УДК 622.235.2

ИСПОЛЬЗОВАНИЕ ПРЕДПОЛОЖЕНИЯ О ПРОИЗВОЛЬНОМ РАЗЛОЖЕНИИ [H₂O—CO₂] КОНДЕНСИРОВАННОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА ДЛЯ ПРЕДСКАЗАНИЯ ЕГО ХАРАКТЕРИСТИК

Д. Фрем

Frem Co., Бейрут, Ливан, frem.dany@gmail.com

Тест отпечатка — один из простейших инструментов для быстрого определения давления детонации. Тест основан на корреляции давления детонации с глубиной вмятины, создаваемой взрывчатым веществом на металлической пластине-свидетеле. Настоящее исследование направлено на разработку модели для оценки глубины отпечатка, которая используется не только для определения давления, но и для оценки бризантности относительно эталонного взрывчатого вещества. Показано, что экспериментальные значения глубины отпечатка для взрывчатых веществ на основе CHNO и CHNOClF могут быть успешно воспроизведены с использованием модели, основанной на нескольких параметрах, а именно: исходной плотности взрывчатого вещества, количестве молей газообразных продуктов детонации на 1 г взрывчатого вещества и средней молекулярной массы газообразных продуктов, причем число молей и средняя молекулярная масса газообразных продуктов рассчитываются в соответствии с предположением о произвольном разложении [H₂O—CO₂]. Предсказанные значения глубины отпечатка и метод Камлета — Джейкобса использованы для оценки давления детонации 37 взрывчатых веществ. Результаты показывают, что давления, полученные по глубине отпечатка, лучше согласуются с данными экспериментов и термохимическими расчетами, чем определенные методом Камлета — Джейкобса.

Ключевые слова: бризантность, давление детонации, глубина отпечатка, метод Камлета — Джейкобса.

DOI 10.15372/FGV20180610

ВВЕДЕНИЕ

В последние тридцать лет было получено и охарактеризовано большое количество взрывчатых веществ (ВВ) с различными формами и функциональными группами молекул [1-6]. Значительные усилия были направлены на разработку новых ВВ с требуемыми физическими и химическими свойствами, такими как высокая кристаллическая плотность, положительная теплота образования конденсированной фазы и близкое к нулю значение кислородного баланса. В последнее время показано, что можно получить энергетические материалы с высоким содержанием азота (более 50 %), обладающие приемлемой нечувствительностью к внешним воздействиям (удар, трение и т. д.), детонационные характеристики которых равны или даже лучше, чем у известного гексогена (RDX) [7].

Скорость и давление детонации являются наиболее важными детонационными характеристиками, которые в значительной степени определяют пригодность данного ВВ для конкретного применения. Существует несколько экспериментальных методов [8], которыми они могут быть измерены. Один из них тест отпечатка — особенно интересен, потому что он позволяет простым способом определить бризантность — способность ВВ к локальному дробящему воздействию.

В работе [9] показано, что ВВ, содержащие молекулы CHNOClF, характеризуются сильной линейной зависимостью между давлением детонации и бризантностью ВВ и поэтому тест отпечатка является полезным инструментом для оценки характеристик ВВ. В данной статье главное внимание уделено оценке основного параметра теста, т. е. абсолютной глубине отпечатка в пластине-свидетеле и способу вычисления этого параметра.

[©] Frem D., 2018. Frem Co., Beirut, Lebanon.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В идеале желательно измерять давление *р* и скорость детонации *D* для каждого нового синтезируемого ВВ, однако на практике это редко выполняется из-за трудностей, связанных с ограниченной доступностью и/или высокой чувствительностью этих веществ. Поэтому при разработке ВВ широко используются термохимические коды (например, BKW [10], EXPLO5 [11], СНЕЕТАН [12]) и эмпирические формулы [13-16]. В 1968 г. Камлет и Джейкобс, занимаясь поиском простого и надежного метода расчета детонационных характеристик ВВ, разработали свой метод [17]. Он основан на том, что для любой взрывчатой композиции с общей формулой C_aH_bN_cO_d основными продуктами детонации являются N_2 , H_2O и CO₂, поэтому обозначение [H₂O—CO₂] произвольно. Предположение о произвольном разложении $[H_2O-CO_2]$ позволяет оценить D и p для ВВ при начальной плотности $\rho \ge 1$ г/см³ по следующим уравнениям:

$$D = 0.7061\varphi^{0.5}(1+1.3\rho) \,[\text{KM/c}], \qquad (1)$$

$$p = 0.761\varphi\rho^2 \ [\Gamma\Pi a], \tag{2}$$

$$\varphi = NM^{0.5}Q^{0.5},\tag{3}$$

$$N = \frac{2c + 2d + b}{48a + 4b + 56c + 64d},\tag{4}$$

$$M = \frac{56c + 88d - 8b}{2c + 2d + b},\tag{5}$$

$$Q = \frac{120.9b + 196.8(d - b/2) + \Delta H_f^0}{M_w},$$
(6)

где N — количество газов продуктов детонации, моль/г ВВ, M — средняя молекулярная масса газообразных продуктов, г/моль, Q — теплота детонации, кДж/г, ΔH_f^0 теплота образования конденсированной фазы, кДж/моль, M_w — молекулярная масса композиции, г/моль. Параметр φ в уравнениях (1), (2) был успешно использован для прогнозирования таких баллистических характеристик ВВ, как скорость Гарни ($\sqrt{2E_G}$) [18, 19] и скорость медной оболочки при ее радиальном расширении ($R-R_0$) при проведении тестцилиндра [20].

Рис. 1. Схема теста отпечатка: 1 — детонатор, 2 — бустерный заряд, 3 — основ-

ной заряд BB, 4 — стальная пластина-свидетель, 5 — опорная плита

Настоящее исследование направлено на определение взаимосвязи предположения о произвольном разложении [H₂O—CO₂] с абсолютной глубиной отпечатка, которая является основной характеристикой, регистрируемой в тесте отпечатка. Типичная постановка этого теста описана в [9]. Заряд ВВ в форме цилиндра без оболочки диаметром 41.3 мм и длиной 203 мм находится в прямом контакте с квадратной пластиной размером 152.4×152.4 мм, толщиной 50.8 мм, выполненной из холоднокатаной стали 1018 с твердостью по Роквеллу 74÷76 (рис. 1). Испытуемый заряд инициируется сверху узлом детонатор — бустерный заряд, а глубина отпечатка δ на пластинесвидетеле измеряется микрометром. Опорная плита под пластиной-свидетелем часто используется для устранения откола, возникающего на ее задней поверхности. Для калибровки теста обычно применяют заряды тринитротолуола (ТНТ) различной плотности, а в качестве стандарта выбирают ТНТ при $\rho = 1.63 \ r/cm^3$ $(\delta_{\text{THT}} = 6.706 \text{ мм})$, из которого можно рассчитать относительную бризантность [21]

$$B_r = 14.911\delta \,[\%]. \tag{7}$$

В работе [9] найдена линейная зависимость между значениями δ и экспериментальными значениями p для 29 ВВ на основе СНNО и СHNOClF и одного ВВ, содержащего барий:

$$p = 3.3374\delta. \tag{8}$$

~	, 3			δ, 1				
Состав	ρ , Γ/cm^3	N	M	эксперимент [9]	уравнение (10)	Отклонение, %		
CHNO								
PETN	1.67	0.0316	30.4	9.804	9.788	-0.163		
TNT	1.59	0.0253	28.5	6.401	6.358	-0.676		
TNT	1.633	0.0253	28.5	6.731	6.562	-2.509		
TNT	1.637	0.0253	28.5	6.756	6.581	-2.589		
HMX	1.73	0.0338	27.2	10.084	9.967	-1.162		
RDX	1.537	0.0338	27.2	8.204	8.311	1.298		
RDX	1.755	0.0338	27.2	10.363	10.195	-1.619		
RDX	1.767	0.0338	27.2	10.516	10.306	-1.989		
Tetryl	1.681	0.0270	30.5	8.103	8.123	0.257		
Cyclotol 77/23	1.743	0.0318	27.4	9.246	9.287	0.449		
Cyclotol 77/23	1.754	0.0318	27.4	9.373	9.377	0.045		
Comp A3	1.631	0.0340	23.9	8.179	7.863	-3.862		
PBX-9011	1.767	0.0333	25.7	9.398	9.450	0.553		
60.7/39.3 RDX/TNT	1.73	0.0304	27.6	8.636	8.624	-0.135		
Comp-B $(64/36)$	1.714	0.0307	27.6	8.611	8.648	0.435		
Octol 76.3/23.7	1.809	0.0318	27.4	10.058	9.810	-2.472		
PBX-9501	1.853	0.0336	26.7	10.470^{*}	10.858	3.706		
54.7/45.3 PETN/TNT	1.655	0.0288	29.7	7.849	8.292	5.648		
X-0007	1.738	0.0330	25.2	8.763	8.886	1.406		
X-0009	1.8	0.0334	26.2	10.008	10.045	0.375		
X-0143	1.798	0.0329	26.5	10.262	9.909	-3.438		
PBX 9205	1.685	0.0328	25.5	8.687	8.475	-2.433		
93.9/2.3/3.8 RDX/DOP/PS	1.713	0.0331	25.9	9.271	9.013	-2.783		
TATB	1.87	0.0291	27.2	8.310^{*}	8.906	7.174		
Нитрометан	1.133	0.0369	23.1	4.140	4.521	9.201		
Cylotol 75.2/24.8	1.2	0.0317	27.5	5.385	5.538	2.851		
60.8/39.2 TNT/DNT	1.579	0.0251	26.4	5.791	5.418	-6.448		

Экспериментальные и рассчитанные по уравнению (10) значения абсолютной глубины отпечатка

Таблица 1

Состав ρ , г/	/3	N	M	δ, μ	07	
	ρ , Γ/CM^2			эксперимент [9]	уравнение (10)	Отклонение, %
CHNOCIF						
PBX-9404	1.84	0.0337	27.0	11.049	10.863	-1.685
PBX-9404	1.844	0.0337	27.0	11.100	10.901	-1.789
LX-04	1.852	0.0327	26.2	10.211	10.142	-0.672
PBX-9207	1.837	0.0334	26.8	10.719	10.613	-0.983
PBX-9010	1.783	0.0330	27.2	9.982	10.079	0.970
X-0114	1.815	0.0345	25.9	9.906	10.619	7.198

Продолжение таблицы 1

Примечание. *Значения взяты из [22].

Таблица 2

0.4586

Результаты множественного линейного регрессионного анализа ($R^2=$ 0.977, $R^2_{adjusted}=$ 0.975)									
K 11 D	n	C C		D	Пределы коэффициента				
Коэффициент	значение	Стандартная ошиока	t Stat	Stat P -значение $10 p$ годо	верхнее 95 $\%$				
X_1	-8.564	0.952	-8.99	$5.11 \cdot 10^{-10}$	-10.509	-6.619			
C_1	2301	65	35.50	$4.59\cdot 10^{-26}$	2169	2434			

0.0325

12.08

 $4.69 \cdot 10^{-13}$

Уравнение (8) дает разумную оценку давления детонации для большинства органических ВВ, представляющих военный интерес, однако это соотношение неверно для металлизированных ВВ, таких как композиции, содержащие свинец и вольфрам. Поэтому желательно получить соотношение, с помощью которого можно оценить абсолютную глубину вмятины. Если такую связь установить, то можно будет предсказать как p, так и B_r без проведения теста отпечатка для каждой новой композиции. Предлагаемая модель должна быть простой, но тем не менее точной и содержать минимальное количество параметров. В итоге рассмотрены четыре переменные: N, M, Q, рассчитанные по выражениям (4)–(6), и плотность BB ρ , и только три из них признаны значимыми для прогнозирования глубины отпечатка при взрыве органических ВВ:

0.3923

 C_2

$$\delta = X_1 + C_1 (N\rho)^2 + C_2(M). \tag{9}$$

Значения X_1 и коэффициентов C_1 и C_2 получены методом множественного линейного регрессионного анализа (MLRA) на основе набора данных из 33 экспериментальных значений δ [9] (табл. 1). Наилучшее совпадение с экспериментом получено при подстановке в (9) следующих значений коэффициентов:

0.3260

$$\delta = -8.564 + 2\,301(N\rho)^2 + 0.3923(M). \tag{10}$$

Результаты MLRA представлены в табл. 2. *Р*значения < 0.05 явно указывают на то, что предложенная комбинация независимых переменных значима для оценки величины δ для BB на основе CHNO и CHNOCIF, а очень небольшое значение *F* (3.01·10⁻²⁵) подтверждает справедливость результата регрессионного анализа. Кроме того, высокое значение $R^2 = 0.977$ показывает, что 97.7 % изменений величины δ объясняются изменением независимых переменных.

Как видно из табл. 1, результаты расчета по уравнению (10) хорошо соответствуют экспериментальным данным для BB на основе CHNO и CHNOClF, что позволяет сделать вывод, что нет необходимости при расчете N и M включать в него, кроме CO₂ и H₂O, такие газообразные соединения, как HCl

Состав	/ 3	3.7	26	δ, Μ		
	ρ , г/см°	IN	М	эксперимент [22]	уравнение (10)	Отклонение, %
Tetryl	1.681	0.0270	30.5	8.10	8.123	0.289
TNT^*	1.62	0.0253	28.5	6.68	6.500	-2.699
Cyclotol $70/30$	1.737	0.0312	27.5	9.40	9.012	-4.133
X-0217	1.822	0.0336	27.0	10.80	10.653	-1.362
X-0217	1.837	0.0336	27.0	10.90	10.795	-0.961
CHNOCIF						
88/12 RDX/Kel-F	1.79	0.0329	27.2	9.78	10.067	2.939
85/15 RDX/Kel-F	1.82	0.0326	27.2	10.06	10.206	1.448
94/3/3 RDX/NC/CEF	1.72	0.0334	27.3	9.34	9.755	4.448
X-0069	1.874	0.0330	27.2	11.10	10.930	-1.533
X-0204	1.909	0.0322	27.2	10.64	10.813	1.623

Экспериментальные и рассчитанные по уравнению (10) значения абсолютной глубины отпечатка

Примечание. *Спрессованный при 65 °С.

и HF. Обращает на себя внимание отклонение значений δ в случае нитрометана (NM), достигающее 9 %, однако это несильно влияет на детонационное давление, рассчитанное с использованием уравнения (8). Например, подстановка $\delta_{\rm NM} = 4.521$ мм в уравнение (8) дает $p = 15.1 \ \Gamma \Pi a$, что близко к данным экспериментов [9] $(p_{exp} = 13.9 \div 14.5 \ \Gamma \Pi a)$. Точно так же расчетное давление детонации ВВ X-0114 (65.7/26.4/7.9 HMX/NQ/Kel-F), cogepжащего нитрогуанидин, отличается в пределах 2 % от экспериментального значения (p_{exp} = 34.6 ГПа), хотя расчетная и экспериментальная глубины отпечатка различаются при этом более чем на 7 %. Чтобы дополнительно проверить прогностическую способность предложенной модели, был использован набор из десяти значений δ для BB на основе CHNO и СНNOClF из работы [22]. Результаты приведены в табл. 3.

Все расчеты глубины отпечатков выполнены для цилиндрических зарядов ВВ диаметром 41.3 мм. Заряды достаточно длинные (203 мм) для того, чтобы детонационная волна была стационарной перед подходом к пластинесвидетелю. Следует отметить, что глубина отпечатка линейно зависит от диаметра заряда, что делает уравнение (10) применимым для прогнозирования δ в случае диаметров заряда, отличных от 41.3 мм. Например, заряд бензотрифуроксана (BTF) диаметром 12.7 мм при $\rho = 1.835$ г/см³ создает глубину отпечатка 3.05 мм. Использование уравнения (10) дает значение $\delta_{\rm BTF} = 9.965$ мм. Если разделить его на 3.25 (соответственно соотношению диаметров зарядов 41.3/12.7), то получается глубина вмятины 3.07 мм, прекрасно согласующаяся с экспериментом.

Для дальнейшей проверки настоящей модели были рассчитаны давления детонации 37 взрывчатых веществ на основе CHNO и CHNOClF с использованием уравнений (2) и (8) и проведено сравнение каждого из них с результатами экспериментов и термохимических расчетов (табл. 4). Взрывчатые вещества были разделены на две группы. Одна из них содержит только индивидуальные соединения, которые представляют текущий интерес, такие как полиазаполициклический нитрамин и соли с высоким содержанием азота (рис. 2). Другая группа включает в себя смеси ВВ и связующих, таких как PBX-9407 и LX-17. Все исследованные композиции были тщательно подобраны так, чтобы охватить большой диапазон начальной плотности ($\rho = 1.088 \div 1.980 \ r/cm^3$).

Основное преимущество уравнения (8) по

Таблица 3

Рис. 2. Структуры соединений, для которых выполнена оценка детонационного давления в табл. 4

Состар	ρ,	ΔH_{ℓ}^0 .	λī	М	Δp , ΓΠα				
Coctab	Γ/CM^3	кДж/моль	IN	111	эксперимент	уравнение (8)	уравнение (2)		
CHNO									
(1)	1.901	$1330.1 \ [23]$	0.0305	31.8	38.6	39.0(1)	46.0 (19)		
(2)	1.831	355.54 [24]	0.0333	28.3	37.0	37.0(0)	35.8(-3)		
(3)	1.886	336.11 [24]	0.0308	31.1	38.9	38.1 (-2)	37.4(-4)		
(4)	1.897	360.69 [24]	0.0317	31.1	38.8	39.9(3)	39.6 (2)		
(5)	1.79	236.50 [25]	0.0323	29.1	34.0	35.1(3)	34.5(2)		
(6)	1.98	397.80 [25]	0.0308	31.1	41.7	40.8(-2)	41.7 (0)		
(7)	1.73	1255 [26]	0.0286	29.0	27.9	28.1 (1)	27.2 (-3)		
(7)	1.63	$1255 \ [26]$	0.0286	29.0	24.4	26.0(7)	24.1 (-1)		
(8)	1.877	446.60 [27]	0.0381	23.6	42.4	41.6 (-2)	38.4(-9)		
(9)	1.72	471.00 [28]	0.0278	25.9	23.4	22.9(-2)	22.6 (-3)		
(10)	1.63	297.00 [28]	0.0278	25.9	19.6	21.1 (8)	19.5(0)		
(11)	1.64	262.00 [28]	0.0282	23.4	19.1	18.5 (-3)	18.8(-2)		
(12)	1.79	489.00 [28]	0.0288	27.4	27.1	27.6 (2)	25.9(-5)		
(13)	1.73	460.00 [28]	0.0301	26.2	24.8	26.5(7)	24.0(-3)		
(14)	1.864	358.00 [29]	0.0315	25.4	30.9	31.1 (1)	28.9(-6)		
(15)	1.615	219.00 [29]	0.0361	20.0	20.6	23.7 (15)	19.0 (-8)		
(16)	1.733	649.00 [29]	0.0361	21.0	28.4	29.0 (2)	25.9(-9)		
(17)	1.532	-101.00 [30]	0.0367	24.0	26.6 [31]	27.1 (2)	23.7(-11)		
(18)	1.78	-98.74 [32]	0.0278	28.4	25.9	27.4 (6)	25.0(-3)		
LX-14	1.833	6.28 [32]	0.0336	26.5	37.0	35.2 (-5)	34.1 (-8)		
PBX-9007	1.6	29.83 [32]	0.0324	25.1	26.5	24.9(-6)	24.2 (-9)		
Cyclotol 78/22	1.76	15.13 [32]	0.0319	27.4	31.7 [33]	31.6(0)	30.6(-3)		
Cyclotol 77/23	1.743	14.56 [32]	0.0318	27.4	31.3 [33]	31.0(-1)	29.9(-4)		
Cyclotol 75/25	1.76	13.41 [32]	0.0317	27.5	31.6 [33]	31.2 (-1)	30.3(-4)		
Cyclotol 65/35	1.72	7.70 [32]	0.0308	27.6	29.2 [33]	29.1(0)	28.0(-4)		
EDC-11	1.782	4.46 [10]	0.0313	26.7	31.5	30.3 (-4)	29.9(-5)		
EDC-24	1.776	50.95 [10]	0.0339	25.3	34.2	32.4 (-5)	31.6(-8)		
14.5/85.5 Toluene/NM	1.088	-130.22 [10]	0.0347	20.3	10.0	8.9 (-11)	10.4 (4)		

	Таблица 4
Детонационное давление BB на основе CHNO и CHNOCIF, рассчитанное по уравнениям	(8) и (2)

Состав	0	3 $\Delta H_{f}^{0},$ $_{\mathrm{K} \mathrm{Д} \mathrm{ж} / \mathrm{MOJE}}$	N		$\Delta p, \Gamma \Pi a$			
	Γ/cm^3			М	эксперимент	уравнение (8)	уравнение (2)	
CHNOCIF								
TFNA	1.692	-752.66 [10]	0.0308	25.8	24.9	26.1(5)	15.7 (-37)	
LX-09	1.837	7.61 [32]	0.0335	27.1	37.7	36.0(-4)	34.8(-8)	
LX-10	1.86	-13.14 [32]	0.0334	27.0	37.5	36.4(-3)	33.9(-9)	
LX-17	1.9	-100.58 [32]	0.0286	27.1	30.0	29.6 (-1)	25.0(-17)	
PBX-9407	1.6	3.39 [32]	0.0335	26.9	28.7	28.6(0)	25.4(-12)	
65/35 RDX/TFNA	1.754	-223.83 [10]	0.0328	26.7	32.4	31.8(-2)	26.8(-17)	
90.1/9.9 RDX/Exon	1.786	-32.10 [10]	0.0332	26.7	32.0	33.4(4)	30.2 (-6)	
90.54/9.46 HMX/Exon	1.833	-33.41 [10]	0.0333	26.8	34.3	35.1(2)	32.2 (-6)	
PBX-9502	1.894	-87.03 [32]	0.0288	27.1	28.5 [10]	29.8(4)	25.8(-9)	

Продолжение таблицы 4

Примечание. В двух последних колонках в скобках приведены отклонения от экспериментов (в процентах).

сравнению с уравнением (2) состоит в том, что уравнение (8) не требует знания теплоты детонации Q, для расчета которой надо знать теплоту образования конденсированной фазы ΔH_f^0 . В большинстве случаев ΔH_f^0 неизвестна, поэтому ее надо или определить экспериментально, что не всегда возможно, или оценить эмпирически на основе результатов [34] либо при помощи квантово-механических методов [35]. Совсем недавно получено эмпирическое соотношение, с помощью которого могут быть точно предсказаны значения δ для мощных BB [36], однако этот метод по-прежнему нуждается в знании ΔH_f^0 для BB, что ограничивает его применимость.

Анализ результатов, представленных в табл. 4, показывает что метод Камлета — Джейкобса дает большие отклонения в случае фтор- и хлорсодержащих ВВ. Например, использование уравнения (2) для предсказания детонационного давления TFNA приводит к большому отклонению (37 %) от эксперимента. Аналогичные результаты получены для LX-17 и 65/35 RDX/TFNA (17%-е отклонение от эксперимента в обоих случаях), с другой стороны, значения давления, рассчитанные по уравнению (8), отклоняются от экспериментальных данных не более чем на 2 %. Значения среднеквадратичного отклонения 2.9 и 1.1 ГПа, полученные для 37 давлений детонации по уравнениям (2) и (8) соответственно, ясно указывают на преимущество уравнения (8) перед уравнением (2).

ЗАКЛЮЧЕНИЕ

Показано, что уравнение (10) эффективно в предсказании глубины отпечатка δ на пластине-свидетеле для индивидуальных и смесевых ВВ. Знание глубины отпечатка позволяет, во-первых, рассчитать относительную бризантность с помощью уравнения (7) и, вовторых, определить давление детонации p с использованием простого эмпирического соотношения (8) из работы [9].

Кроме того, детонационные давления, оцененные с помощью уравнения (8), находятся в лучшем согласии с данными экспериментов и термохимических расчетов, чем полученные на основе известного метода Камлета — Джейкобса. Это доказывает, что произвольная схема разложения [H₂O—CO₂] может быть использована таким образом, чтобы исключить теплоту детонации, не теряя точности при оценке давлений.

ЛИТЕРАТУРА

- Nielsen A. T. Caged polynitramine compound: US Pat. 5 693 794. — 1988.
- Zhang M.-X., Eaton P. E., Gilardi R. Heptaand octanitrocubanes // Angew. Chem., Intern. Ed. — 2000. — V. 39, N 2. — P. 401–404.
- 3. Geith J., Klapötke T. M., Weigand J., Holl G. Calculation of the detonation velocities and detonation pressures of dinitrobiuret (DNB) and diaminotetrazolium nitrate (HDAT-NO₃) // Propell., Explos., Pyrotech. 2004. V. 29, N 1. P. 3–8.
- Gao H., Shreeve J. n. M. Azole-based energetic salts // Chem. Rev. —2011. — V. 111, N 11. — P. 7377–7436.
- Fischer D., Klapötke T. M., Stierstorfer J. Oxalylhydrazinium nitrate and dinitrate-efficiency meets performance // J. Energ. Mater. — 2014. — V. 32, N 1. — P. 37–49.
- Klapötke T. M., Witkowski T. G. Covalent and ionic insensitive high-explosives // Propell., Explos., Pyrotech. — 2016. — V. 41, N 3. — P. 470–483.
- 7. Klapötke T. M., Leroux M., Schmid P. C., Stierstorfer J. Energetic Materials Based on 5,5'-Diamino-4,4'-dinitramino-3,3'-bi-1,2,4-triazole // Chem.-Asian J. 2016. V. 11, N 6. P. 844–851.
- Sućeska M. Test Methods for Explosives. N. Y.: Springer-Verlag, 1995.
- Smith L. C. On brisance, and a plate-denting test for the estimation of detonation pressure // Rep. LADC-6267. — 1963.
- Mader C.L. Numerical Modeling of Explosives and Propellants. — 3rd ed. — Boca Raton, FL: CRC Press, 2008.
- Suceska M. Calculation of detonation properties by EXPLO5 computer program // Mater. Sci. Forum. — 2004. — V. 465/466. — P. 325–330.
- Fried L. E., Howard W. M., Souers P. C. CHEETAH 2.0 User's Manual. — LLNL UCRL-MA-117541 Rev. 5, 1998.
- Smirnov A., Lempert D., Pivina T., Khakimov D. Basic characteristics for estimation polynitrogen compounds efficiency // Cent. Eur. J. Energ. Mater. — 2011. — V. 8, N 4. — P. 233– 247.
- Stine J. R. On predicting properties of explosives-detonation velocity // J. Energ. Mater. — 1990. — V. 8, N 1-2. — P. 41–73.
- Keshavarz M. H., Zamani A., Shafiee M. Predicting detonation performance of CHNOFCI and aluminized explosives // Propell., Explos., Pyrotech. — 2014. — V. 39, N 5. — P. 749–754.
- Keshavarz M.H., Kamalvand M., Jafari M., Zamani A. An improved simple method for the calculation of the detonation performance of CHNOFCl, aluminized and ammonium nitrate explosives // Cent. Eur. J. Energ. Mater. — 2016. — V. 13, N 2. — P. 381–396.

- Kamlet M. J., Jacobs S. J. Chemistry of detonation. I. A simple method for calculating detonation properties of C—H—N—O explosives // J. Chem. Phys. — 1968. — V. 48, N 1. — P. 23–35.
- Hardesty D. R., Kennedy J. E. Thermochemical estimation of explosive energy output // Combust. Flame. — 1977. — V. 28. — P. 45–59.
- Kamlet M. J., Finger M. An alternative method for calculating gurney velocities // Combust. Flame. — 1979. — V. 34. — P. 213–214.
- Short J. M., Helm F. H., Finger M., Kamlet M. J. The chemistry of detonations. VII. A simplified method for predicting explosive performance in the cylinder test // Combust. Flame. — 1981. — V. 43. — P. 99–109.
- Hornberg H., Volk F. The cylinder test in the context of physical detonation measurement methods // Propell., Explos., Pyrotech. — 1989. — V. 14, N 5. — P. 199–211.
- Gibbs T. R., Popolato A. LASL Explosive Property Data. — Berkeley: Univ. of California Press, 1980.
- Chavez D., Klapötke T. M., Parrish D., Piercey D. G., Stierstorfer J. The synthesis and energetic properties of 3,4-bis(2,2,2trinitroethylamino)furazan (BTNEDAF) // Propell., Explos., Pyrotech. — 2014. — V. 39, N 5. — P. 641–648.
- Göbel M., Klapötke T. M. Development and testing of energetic materials: The concept of high densities based on the trinitroethyl functionality // Adv. Funct. Mater. — 2009. — V. 19, N 3. — P. 347–365.
- Elbeih A., Pachman J., Zeman S., Vávra P., Trzcicski W. A., Akštein Z. Detonation characteristics of plastic explosives based on attractive nitramines with polyisobutylene and poly(methyl methacrylate) binders // J. Energ. Mater. — 2012. — V. 30, N 4. — P. 358–371.
- Veauthier J. M., Chavez D. E., Tappan B. C., Parrish D. A. Synthesis and characterization of furazan energetics ADAAF and DOATF // J. Energ. Mater. — 2010. — V. 28, N 3. — P. 229– 249.
- 27. Fischer N., Fischer D., Klapötke T. M., Piercey D. G., Stierstorfer J. Pushing the limits of energetic materials — the synthesis and characterization of dihydroxylammonium 5,5'bistetrazole-1,1'-diolate // J. Mater. Chem. — 2012. — V. 22, N 38. — P. 20418–20422.
- Liu L., Zhang Y., Zhang S., Fei T. Heterocyclic energetic salts of 4,4',5,5'-tetranitro-2,2'biimidazole // J. Energ. Mater. — 2015. — V. 33, N 3. — P. 202–214.
- 29. Dippold A. A., Feller M., Klapötke T. M. 5,5'-Dinitrimino-3,3'-methylene-1H-1,2,4bistriazole — a metal free primary explosive combining excellent thermal stability and high performance // Cent. Eur. J. Energ. Mater. — 2011. — V. 8, N 4. — P. 261–278.

- NIST Chemistry WebBook. NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899. http://webbook.nist.gov (retrieved May 27, 2017).
- Kamlet M. J., Dickinson C. Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman Jouguet detonation pressures on the basis of available experimental information // J. Chem. Phys. 1968. V. 48, N 1. P. 43-50.
- Dobratz B. M., Crawford P. C. LLNL explosives handbook properties of chemical explosives and explosive simulants. Rep. No. UCRL-52997-CHG. 2. 1985.
- 33. Keshavarz M. H. Theoretical prediction of detonation pressure of CHNO high energy materials // Indian J. Eng. Mater. Sci. — 2007. — V. 14, N 1. — P. 77–80.
- 34. Jafari M., Keshavarz M. H. Simple approach for predicting the heats of formation of high nitrogen content materials // Fluid Phase Equilib. — 2016. — V. 415. — P. 166–175.
- Rice B. M., Pai S. V., Hare J. Predicting heats of formation of energetic materials using quantum mechanical calculations // Combust. Flame. — 1999. — V. 118, N 3. — P. 445–458.
- 36. Frem D. Predicting the plate dent test output in order to assess the performance of condensed high explosives // J. Energ. Mater. — 2017. — V. 35, N 1. — P. 20–28.

Поступила в редакцию 1/VI 2017 г.