УДК 629.7.023:539.3 DOI: 10.15372/PMTF202215132

ИССЛЕДОВАНИЕ НЕЛИНЕЙНОГО ДЕФОРМИРОВАНИЯ И УСТОЙЧИВОСТИ КОМПОЗИТНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ КОМБИНИРОВАННОМ НАГРУЖЕНИИ КРУТЯЩИМ И ИЗГИБАЮЩИМ МОМЕНТАМИ И ВНУТРЕННИМ ДАВЛЕНИЕМ

Л. П. Железнов

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск, Россия E-mail: Zgeleznov@sibnia.ru

Решена задача об устойчивости цилиндрических оболочек, выполненных из композиционного материала, с учетом моментности и нелинейности их докритического напряженно-деформированного состояния. Геометрически нелинейная задача устойчивости решена методами конечных элементов и линеаризации Ньютона — Канторовича. Критические нагрузки определяются в процессе решения нелинейной задачи с помощью критерия Сильвестра. Используются разработанные на основе гипотезы Тимошенко конечные элементы композитных цилиндрических оболочек естественной кривизны, в аппроксимации перемещений которых в явном виде выделены жесткие перемещения, что существенно влияет на сходимость решения. Исследована устойчивость круговой цилиндрической оболочки, выполненной из полимерного композиционного материала, при комбинированном нагружении крутящим и изгибающим моментами и внутренним давлением. Изучено влияние способа укладки монослоев, нелинейности деформирования, внутреннего давления на критические нагрузки, при которых происходит потеря устойчивости оболочки.

Ключевые слова: цилиндрические композитные оболочки, полимерные композиционные материалы, нелинейное деформирование, устойчивость, метод конечных элементов, изгибающий и крутящий моменты, внутреннее давление

Введение. В конструкциях современных летательных аппаратов широко применяются полимерные композиционные материалы (ПКМ). Использование ПКМ позволяет существенно уменьшить вес конструкции при сохранении ее прочностных и жесткостных характеристик. Основополагающий вклад в разработку методов расчета композитных конструкций внесла школа В. В. Васильева [1, 2]. Исследование прочности и устойчивости авиационных конструкций особенно важно при разработке фюзеляжей самолетов, потеря устойчивости общивки которых недопустима. В большинстве опубликованных работ задачи об устойчивости оболочек решаются в классической постановке при безмоментном или линейном исходном напряженно-деформированном состоянии [3–6]. Остаются нерешенными вопросы, связанные с прочностью и устойчивостью композитных конструкций при их нелинейном деформировании, в частности влияние способа укладки однонаправленных монослоев на устойчивость оболочек из ПКМ при комбинированном нагружении.

Рис. 1. Схема оболочки (*a*) и порядок укладки волокон по толщине (*б*): 1 — волокно, 2 — матрица

В настоящей работе нелинейная задача о прочности и устойчивости цилиндрических оболочек из ПКМ при произвольном нагружении решена методами конечных элементов и линеаризации Ньютона — Канторовича [7] с использованием метода пошагового нагружения и энергетического критерия устойчивости. Критические нагрузки определялись в процессе решения геометрически нелинейной задачи с помощью критерия Сильвестра. Использованы созданные автором данной работы на основе гипотезы Тимошенко конечные элементы композитных цилиндрических оболочек естественной кривизны, в аппроксимации перемещений которых в явном виде выделены жесткие перемещения. Исследуется влияние порядка укладки монослоев и нелинейности деформирования на устойчивость круговой цилиндрической оболочки из ПКМ при комбинированном нагружении изгибающим и крутящим моментами и внутренним давлением.

Результаты исследований, представленные в данной работе, получены с использованием разработанного автором программного комплекса [8].

Постановка задачи. Рассмотрим цилиндрическую, в общем случае некруговую композитную многослойную оболочку с различными углами укладки волокон, находящуюся под действием неоднородной краевой нагрузки в виде продольной силы N, изгибающего M, крутящего $M_{\rm k}$ моментов, поперечной силы Q и внутреннего давления q (рис. 1).

Приведем основные соотношения для конечного элемента некруговой цилиндрической оболочки, выполненной из композитного материала. Оболочку будем рассматривать как конструктивно-ортотропную. При выводе основных соотношений используем разработанный ранее алгоритм [9, 10].

Разобьем оболочку линиями главных кривизн на m частей по образующей и на n частей по направляющей. Таким образом, оболочку представим набором $m \times n$ криволинейных прямоугольных конечных элементов естественной кривизны.

Для оболочки применяем гипотезу Тимошенко прямых нормалей. Используя [1, 3], для углов поворота сечений оболочки запишем выражения

$$\theta_x = \theta_1 + \psi_x, \quad \theta_y = \theta_2 + \psi_y, \quad \theta_1 = -w_x, \quad \theta_2 = k_2(v - w_\beta), \quad k_2 = 1/R,$$
 (1)

где R — радиус кривизны оболочки; индексы x, β у величины w означают дифференцирование по x, β .

Из (1) получаем выражения для углов сдвига сечений

$$\psi_x = \theta_x - \theta_1, \qquad \psi_y = \theta_y - \theta_2.$$

Используя билинейную аппроксимацию для тангенциальных перемещений u, v и углов сдвига ψ_x, ψ_y , бикубическую аппроксимацию для прогиба w и выражения для перемещений

элемента оболочки как жесткого целого [10], запишем выражения для полных перемещений точек конечного элемента

$$u = a_1 xy + a_2 x + a_3 y + a_4 + a_6 \psi_1 s + a_{20} \psi_2 c,$$

$$v = a_5 xy + a_6 xc + a_7 y + a_8 (\psi_1 c + \psi_2 s) - a_{20} xs + a_{23} c - a_{24} s,$$

$$w = a_9 x^3 y^3 + a_{10} x^3 y^2 + a_{11} x^3 y + a_{12} x^3 + a_{13} x^2 y^3 + a_{14} x^2 y^2 + a_{15} x^2 y + a_{16} x^2 +$$

$$+ a_{17} xy^3 + a_{18} xy^2 + a_{19} xy + a_{20} xc + a_{21} y^3 + a_{22} y^2 + a_{23} s + a_{24} c + a_6 xs + a_8 (\psi_1 s - \psi_2 c),$$

$$a = a_{10} x^2 + a_{10} x^3 + a_{10} x^3 + a_{10} x^3 + a_{10} x^2 +$$

$$c = \cos\beta, \quad s = \sin\beta, \quad \psi_1 = \int Rs \, d\beta, \quad \psi_2 = -\int Rc \, d\beta,$$
$$\psi_x = a_{25}xy + a_{26}x + a_{27}y + a_{28}, \qquad \psi_y = a_{29}xy + a_{30}x + a_{31}y + a_{32}.$$

Неизвестные коэффициенты полиномов a_i выражаются через узловые неизвестные: $\bar{\boldsymbol{u}} = \{u_i, v_i, w_i, \theta_{1i}, \theta_{2i}, w_{xyi}, \psi_{yi}, u_j, v_j, w_j, \theta_{1j}, \theta_{2j}, w_{xyj}, \psi_{xj}, \psi_{yj}, u_k, \ldots, u_n, \ldots, w_{xyn}, \psi_{xn}, \psi_{yn}\}^{\mathrm{T}}$. В каждом узле имеется восемь неизвестных, следовательно, конечный элемент имеет 32 степени свободы.

Нелинейные соотношения Коши для деформаций и изменений кривизн срединной поверхности оболочки имеют вид

$$e = e_l + e_n$$

где

$$e_{l} = \{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \chi_{1}, \chi_{2}, \chi_{3}, \psi_{x}, \psi_{y}\}^{\mathrm{T}}, \qquad e_{n} = \{\varepsilon_{1n}, \varepsilon_{2n}, \varepsilon_{3n}, 0, 0, 0, 0, 0\}^{\mathrm{T}}, \\ \varepsilon_{1} = u_{x}, \qquad \varepsilon_{2} = k_{2}(v_{\beta} + w), \qquad \varepsilon_{3} = (v_{x} + k_{2}u_{\beta}), \\ \chi_{1} = (\theta_{x})_{x}, \qquad \chi_{2} = k_{2}(\theta_{y})_{\beta}, \qquad \chi_{3} = (\theta_{y})_{x}, \\ \varepsilon_{1n} = (w_{x})^{2}/2, \qquad \varepsilon_{2n} = k_{2}(v - w_{\beta})^{2}/2, \qquad \varepsilon_{3n} = -k_{2}w_{x}(v - w_{\beta}), \end{cases}$$

индексы x, β у величин u, v означают дифференцирование по x, β .

Согласно [1] соотношения упругости для оболочки записываются в виде

$$T = De$$

где $T = \{T_1, T_2, T_3, M_1, M_2, M_3, Q_1, Q_2\}^{\mathsf{T}}$ — вектор внутренних усилий, моментов и поперечных сил; D — матрица упругих жесткостей:

$$D = \begin{bmatrix} B_{11} & B_{12} & B_{13} & K_{11} & K_{12} & K_{13} & 0 & 0 \\ B_{12} & B_{22} & B_{23} & K_{12} & K_{22} & K_{23} & 0 & 0 \\ B_{13} & B_{23} & B_{33} & K_{13} & K_{23} & K_{33} & 0 & 0 \\ K_{11} & K_{12} & K_{13} & D_{11} & D_{12} & D_{13} & 0 & 0 \\ K_{12} & K_{22} & K_{23} & D_{12} & D_{22} & D_{23} & 0 & 0 \\ K_{13} & K_{23} & K_{33} & D_{13} & D_{23} & D_{33} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & C_{11} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & C_{22} \end{bmatrix},$$

$$C_{11} = C_{22} = (5/6)Gh,$$

 B_{ij}, K_{ij}, D_{ij} — приведенные к срединной поверхности оболочки коэффициенты мембранной и изгибной жесткостей композитной оболочки [1]; G — модуль сдвига; h — приведенная толщина оболочки.

Метод решения. Используя решение [10], запишем выражение для потенциальной энергии конечного элемента оболочки

 $\Pi = W - V,$

гдеW— энергия деформации конечного элемента;
 V— работа внешних сил. Согласно[9]

$$W = \frac{1}{2} \iint_{s} \mathbf{T}^{\mathsf{T}} \mathbf{e} \, ds = \frac{1}{2} \iint_{s} (\mathbf{T}^{\mathsf{T}} \mathbf{e}_{l} + \mathbf{T}^{\mathsf{T}} \mathbf{e}_{n}) \, ds =$$
$$= \frac{1}{2} \iint_{s} (\mathbf{e}_{l}^{\mathsf{T}} D \mathbf{e}_{l} + \mathbf{e}_{l}^{\mathsf{T}} D \mathbf{e}_{n} + \mathbf{e}_{n}^{\mathsf{T}} D \mathbf{e}_{l} + \mathbf{e}_{n}^{\mathsf{T}} D \mathbf{e}_{n}) \, ds =$$
$$V = \iint_{s} \mathbf{q}^{\mathsf{T}} \mathbf{u} \, ds + \iint_{l_{k}} \mathbf{R}_{k}^{\mathsf{T}} \mathbf{u}_{k} \, dl_{k} + \mathbf{R}_{l}^{\mathsf{T}} \bar{\mathbf{u}}_{l}, \qquad \mathbf{u}_{k} = \{u, v, w, \theta_{1}, \theta_{2}, w_{xy}\}^{\mathsf{T}}.$$

Здесь $\boldsymbol{q} = \{q_1, q_2, q_3\}^{\mathrm{T}}$ — вектор внешней поверхностной нагрузки; $\boldsymbol{R}_k = \{P_{1k}, P_{2k}, P_{3k}, M_{1k}, M_{2k}, M_{3k}\}^{\mathrm{T}}, \boldsymbol{R}_l = \{P_{1l}, P_{2l}, P_{3l}, M_{1l}, M_{2l}, M_{3l}\}^{\mathrm{T}}$ — векторы сил и моментов, распределенных по контуру и сосредоточенных в его точках соответственно; l_k — отрезки контура, на которых приложены распределенные силы.

Запишем вариационное уравнение Лагранжа для конечного элемента оболочки:

$$\delta \Pi = \delta W - \delta V = 0$$

 $(\delta\Pi, \delta W, \delta V$ — вариации).

Варьируя потенциальную энергию по узловым перемещениям конечного элемента, получаем систему нелинейных алгебраических уравнений относительно узловых перемещений конечного элемента. С учетом условия совместности узловых перемещений элементов и граничных условий получаем систему нелинейных алгебраических уравнений относительно узловых перемещений всех конечных элементов оболочки

$$K\boldsymbol{u}' - \boldsymbol{Q} = 0, \tag{2}$$

где K — матрица жесткости оболочки, получаемая суммированием матриц жесткости отдельных конечных элементов с использованием матрицы индексов [11]; Q — вектор обобщенных узловых сил оболочки.

Для решения системы (2) используем метод Ньютона — Канторовича [7]:

$$H(\boldsymbol{u}_n')\Delta = \boldsymbol{Q} - \boldsymbol{G}, \qquad \boldsymbol{u}_{n+1}' = \boldsymbol{u}_n' + \Delta$$

(H — гессиан системы, элементами которого являются элементы второй вариации потенциальной энергии деформации подкрепленной оболочки; G — градиент потенциальной энергии деформации).

Критическая нагрузка определяется либо как предельная по расходимости итерационного процесса при значительном увеличении перемещений в отдельных узлах конечноэлементной сетки, либо как бифуркационная при использовании энергетического критерия устойчивости, согласно которому равновесное состояние устойчиво, если $\delta^2 \Pi > 0$. Форма потери устойчивости оболочки определяется из решения системы $H\delta = 0$, где δ — вектор бифуркационных узловых перемещений.

Исследование влияния способа укладки монослоев на устойчивость круговой цилиндрической оболочки. Рассмотрим консольно закрепленную ($u = v = w = w_x = 0$) круговую цилиндрическую оболочку, выполненную из ПКМ и находящуюся под действием краевой нагрузки в виде крутящего $M_{\rm k}$ и изгибающего M моментов, приложенных к свободному краю оболочки, а также внутреннего давления q = 0,15 МПа. Нагруженный свободный край оболочки подкреплен жестким в своей плоскости шпангоутом. Действие изгибающего момента заменим действием неоднородных по направляющей оболочки осевых усилий $T_1 = M z_1/J$ (z_1 — расстояние от точек контура оболочки до горизонтальной оси AA (см. рис. 1); J — момент инерции площади поперечного сечения относительно оси AA). Действие крутящего момента $M_{\rm k}$ заменим действием однородных по окружности оболочки касательных усилий $T_3 = M_{\rm k}/(2\omega)$, где ω — площадь поперечного сечения оболочки, определяемая по ее внутреннему радиусу.

Оболочка, имеющая длину L = 2000 мм, толщину h = 3,456 мм и радиус R = 2000 мм, выполнена из 18-слойного ПКМ Тогауса T700, механические характеристики монослоя которого приведены в работе [12].

Для разбиения оболочки использовалась конечно-элементная сетка $m \times n = 15 \times 160$ (m — число конечных элементов по длине оболочки, n — число конечных элементов по окружности), что обеспечивало сходимость решения по числу конечных элементов с погрешностью, не превышающей 5 %.

Введены следующие обозначения: $R_m = k_m/k_{m0} = M^*/M_0^*$, $R_p = k_p/k_{p0} = M_{\kappa}^*/M_{\kappa 0}^*$ — отношения критических изгибающего и крутящего моментов при комбинированном нагружении; $k_m = M^*/M_0$, $k_p = M_{\kappa}^*/M_{\kappa 0}^*$, $k_{m0} = M_0^*/M_0$, $k_{p0} = M_{\kappa 0}^*/M_{\kappa 0}$ ($M_0^*, M_{\kappa 0}^*$ — критические значения изгибающего и крутящего моментов; $M_0 = \pi E R h^2/\sqrt{3(1-\nu^2)}$, $M_{\kappa 0} = 2\pi C R^2 S_b$ — верхние критические значения изгибающего и крутящего и крутящего моментов для круговой цилиндрической изотропной оболочки [13]; C = 0.953; $S_b = 0.74(Eh/(1-\nu^2)^{5/8})(h/R)^{5/4}(R/L)^{1/2})$.

Все расчеты проводились при условии пропорционального нагружения, т. е. задавались некоторые значения нагрузок M и M_{κ} , определяемые долями верхних критических нагрузок M_0 и $M_{\kappa 0}$, и для них вычислялись значения параметров критических нагрузок $k_{\rm H} = M^*/M = M^*_{\kappa}/M_{\kappa}, k_m, k_p$.

В табл. 1 представлены варианты комбинированного нагружения оболочки нагрузками $p_m = M/M_0$ и $p_{\kappa} = M_{\kappa}/M_{\kappa 0}$.

	<u>۲</u>	Γ	a	б	Л	И	ц	а	1
--	----------	---	---	---	---	---	---	---	---

Варианты комбинированного нагружения оболочки изгибающим M и крутящим $M_{\rm K}$ моментами

Вариант укладки	$p_m, \%$	$p_{\mathbf{k}}, \%$
1	0	100
2	26	97
3	50	87
4	71	71
5	87	50
6	97	26
7	100	0

	$\bar{k}_{ extsf{h}}$													
Вариант	$p_m = 0$		$p_m = 26 \%$		$p_m = 50 \%$		$p_m = 71 \%$		$p_m = 87 \%$		$p_m = 97 \%$		$p_m = 100 \%$	
укладки	ЛС	HC	ЛС	HC	ЛС	HC	ЛС	HC	ЛС	HC	ЛС	HC	ЛС	HC
1	7,3	7,5	5,2	5,2	$_{3,9}$	$_{3,7}$	3,0	2,5	2,3	$1,\!9$	1,7	1,2	1,3	$1,\!3$
2	8,3	8,3	5,8	5,8	4,4	4,3	3,4	3,0	2,6	2,3	2,1	1,5	1,6	1,2
3	7,5	7,7	4,7	4,3	2,9	2,5	1,9	2,1	1,3	2,1	1,3	2,1	1,3	2,0
4	6,5	6,7	4,4	4,1	2,8	2,5	1,9	1,8	1,3	1,9	1,2	1,8	1,2	1,7
5	6,3	6,3	4,2	4,1	2,7	2,3	1,7	1,7	1,2	1,8	1,2	2,0	1,2	$1,\!8$
6	8,0	8,0	$5,\!8$	6,0	4,6	4,9	3,9	4,2	3,5	3,6	3,0	2,9	2,7	2,3
7	8,9	8,9	6,4	6,2	4,7	4,7	3,6	3,4	2,8	2,4	2,2	$1,\!9$	1,7	1,4
8 (металл)	4,5	4,6	3,3	3,0	2,4	2,1	1,8	1,3	1,3	1,0	0,9	1,0	0,9	1,1

Зависимость параметра $ar{k}_{ extsf{H}}$ от параметра p_m для различных вариантов укладки монослоев

Примечание. ЛС — линейное состояние, НС — нелинейное состояние.

В табл. 2 приведены результаты исследования влияния внутреннего давления $\bar{k}_{\rm H} = (k_{\rm H} - k_{\rm H}^0)/k_{\rm H}^0$ ($k_{\rm H}^0$ — значение параметра $k_{\rm H}$ при q = 0) на критические значения параметра $k_{\rm H}$ для случая линейного и нелинейного состояний в зависимости от параметра p_m для различных вариантов укладки монослоев в общивке оболочки. Из табл. 2 следует, что величина $\bar{k}_{\rm H}$ наиболее существенно зависит как от способа укладки монослоев, так и от значения изгибающего момента M для вариантов укладки 6, 7, а также для случаев нагружения оболочки преимущественно крутящим моментом ($p_m < 50$ %). С увеличением параметра p_m влияние внутреннего давления существенно уменьшается в случае как линейного, так и нелинейного состояния. При наличии внутреннего давления значения параметра $k_{\rm H}$ увеличиваются более существенно для композитных оболочек и менее существенно для металлических.

На рис. 2 представлена зависимость параметра k_m от параметра p_{κ} для различных вариантов укладки монослоев в оболочке. Из рис. 2 следует, что в случае нелинейности напряженно-деформированного состояния критические значения изгибающего момента k_m уменьшаются во всем диапазоне значений параметра крутящего момента M_{κ} для всех вариантов укладки монослоев. Различие линейного и нелинейного решений небольшое, порядка 3–15 %, за исключением вариантов укладки 3, 5, 8 и значения параметра $p_{\kappa} <$ 60 %, при которых это различие достигает 35 %.

На рис. 3 представлена зависимость параметра k_p от параметра p_m для различных вариантов укладки монослоев в оболочке. Из рис. 3 следует, что в случае нелинейности напряженно-деформированного состояния критические значения поперечной силы k_p уменьшаются во всем диапазоне значений параметра нагрузки p_m и для всех вариантов укладки монослоев. Различие линейного и нелинейного решений небольшое, порядка 3-5%.

На рис. 4 представлены зависимости между параметрами R_m и R_p для различных вариантов укладки монослоев в оболочке при линейном и нелинейном напряженнодеформированных состояних. Видно, что кривые в основном являются выпуклыми. В отдельных случаях для нелинейного состояния форма этих кривых является более сложной в зависимости как от соотношения нагрузок, так и от способа укладки монослоев в оболочке. Так, отдельные участки кривых являются вогнутыми (кривые 1, 5).

Таблица 2

Рис. 2. Зависимость параметра k_m от параметра p_{κ} для различных вариантов укладки монослоев:

1 — вариант 1, 2 — вариант 3, 3 — вариант 5, 4 — вариант 6, 5 — вариант 8; сплошные кривые — нелинейное напряженно-деформированное состояние, штриховые — линейное напряженно-деформированное состояние

Рис. 3. Зависимость параметра k_p от параметра p_m для различных вариантов укладки монослоев:

1 — вариант 1, 2 — вариант 3, 3 — вариант 5, 4 — вариант 6, 5 — вариант 8; сплошные кривые — нелинейное напряженно-деформированное состояние, штриховые — линейное напряженно-деформированное состояние

Рис. 4. Зависимость между параметрами R_m и R_p для различных вариантов укладки монослоев:

а — линейное состояние, б — нелинейное состояние; 1–8 — варианты укладки 1–8

Таблица 3

	k_g													
Вариант	$p_m = 0$		$p_m = 26 \%$		$p_m = 50 \%$		$p_m = 71 \%$		$p_m = 87 \%$		$p_m = 97 \%$		$p_m = 100 \%$	
укладки	ЛС	HC	ЛС	HC	ЛС	HC	ЛС	HC	ЛС	HC	ЛС	HC	ЛС	HC
1	$1,\!58$	1,58	1,54	$1,\!62$	$1,\!54$	$1,\!66$	$1,\!54$	$1,\!66$	1,58	1,66	$1,\!58$	1,54	1,62	$1,\!59$
2	$1,\!58$	1,58	$1,\!54$	$1,\!62$	$1,\!54$	1,70	$1,\!58$	1,75	$1,\!62$	1,79	$1,\!66$	$1,\!62$	$1,\!66$	$1,\!66$
3	1,70	1,75	$1,\!47$	$1,\!47$	1,30	1,27	$1,\!21$	$1,\!27$	1,18	1,28	$1,\!19$	1,25	1,20	$1,\!23$
4	$1,\!66$	1,70	1,54	$1,\!58$	1,40	1,47	$1,\!33$	$1,\!37$	1,32	1,39	1,32	1,33	1,32	$1,\!35$
5	1,70	1,70	1,58	$1,\!66$	1,43	1,43	$1,\!33$	$1,\!37$	1,33	1,33	1,32	1,40	1,30	$1,\!37$
6	$1,\!40$	1,40	1,32	$1,\!39$	1,33	1,47	$1,\!37$	$1,\!66$	1,43	1,75	1,51	1,75	1,58	1,70
7	$1,\!54$	1,54	1,51	$1,\!58$	1,51	$1,\!66$	$1,\!51$	1,79	1,54	1,70	1,58	1,70	1,58	1,70

Зависимость параметра k_g от параметра p_m для различных вариантов укладки монослоев

Примечание. ЛС — линейное состояние, НС — нелинейное состояние.

На рис. 5 представлены зависимости параметров k_m и k_p для различных вариантов укладки монослоев в оболочке от величины нагрузки крутящим моментом p_{κ} (для k_m) и изгибающим моментом p_m (для k_p) в случае линейного и нелинейного напряженнодеформированных состояний. Из рис. 5 следует, что наиболее эффективными вариантами укладки монослоев являются варианты 1, 2, наименее эффективными — варианты 3, 5. Кривые, соответствующие линейному и нелинейному состояниям, имеют один и тот же характер.

В табл. 3 показана весовая эффективность композитных оболочек по отношению к металлическим, определяемая по формуле $k_g = k_{\rm H}/[k_{\rm H3}(g/g_3)]$ (g — вес рассчитанной оболочки; $k_{\rm H3}, g_3$ — параметр критической нагрузки и вес эталонной (металлической) оболочки), для линейного и нелинейного состояний в зависимости от параметра p_m для различных вариантов укладки монослоев в общивке. Из табл. 3 следует, что весовая эффективность композитных оболочек существенно зависит как от способа укладки монослоев, так и от

Рис. 5. Зависимости $k_m(p_{\kappa})$ (сплошные линии) и $k_p(p_m)$ (штриховые линии) для различных вариантов укладки монослоев:

a — линейное состояние,
 δ — нелинейное состояние; 1–8 — варианты укладки 1–8

Рис. 6. Формы потери устойчивости при различных соотношениях параметров нагружения:

$$a - M = M_0, \ \delta - M = 0.71 M_0, \ M_{\rm k} = 0.71 M_{\rm k0}, \ \epsilon - M_{\rm k} = M_{\rm k0}$$

соотношения внешних нагрузок, изгибающего и крутящего моментов. Наиболее эффективными являются варианты 1, 2, 7 укладки монослоев практически при любых значениях изгибающего и крутящего моментов. Весовая эффективность композитной оболочки может на 60 % превышать весовую эффективность металлической оболочки. Нелинейность в основном увеличивает весовую эффективность (для вариантов 6, 7 — на 20 %). В случае действия преимущественно крутящего момента ($p_m < 25$ %) влияние нелинейности на весовую эффективность оболочки незначительно.

На рис. 6 приведены формы потери устойчивости композитной оболочки для варианта укладки 3 при различных соотношениях параметров нагрузок M и $M_{\rm k}$. Как правило, оболочки теряют устойчивость либо под действием максимальных сжимающих усилий в случае приложения изгибающего момента (потеря устойчивости в форме локальных вмятин в нижней части оболочки), либо под действием максимальных касательных сил в случае приложения крутящего момента (потеря устойчивости в форме наклонных продольных волн на всей поверхности оболочки). При комбинированном нагружении оболочка в основном теряет устойчивость под действием максимальных сжимающих усилий (потеря устойчивости в форме продольных наклонных складок) (см. рис. 6, δ).

Выводы. Проведенное исследование позволяет сделать следующие выводы.

Наиболее эффективными вариантами укладки монослоев являются варианты 1, 2, 7, поскольку для этих вариантов слои с направлением укладки 0° расположены на поверхности оболочки, т. е. в областях, где действуют максимальные продольные изгибные напряжения (так называемый краевой эффект). Так, для этих вариантов значение цилиндрической жесткости оболочки находится в диапазоне $25 \div 30$ кH · мм, в то время как для других вариантов укладки — в диапазоне $14 \div 15$ кH · мм.

При наличии внутреннего давления критические значения параметра нагрузки существенно (в восемь раз) увеличиваются в случае как линейного, так и нелинейного напряженно-деформированного состояния в зависимости от варианта укладки монослоев и соотношения внешних нагрузок.

Весовая эффективность композитных оболочек зависит как от способа укладки монослоев, так и от соотношения внешних нагрузок, изгибающего и крутящего моментов. Практически при любых соотношениях внешних нагрузок наиболее эффективными являются варианты 1, 2 укладки монослоев.

Весовая эффективность композитных оболочек может на 60 % превышать весовую эффективность металлической оболочки.

ЛИТЕРАТУРА

- 1. Васильев В. В. Механика конструкций из композитных материалов. М.: Машиностроение, 1988.
- Vasiliev V. V. Advanced mechanics of composite materials and structures / V. V. Vasiliev, E. V. Morozov. Amsterdam: Elsevier, 2018.
- Ванин Г. А. Устойчивость оболочек из армированных материалов / Г. А. Ванин, Н. П. Семенюк, Р. Ф. Емельянов. Киев: Наук. думка, 1978.
- Алфутов Н. А. Расчет многослойных пластин и оболочек из композиционных материалов / Н. А. Алфутов, П. А. Зиновьев, Б. Г. Попов. М.: Машиностроение, 1984.
- 5. Бакулин В. Н. Оптимальное проектирование конструкций из композиционных и традиционных материалов / В. Н. Бакулин, Е. Л. Гусев, В. Г. Марков. М.: Физматлит, 2008.
- Кармишин А. В. Статика и динамика оболочечных конструкций / А. В. Кармишин, В. А. Лясковец, В. И. Мяченков, А. Н. Фролов. М.: Машиностроение, 1975.
- 7. **Канторович Л. В.** Функциональный анализ в нормированных пространствах / Л. В. Канторович, Г. П. Акилов. М.: Физматгиз, 1959.
- 8. Свидетельство о гос. регистрации программы для ЭВМ № 2013615613 РФ. Комплекс программ для расчета на прочность и устойчивость подкрепленных некруговых цилиндрических оболочек / Л. П. Железнов. Зарегистрировано в реестре Роспатента 17.06.2013.
- Железнов Л. П., Кабанов В. В. Исследование нелинейного деформирования и устойчивости некруговых цилиндрических оболочек при осевом сжатии и внутреннем давлении // ПМТФ. 2002. Т. 43, № 4. С. 155–160.
- Бойко Д. В., Железнов Л. П., Кабанов В. В. Нелинейное деформирование и устойчивость дискретно-подкрепленных овальных цилиндрических композитных оболочек при поперечном изгибе и внутреннем давлении // Пробл. машиностроения и надежности машин. 2014. № 6. С. 23–30.
- Постнов В. А. Метод конечных элементов в расчетах судовых конструкций / В. А. Постнов, И. Я. Хархурим. Л.: Судостроение, 1974.
- 12. Белов В. К., Железнов Л. П., Огнянова Т. С. Исследование нелинейного деформирования и устойчивости композитного отсека фюзеляжа перспективного самолета при чистом изгибе // Авиац. техника. 2017. № 4. С. 8–40.
- 13. Кабанов В. В. Устойчивость неоднородных цилиндрических оболочек. М.: Машиностроение, 1982.

Поступила в редакцию 27/IV 2022 г., после доработки — 27/VII 2022 г. Принята к публикации 29/VIII 2022 г.