простоты, что N1 = N = 2 для учитываемого числа членов ряда в
(6), (8). Сравнение зависимостей ū∗n(µn, t), n = 1, 2, в открытой области определения про-
граммных модальных управлений с заданными значениями ūnmax, ūnmin = 0 в условиях
(4), (24) показывает, что применительно к рассматриваемой задаче при r(x) = 1, J1 > 0,
J2 < 0 в (24) и различных заданных значениях umax в (4) возможен выход только на огра-
ничения ūnmax в конечной стадии оптимального процесса для обеих мод ū

∗
1(µ1, t) и ū

∗
2(µ2, t)

либо для одной из них. В частности, при выборе umax = 2,5 реализуется второй вариант,
для которого ū∗1n(t) отличается от ū∗n(t) только при n = 2 с параметрическим описанием

ū∗12(t) при T̃ ∗ = t̃∗1:

ū∗12(t̃∗1, t) =

{
ū∗2(µ2, t), 0 6 t < t̃∗1;

ū2 max, t̃∗1 < t 6 t∗.
(38)

В этой ситуации осуществляется по аналогичной (19)–(22) схеме редукция к ЗПО

вида (28) с заменой M = 2 на M2 = 1, которая приводит при ε̃ = ε̃
(1)
min к решению системы

трёх уравнений с двумя точками альтернанса x0
1 ∈ (0, 1), x0

2 = 1 [8, 9] (рис. 1, b):

Q(x0
1, t̃
∗
1)−Q∗∗ = ε̃

(1)
min; Q(1, t̃∗1)−Q∗∗ = −ε̃(1)

min;
∂Q(x0

1, t̃
∗
1)

∂x
= 0 (39)

относительно трёх неизвестных t̃∗1, ε̃
(1)
min и x

0
1.

Найденная величина t̃∗1 полностью определяет оптимальное модальное управление

ū∗12(t̃∗1, t) в (38), по которому при сохранении первой составляющей u(x, t) в форме ū∗1(µ1, t)
находится u∗(x, t), согласно (8).
Синтез оптимального управления. В условиях отсутствия ограничений (4) предлага-

емый метод аналитического конструирования оптимальных регуляторов приводит к ли-
нейным законам обратной связи ū∗n(Q̄n, t), u

∗(Q̄, x, t) и u∗(Qu, x, t) в (29)–(31) с известны-
ми по результатам расчёта программного управления нестационарными коэффициентами

передачи W1n(t), W2n(t) в принятых для рассматриваемого примера условиях ε = ε
(2)
min,

M = 2 в (21), (22) и N1 = N = 2 в (6), (8).
Предлагаемая методика синтеза оптимального управления в замкнутой области (4)

определения u(x, t) приводит при выходе на ограничение только второго модального управ-
ления, согласно (38), к уравнениям модальных регуляторов:

ū∗12(Q̄2, t) =

{
ū∗2(Q̄2, t), 0 6 t < t̃∗1;

ū2 max, t̃∗1 < t 6 t∗;
ū∗11(Q̄1, t) = ū∗1(Q̄1, t), t ∈ [0, t∗]. (40)

Момент t̃∗1 переключения ū
∗
12(Q̄2, t) в (40) автоматически фиксируется при достиже-

нии расчётного значения Q̄2(µ2, t̃
∗
1), которое предварительно вычисляется путём решения

задачи программного управления. По алгоритму (40) восстанавливаются при N1 = N = 2
уравнения оптимальных регуляторов u∗1(Q̄, x, t) и u∗1(Qu, x, t) в форме (32), (33), где в (33)
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2,5

u*(Qu, x, t)

2,0
1

x

0

t

0,2

Рис. 2. Управляющее воздействие на пространственно-временно́й плоскости
в зависимости от изменяющегося во времени сигнала обратной связи в точке

xu1 = 1 при ε = ε̃
(1)
min = 0,021, t̃∗1 = 0,175, umax = 2,5

Qu = Qu(xu, t), xu = (xuj), j = 1, с выбором точки контроля температуры xu1 на интервале

[0, 1] 3 x.
На рис. 1, 2 представлены некоторые расчётные результаты, полученные при Q0 = 0,

Q∗∗ = 0,5, α = 0,5, t∗ = 0,2, umax = 2,5.
Заключение. Разработаны методы решения линейно-квадратичных задач

пространственно-временно́го управления системами с распределёнными параметрами

параболического типа применительно к оценкам целевых множеств конечных состоя-
ний объекта в равномерной метрике в условиях заданных амплитудных ограничений

управляющих воздействий. Полученные уравнения оптимальных регуляторов сводятся к
линейным с ограничениями алгоритмам обратной связи по наблюдаемым переменным с

фиксируемыми предварительным решением задачи программного управления нестацио-
нарными коэффициентами передачи. Допустимые погрешности реализации предлагаемых
методов решения рассматриваемой задачи оптимизации при неполном измерении состо-
яния объекта определяются требованиями к точности описания его модели укороченной

системой уравнений для модальных составляющих управляемой величины.
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