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computational algorithms for nonparametric density estimation, which is a multidimensional analogue of the
frequency polygon.

Keywords: computational nonparametric estimation of probability density for a given sample, computa-
tional functional kernel algorithm, computational functional projection algorithm, multi-dimensional analogue
of frequency polygon, Strang–Fix approximation, multi-linear approximation, conditional optimization of com-
putational functional algorithms.

1. Вычислительные функциональные алгоритмы
приближения вероятностных плотностей

Данная работа развивает и уточняет подходы из [1–7] решения следующей задачи.

Задача 1. По заданной выборке
{ξ1, . . . , ξn} (1.1)

построить численное приближение неизвестной плотности fξ(x); x ∈ X ⊂ Rd, слу-
чайной величины (вектора) ξ ∈ X ⊂ Rd с заданным уровнем погрешности L > 0 и с
наименьшими вычислительными затратами S.

Такая задача является актуальной при обработке больших данных, например при
применении технологий машинного обучения. В работах [1–7] для решения задачи 1 пред-
лагается использовать следующие вычислительные и оптимизационные конструкции и
методы из теории функциональных алгоритмов метода Монте-Карло (см., например,
[8, 9]).

В первую очередь используются классические конструкции теории численного (ком-
пьютерного) приближения функций (см., например, [10, гл. 2 и 4]) вида

fξ(x) ≈ L(M)fξ(x) =
M∑
i=1

w(i)
[
fξ(y1), . . . , fξ(yM )

]
χ(i)(x), (1.2)

где
χ(M) =

{
χ(1)(x), . . . , χ(M)(x)

}
(1.3)

есть заданный набор функций (аппроксимационный базис), определенным образом свя-
занный с введенной в области X сеткой

Y(M) = {y1, . . . ,yM} (1.4)

(чаще всего равномерной), а

W(M) =
{
w(i)

[
fξ(y1), . . . , fξ(yM )

]
; i = 1, . . . ,M

}
(1.5)

есть набор аппроксимационных коэффициентов, являющихся, как правило, линейными
комбинациями значений приближаемой функции fξ(x) в узлах сетки (1.4) вида

w(i)
[
fξ(y1), . . . , fξ(yM )

]
= a

(i)
1 fξ (yj1) + · · ·+ a

(i)

s(i)
fξ

(
yj

s(i)

)
, (1.6)

здесь, как правило, среди номеров j1, . . . , js(i) присутствует номер i, а также выполнено
соотношение a(i)

1 + · · ·+ a
(i)

s(i)
= 1.
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При решении задачи 1 принципиальным является то, что, в отличие от постано-
вок теории численного приближения функций (см., например, [10, гл. 2 и 4]), значения
{fξ(y1), . . . , fξ(yM )} не заданы, их требуется приближать по заданной выборке (1.1). В
качестве основных мы рассмотрим следующие два способа непараметрического оцени-
вания значения плотности fξ(x) в заданной точке x = ŷ по заданной выборке (1.1).

Первый способ — использование ядерной (точечной) статистической оценки плотно-
сти

fξ(ŷ) ≈ f̃ (ŷ,ker)

ξ
(n) =

1

n

n∑
j=1

κ(ŷ)
(
ξj
)

(1.7)

(см., например, [11]), здесь κ(ŷ)(z) — специально выбираемая ядерная функция, такая
что

fξ(ŷ) ≈
∫
X
fξ(z)κ(ŷ)(z) dz = Eκ(ŷ)(ξ). (1.8)

Второй способ приближения значения fξ(ŷ) — использование проекционной (точеч-
ной) статистической оценки плотности

fξ(ŷ) ≈ f̃ (ŷ,pr)

ξ
(n,K) =

K∑
k=1

 1

n

n∑
j=1

ψ(k)
(
ξj
)ψ(k)(ŷ) (1.9)

(см., например, [12]), здесь
Ψ(K) =

{
ψ(1)(y), . . . , ψ(K)(y)

}
(1.10)

есть подмножество бесконечной ортонормированной системы функций

Ψ(∞) =
{
ψ(1)(y), ψ(2)(y), . . .

}
, (1.11)

такой что
∫
X ψ

(i)(y)ψ(j)(y) dy = 1 при i = j,
∫
X ψ

(i)(y)ψ(j)(y) dy = 0 при i 6= j и

fξ(x) =

∞∑
k=1

c(k)ψ(k)(x) =

∞∑
k=1

[∫
X
fξ(z)ψ(k)(z) dz

]
ψ(k)(x) =

∞∑
k=1

Eψ(k)(ξ)ψ(k)(x). (1.12)

Приближения (1.8), (1.10) дают следующие два вычислительных (компьютерных)
алгоритма приближения вероятностной плотности fξ(x) по заданной выборке (1.1).

Алгоритм 1. Вычислительный функциональный ядерный алгоритм прибли-
жения вероятностной плотности. Приближаем значения (1.6) по формуле (1.8):

fξ(yi) ≈ f̃ (yi,ker)

ξ
(n) =

1

n

n∑
j=1

κ(yi)
(
ξj
)

; i = 1, . . . ,M,

здесь {ξ1, . . . , ξn} — заданная выборка (1.1), и строим окончательную аппроксимацию
плотности fξ(x):

fξ(x) ≈ L(M,n)f̃
(ker)

ξ
(x) =

M∑
i=1

w(i)
[
f̃

(y1,ker)

ξ
(n), . . . , f̃

(yM ,ker)

ξ
(n)
]
χ(i)(x). (1.13)

Алгоритм 2. Вычислительный функциональный проекционный алгоритм
приближения вероятностной плотности. Приближаем значения (1.6) по форму-
ле (1.10):

fξ(yi) ≈ f̃ (yi,pr)

ξ
(n,K) =

K∑
k=1

 1

n

n∑
j=1

ψ(k)
(
ξj
)ψ(k)(yi); i = 1, . . . ,M,
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и строим окончательную аппроксимацию плотности fξ(x):

fξ(x) ≈ L(M,n,K)f̃
(pr)

ξ
(x) =

M∑
i=1

w(i)
[
f̃

(y1,pr)

ξ
(n,K), . . . , f̃

(yM ,pr)

ξ
(n,K)

]
χ(i)(x). (1.14)

2. Важный частный случай —
многомерный аналог полигона частот

В работах [1–7] особо выделен и подробно изучен важный частный случай (одновре-
менно для алгоритмов 1 и 2), когда функция κ(x̂)(z) из соотношений (1.7), (1.8) выбира-
ется в виде

κ(x̂)(z) =
I(∆(x))(z)

hd
; I(A)(z) =

{
1 при z ∈ A,
0 иначе, (2.1)

∆(x)=

{
z =

(
z(1), . . . , z(d)

)
: x(s)− h

2
≤ z(s) < x(s)+

h

2
, s = 1, . . . , d, x =

(
x(1), . . . , x(d)

)}
,

здесь I(A)(z) — индикатор множества A, и одновременно функции Ψ(∞) из (1.11) имеют
вид

ψ(i)(z) =
I(∆(yi))(z)

hd
(2.2)

для всевозможных точек {yi} равномерной сетки с шагом h вида

yi = yi =
(
j

(1)
i h, . . . , j

(d)
i h

)
; i =

(
j

(1)
i , . . . , j

(d)
i

)
— целые числа, (2.3)

в прямоугольной ограниченной областиX ⊂ Rd. Кроме того, в [1–7] выбирались базисные
функции и коэффициенты так называемого “мультилинейного восполнения” вида

χ(i)(x) = χ̂(i,1)(x) = B(1)

[
x(1)

h
− j(1)

i

]
× · · · ×B(1)

[
x(d)

h
− j(d)

i

]
; (2.4)

B(1)(u) =

 u+ 1 при −1 ≤ u ≤ 0,
−u+ 1 при 0 ≤ u ≤ 1,

0 при |u| > 1,
x =

(
x(1), . . . , x(d)

)
;

w(i)
[
fξ(y1), . . . , fξ(yM )

]
= fξ(yi); i = 1, . . . ,M, (2.5)

т. е. в выражении (1.6) имеем j1 = i, a
(i)
1 = 1, a

(i)
2 = 0, . . . , a

(i)

s(i)
= 0.

При всех этих условиях алгоритмы 1 и 2 совпадают и дают следующую известную
вычислительную схему.
Алгоритм 3 [1–7]. Многомерный аналог полигона частот. Приближаем значения
(1.6) по формулам

fξ(yi) ≈ f̃ (yi,pol)

ξ
(n) =

1

nhd

n∑
j=1

I(∆(yi)) (ξj) ; i = 1, . . . ,M,

здесь {ξ1, . . . , ξn} — заданная выборка (1.1), и строим окончательную аппроксимацию
плотности fξ(x):
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fξ(x) ≈ L(M,n)f̃
(pol)

ξ
(x) =

M∑
i=1

f̃
(yi,pol)

ξ
(n)χ̂(i,1)(x). (2.6)

Приведенные в данной работе результаты исследований по выбору аппроксимацион-
ного базиса (1.3) для сформулированных в пункте 1 вычислительных функциональных
ядерных и проекционных алгоритмов приближения вероятностной плотности по задан-
ной выборке (алгоритмы 1 и 2), согласованному — с позиций так называемой “теории
условной оптимизации” (см. [8, 9] и п. 3 данной работы) — с выбором остальных пара-
метров и функций из этих алгоритмов, в определенной степени обосновывают целесооб-
разность широкого использования многомерного аналога полигона частот (алгоритм 3)
для практических вычислений.

3. Об условной оптимизации вычислительных
функциональных алгоритмов приближения

вероятностной плотности

По аналогии с работами [1–6], где для многомерного аналога полигона частот (алго-
ритм 3) удалось получить выражения для условно-оптимальных параметров, применим
следующую общую схему теории условной оптимизации вычислительных функциональ-
ных алгоритмов [7, 8] для рассматриваемых в данной работе компьютерных схем.

Ставится задача согласованного выбора параметров M (число узлов сетки (1.4)) и n
(число используемых выборочных значений (1.1)) функционального алгоритма, обеспе-
чивающего заданный уровень L > 0 погрешности δ(B)(M,n) (для подходящего нормиро-
ванного функционального пространства B(X)) приближения

L(M,n)f̃ξ(x) = L(M,n)f̃
(ker)

ξ
(x) ∨ L(M,n,K)f̃

(pr)

ξ
(x) ∨ L(M,n)f̃

(pol)

ξ
(x)

при минимальных вычислительных затратах S(M,n).

Метод 1 (см., например, [5, 6]). Строится верхняя граница UP (B)(M,n) погрешности ал-
горитма δ(B)(M,n) для используемого нормированного функционального пространства
B(X), зависящая от параметров M и n:

δ(B)(M,n) =
∥∥∥fξ − L(M,n)f̃ξ

∥∥∥
B(X)

≤ UP (B)(M,n). (3.1)

Эта функция двух переменных приравнивается к величине L. Из уравнения вида

UP (B)(M,n) = L (3.2)

один из параметров (например n) выражается через другой: n = Y (L)(M). Это соот-
ношение подставляется в выражение для затрат S(M,n), которое тоже зависит от па-
раметров M и n. В результате получается функция S̃(B,L)(M) одного переменного M,
которая исследуется на минимум с помощью известных приемов математического или
численного анализа. Найденные значения M (B)

min(L) = M
(B)
opt (L), n

(B)
opt(L) = Y (L)

[
M

(B)
opt (L)

]
объявляются “условно-оптимальными параметрами” соответствующего функционально-
го алгоритма.

При оптимизации алгоритмов 1 и 2, кроме выбора параметров M и n, важным яв-
ляется оптимальный, согласованный с параметрами M

(B)
opt (L) и n

(B)
opt(L), выбор как ап-

проксимационного базиса (1.3) и соответствующих коэффициентов (1.5) и (1.7), так и
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вспомогательных функций κ(x)(z) и Ψ(K) =
{
ψ(1)(y), . . . , ψ(K)(y)

}
соответственно. Это

приводит к рассмотрению дополнительных параметров (например параметра K) и к
определенной смене методики оптимизации (см. далее метод 2 в п. 5).

При изучении погрешности δ(B)(M,n) необходимо выбрать как соответствующее нор-
мированное функциональное пространство B(X), так и вероятностный смысл выполне-
ния неравенства вида (3.1), ведь δ(B)(M,n) является случайной величиной. Следуя кано-
нам классического численного анализа (см., например, [10]), в данной статье мы ограни-
чимся рассмотрением случая B(X) = C(X) в рамках так называемого “C-подхода” (см.,
например, [7, 8]), в котором величина

δ(C)(M,n) =
∥∥∥fξ − L(M,n)f̃ξ

∥∥∥
C(X)

= sup
x∈X

∣∣∣fξ(x)− L(M,n)f̃ξ(x)
∣∣∣

ограничивается сверху по вероятности

P
[
δ(C)(M,n) ≤ UP (C)(M,n)

]
> 1− ε (3.3)

для некоторого достаточно малого ε > 0.
Особо отметим, что большая часть рассуждений данной работы относительно не-

сложно, с учетом простого неравенства ‖g‖L2(X) ≤ ‖g‖C(X) ×
√

mesX, переносится на
случай более практичного (в смысле применения для вычислений) и хорошо разрабо-
танного L2-подхода (см., например, [7, 8]), в котором исследуется сходимость в среднем
погрешности

δ(L2)(M,n) =
∥∥∥fξ − L(M,n)f̃ξ

∥∥∥
L2(X)

=

(∫
X

[
fξ(x)− L(M,n)f̃ξ(x)

]2
dx

)1/2

к нулю при M , n→∞, и строятся оценки сверху UP (L2)(M,n), такие что[
Eδ(L2)(M,n)

]2
≤ UP (L2)(M,n).

Для C-подхода (3.3) верхнюю границу погрешности δ(C)(M,n) записывают в виде
суммы трех компонент: компоненты аппроксимации δ

(C)
appr(M), компоненты смещения

δ
(C)
bias(M) и стохастической компоненты δ

(C)
stoch(M,n) [7, 8]:

δ(C)(M,n) = sup
x∈X

∣∣∣fξ(x)− L(M,n)f̃ξ(x)
∣∣∣ ≤ δ(C)

appr(M) + δ
(C)
bias(M) + δ

(C)
stoch(M,n), (3.4)

где

δ(C)
appr(M) =

∥∥∥fξ − L(M)fξ

∥∥∥
C(X)

,

δ
(C)
bias(M) =

∥∥∥L(M)fξ − L
(M)f̄ξ

∥∥∥
C(X)

,

δ
(C)
stoch(M,n) =

∥∥∥L(M)f̄ξ − L
(M,n)f̃ξ

∥∥∥
C(X)

.

Здесь

L(M)f̄ξ(x) = L(M)f̄
(ker)

ξ
(x) =

M∑
i=1

w(i)
[
Eκ(y1)(ξ), . . . ,Eκ(yM )(ξ)

]
χ(i)(x) (3.5)

для алгоритма 1,
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L(M)f̄ξ(x) = L(M,K)f̄
(pr)

ξ
(x)

=
M∑
i=1

w(i)

[
K∑
k=1

Eψ(k)(ξ)ψ(k)(y1), . . . ,
K∑
k=1

Eψ(k)(ξ)ψ(k)(yM )

]
χ(i)(x) (3.6)

для алгоритма 2 и

L(M)f̄ξ(x) = L(M)f̄
(pol)

ξ
(x) =

1

hd

M∑
i=1

EI(∆(yi))(ξ)χ(i)(x) (3.7)

для алгоритма 3.

Уместно сделать следующее методическое замечание. В классической теории услов-
ной оптимизации из [7, 8], где функциональные алгоритмы строились для приближения
решения интегрального уравнения Фредгольма второго рода и включали в основном
несмещенные оценки приближаемой функции в узлах сетки (при этом компонента сме-
щения, как правило, отсутствовала), величина δ

(C)
appr(M) называлась “детерминирован-

ной” компонентой погрешности. В свою очередь, в теории точечных непараметрических
статистических оценок вероятностной плотности “детерминированной” называют компо-
ненту δ

(C)
bias(M). Для рассматриваемых здесь алгоритмов “детерминированный” (не за-

висящий от выборочных значений) вклад в погрешность образует сумма погрешностей
аппроксимации δ(C)

appr(M) и смещения δ(C)
bias(M).

Теперь изучим вопрос о том, как выбор аппроксимационного базиса (1.3) и соответ-
ствующих коэффициентов (1.5) помогает (или наоборот, затрудняет) получение согласо-
ванных верхних границ для компонент погрешности алгоритмов 1–3:

δ(C)
appr(M) = δ(C,ker)

appr (M) ∨ δ(C,pr)
appr (M) ∨ δ(C,pol)

appr (M),

δ
(C)
bias(M) = δ

(C,ker)
bias (M) ∨ δ

(C,pr)
bias (M,K) ∨ δ

(C,pol)
bias (M),

δ
(C)
stoch(M,n) = δ

(C,ker)
stoch (M,n) ∨ δ

(C,pr)
stoch (M,n,K) ∨ δ

(C,pol)
stoch (M,n).

4. Основные принципы построения
аппроксимационных базисов

4.1. Мультипликативные конструкции многомерных
аппроксимационных базисов

Для получения достаточно универсальных (в том числе многомерных) вычислитель-
ных схем алгоритмов 1 и 2 и методов их изучения в рамках теории условной оптимизации
целесообразным видится использование мультипликативных конструкций, описанных в
[13, гл. 2], вида

χ(i)(x) = χ
[
t
(yi)
1 (x(1))

]
× · · · × χ

[
t
(yi)
d (x(d))

]
; x =

(
x(1), . . . , x(d)

)
, (4.1)

где χ(w) — одинаковая для всех компонент так называемая “образующая базис” функция
одного переменного, а t(yi)j (w); j = 1, . . . , d, — единообразные (как правило, линейные)
функции, связанные с соответствующими компонентами узла yi.

Конструкции вида (4.1) позволяют перенести свойства одномерного базиса, опреде-
ляемого той или иной образующей функцией χ(w), на многомерный случай, реализуя
соответствующую индукцию по размерности d.
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Пример. Рассмотрим базисные функции так называемой “аппроксимации Стренга–
Фикса” (см. [13, гл. 2])

χ(i)(x) = χ̂(i,r)(x) = B(r)

[
x(1)

h
− j(1)

i

]
× · · · ×B(r)

[
x(d)

h
− j(d)

i

]
(4.2)

для сетки (2.3); здесь функция B(r)(w) обозначает B-сплайн r-го порядка, который опре-
деляется рекуррентным соотношением

B(r)(w) = B(r−1) ∗B(0)(w) =

∫ ∞
−∞

B(r−1)(w − v)B(0)(v) dv; r = 1, 2, . . . ,

где

B(0)(w) =

{
1 при − 1/2 ≤ w ≤ 1/2,
0 при |w| > 1/2.

Особо отметим, что рассмотренный выше базис (2.4) мультилинейного восполнения яв-
ляется частным случаем базиса аппроксимации Стренга–Фикса (4.2) для r = 1. Заметим
также, что на практике в выражениях вида (4.2) используются B-сплайны нечетных
порядков r = 1, 3, 5, . . . , так как для четных r = 0, 2, 4, . . . возникает необходимость уве-
личивать более чем вдвое число контролируемых точек (по сравнению с сеткой (2.3)),
потому что добавляются центры отрезков по каждой компоненте, а также центры мно-
гомерных кубов разбиения компактной области X.

Рассмотрим обоснования двух свойств базиса (4.2), крайне важных для рассуждений
теории условной оптимизации, описанных в п. 3.

Утверждение 1. Базис (4.2) является разложением единицы, т. е.
∑

i χ
(i,r)(x) ≡ 1 для

всех x ∈ Rd.
Доказательство. Используем метод математической индукции по размерности d про-
странства Rd.

Для d = 1 утверждение доказываем индукцией по порядку r сплайна B(r). Пусть
r = 0 и x ∈ R. Найдется единственное целое число î такое, что îh− h/2 ≤ x < îh+ h/2.
Тогда

∑
iB

(0)(x/h− i) ≡ 1, так как в этой сумме все слагаемые равны нулю, кроме î-го,
которое равно единице.

Пусть теперь ∑
i

B(r−1)
[x
h
− i
]
≡ 1 (4.3)

для всех x ∈ R. Тогда, согласно определению B-сплайна, имеем∑
i

B(r)
[x
h
− i
]

=
∑
i

∫ +∞

−∞
B(0)(y)B(r−1)

[
x− ih
h
− y
]
dy

=

∫ +∞

−∞
B(0)(y)

∑
i

B(r−1)

[
x− ih
h
− y
]
dy

=

∫ +1/2

−1/2

∑
i

B(r−1)

[
(x− hy)− ih

h

]
dy.

Используя соотношение (4.3) для (x − hy) вместо x, получаем
∑

iB
(r)[x/h − i] ≡ 1, т. е.

утверждение 1 верно для d = 1.



А.В. Войтишек, Н.Х. Шлымбетов 155

Наконец, индуктивный переход по d следует из соотношения∑
i

χ(i,r)(x) =
∑

j
(1)
(i)
,...,j

(d)
(i)

χ(
j
(1)
(i)
,...,j

(l)
(i)

)(x(1), . . . , x(d)
)

=
∑

j
(1)
(i)
,...,j

(d−1)
(i)

χ(
j
(1)
(i)
,...,j

(d−1)
(i)

)(x(1), . . . , x(d−1)
)
×
∑
j
(d)
(i)

B(r)

[
x(d)

h
− j(d)

(i)

]
.

Утверждение 1 доказано.

Утверждение 2. Если функция fξ(x) принадлежит пространству Cr+1(X) и в при-
ближении (1.2) используются базисные функции χ(M) вида (4.2), то найдутся такие ко-
эффициенты W(M) из соотношений (1.5), (1.6), что справедливо неравенство

‖fξ − L
(M)fξ‖C(X) ≤ Hrh

r+1‖fξ‖Cr+1(X), (4.4)

причем константа Hr не зависит от функции fξ(x) и шага сетки h.

Доказательство утверждения 2 не столь просто (по сравнению с доказательством
утверждения 1), так как здесь мы имеем дело по сути с “теоремой существования”: для
каждого частного случая соотношения (4.4) необходимо получать явный вид как коэф-
фициентов W(M), так и константы Hr.

Относительно простое рассуждение получается для r = 1 (т. е. для базиса (2.4)).
Оптимальное соотношение для погрешности (4.4) дают коэффициенты (2.5) (или (1.6)
при j1 = i, a

(i)
1 = 1, a

(i)
2 = 0, . . . , a

(i)

s(i)
= 0). Для одномерного случая d = 1 и X = [a, b]

приближение (1.2) превращается в кусочно-линейное приближение плотности fξ(x) =

fξ(x) на интервале [a, b], при этом∥∥fξ − L(M ;r=1)fξ
∥∥
C(X)

= max
x∈[a,b]

∣∣fξ(x)− L(M ;r=1)fξ(x)
∣∣

= max
x∈[yi,zi]; i=1,..,M

∣∣∣∣fξ(x)− fξ(yi)− (x− yi)
fξ(zi)− fξ(yi)

h

∣∣∣∣ ,
здесь yi = a+ (i− 1)h, zi = a+ ih, h =

b− a

M
; i = 1, . . . ,M . По аналогии с рассуждениями

из [10, гл. 2, § 3] заметим, что

fξ(x)− fξ(yi)− (x− yi)
fξ(zi)− fξ(yi)

h
=
f ′′ξ (x0)

2
(x− yi)(x− zi), (4.5)

где x0 — некоторая внутренняя точка полуинтервала [yi, zi) (здесь мы учли то, что,
согласно условиям утверждения 2, функция fξ(x) принадлежит пространству C2[a, b]).

Действительно, если рассмотреть функцию Y (x) = fξ(x)− fξ(yi)− (x− yi)
fξ(zi) − fξ(yi)

h
−

A(x − yi)(x − zi) с константой A такой, что Y (x) = 0, то у этой функции имеются как
минимум три нуля в точках yi, x, zi. Тогда по теореме Ролля (см., например, [14, гл. 6,
§ 1]) у функции Y ′(x) имеется не менее двух нулей на полуинтервале [yi, zi). В этом
случае, согласно той же теореме Ролля, у функции Y ′′(x) имеется как минимум один

нуль x0 ∈ [yi, zi). Имеем 0 = Y ′′(x0) = f ′′ξ (x0) − 2A и A =
f ′′ξ (x0)

2
. С учетом соотношения
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Y (x) = 0 получаем соотношение (4.5). Максимум модуля квадратного трехчлена |(x −
yi)(x − zi)| достигается в точке x =

yi + zi
2

и равен zi − yi
4

. Поэтому maxx∈[a,b]

∣∣fξ(x) −

L(M)fξ(x)
∣∣ ≤ H̃1h

2; H̃1 =
maxx∈[a,b]

∣∣f ′′ξ (x)
∣∣

8
.

Относительно несложные индуктивные переходы, позволяющие получить для r = 1
оценку вида (4.4)

δ(C;r=1)
appr (M) = ‖fξ − L

(M ; r=1)fξ‖C(X) ≤
[
H(h→M)

]2
8

d∑
s=1

max
x∈X

∣∣∣∣∣ ∂2

∂
(
x(s)
)2 fξ(x)

∣∣∣∣∣ M−2/d (4.6)

для fξ(x) ∈ C2(X) и для коэффициентов (2.5), показаны в [13, гл. 2] (для d = 2) и в [15]
(для произвольного d), здесь константа H(h→M), такова что

h = H(h→M)M−1/d. (4.7)

В более сложном, но достаточно хорошо изученном случае r = 3 в одномерном слу-
чае (т. е. для d = 1), оценка вида maxx∈[a,b] |fξ(x)−L(M ; r=3)fξ(x)| ≤ H̃3h

4; H̃3 = 0.030382×

maxx∈[a,b]

∣∣∣∣ ∂4

∂x4 fξ(x)

∣∣∣∣ для fξ(x) ∈ C4[a, b] получена в [16, гл. 9] для коэффициентов

w(i) [fξ(y1), . . . , fξ(yM )] = −1

6
fξ(yi − h) +

4

3
fξ(yi) −

1

6
fξ(yi + h); i = 2, . . . ,M (это ком-

бинация значений функции fξ(x) в трех узлах сетки, включая узел yi = a+ (i− 1)h, т. е.
в формуле (1.6) имеем s(i) = 3). Этот результат обобщен в [15] на случай произвольного d,
где получена оценка

δ(C; r=3)
appr (M) = ‖fξ − L

(M ; r=3)fξ‖C(X)

≤ 0.030382
[
H(h→M)

]4
d∑
s=1

max
x∈X

∣∣∣∣∣ ∂4

∂
(
x(s)
)4 fξ(x)

∣∣∣∣∣M−4/d (4.8)

для fξ(x) ∈ C4(X) и для коэффициентов вида

w(i)
[
fξ(y1), . . . , fξ(yM )

]
= w(i; r=3)

=

(
4

3

)d ∑
k{−1,0,1}d

f(yi+k)

(−8)|k(1)|+···+|k(d)| ; k =
(
k(1), . . . , k(d)

)
, (4.9)

здесь задействованы уже s(i) = 3d значений функции fξ(x).

4.2. Использование константы устойчивости
аппроксимационного базиса

Для построения оценок сверху для компоненты смещения δ(C)
bias(M) и стохастической

компоненты δ
(C)
stoch(M,n) важно уметь оценивать так называемую “константу устойчиво-

сти” K(stab), для которой

δ
(C)
bias(M) =

∥∥∥L(M)fξ − L
(M)f̄ξ

∥∥∥
C(X)

≤ K(stab) max
i=1,...,M

∣∣fξ(yi)− f̄ξ(yi)
∣∣, (4.10)
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δ
(C)
stoch(M,n) =

∥∥∥L(M)f̄ξ − L
(M,n)f̃ξ

∥∥∥
C(X)

≤ K(stab) max
i=1,...,M

∣∣f̄ξ(yi)− f̃ (yi)

ξ
(n)
∣∣, (4.11)

здесь для алгоритма 1 f̄ξ(yi) = Eκ(yi)(ξ) и f̃
(yi)

ξ
(n) =

1

n

∑n
j=1 κ

(yi)
(
ξj
)
, для алгорит-

ма 2 f̄ξ(yi) =
∑K

k=1 Eψ(k)(ξ)ψ(k)(yi) и f̃ (yi)

ξ
(n) =

∑K
k=1

[
1

n

∑n
j=1 ψ

(k)
(
ξj
)]
ψ(k)(yi), а для

алгоритма 3 f̄ξ(yi) =
EI(∆(yi))(ξ)

hd
и f̃ (yi)

ξ
(n) =

1

nhd
∑n

j=1 I(∆(yi)) (ξj).
Из соотношений (1.2), (3.5)–(3.7), (4.10) и (4.11) следует, что

K(stab) ≤ K(χ(M)) ×K(W(M)),

где K(χ(M)) = supx∈X
∑M

i=1

∣∣χ(i)(x)
∣∣ — так называемая “константа Лебега” (см., напри-

мер, [17, раздел 3.1]), а K(W(M)) = maxi=1,...,M

(∣∣a(i)
1

∣∣+ · · ·+ ∣∣a(i)

s(i)

∣∣) (см. формулу (1.6)) —
так называемая “константа компактности коэффициентов”.

Заметим, что для коэффициентов вида (2.5), обеспечивающих порядок M−2/d по M
погрешности аппроксимации для базиса (2.4) (см. соотношение (4.6)), имеем
K(W(M); r=1) = 1. В свою очередь, для коэффициентов вида (4.9), обеспечивающих по-
вышенный порядок M−4/d по M погрешности аппроксимации для базиса (4.2) при r = 3

(см. соотношение (4.8)), константа компактности K(W(M); r=3) превосходит единицу и за-
метно (степенным образом) растет с увеличением размерности d. Справедливости ради
отметим, что в работе [15] с помощью достаточно тонких рассуждений для базиса (4.2)
при r = 3 с коэффициентами (4.9) удалось получить неравенство (4.10) с константой

K(stab; r=3) =
(

11

9

)d
, которая растет с ростом d гораздо медленней, чем константа ком-

пактности коэффициентов K(W(M); r=3). Тем не менее, в вычислительных конструкци-
ях типа алгоритмов 1–3 мы настоятельно рекомендуем использовать базисы (1.3), даю-
щие приемлемые оценки погрешности аппроксимации δ(C)

appr(M) для коэффициентов ви-
да (2.5), у которых K(W(M)) = 1.

Из утверждения 1 следует, что для базиса аппроксимации Стренга–Фикса (4.2) (в
частности, для мультилинейного базиса (2.4)) константа Лебега равна единице:
K(χ(M); r) = 1. Здесь весьма важную роль играет неотрицательность функций (4.2).
Этим свойством, к сожалению, не обладают функции одномерного базиса Лагранжа
χ(i)(x) =

∏M+1
j=1,j 6=i(x − yj)/(yi − yj); x ∈ [a, b] (см., например, [10, гл. 2]), которые для

коэффициентов вида (2.5) обладают рекордной сходимостью (порядка 1/M !) погреш-
ности аппроксимации δ(C; Lag)

appr (M) к нулю. Однако в [17, гл. 3] показано, что константа
Лебега для равномерной сетки yi = a + (i − 1)h; h = (b − a)/M , ограничена снизу ве-

личиной K(χ(M); Lag) ≥ 2M−3

M3/2
, и такая неустойчивость не подходит для алгоритмов 1–3.

Аналогичные выводы можно сделать и для тригонометрических базисов.
В работах [18, 19] отмечено, что относительно неплохими свойствами устойчивости

обладают базисные функции одномерного приближения Бернштейна

χ(i)(x) = Ci−1
M xi−1(1− x)M−i+1; 0 ≤ x ≤ 1, CkN =

N !

k!(N − k)!
, (4.12)

с коэффициентами (2.5) (здесьX = [a, b] = [0, 1] и yi = (i−1)h), для которыхK(stab; Ber) =

K(χ(M); Ber) = K(W(M); Ber) = 1. Однако приближение Бернштейна обладает весьма по-
средственными аппроксимационными свойствами (что делает нецелесообразным его ис-
пользование в алгоритмах 1–3), а конкретнее, справедливо следующее утверждение.
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Утверждение 3 [18,19]. Если функция fξ(x) принадлежит пространству C[0, 1] и удо-
влетворяет условию Липшица с константой L, а в одномерном приближении (1.2) исполь-
зуются базисные функции вида (4.12) и коэффициенты (2.5), то справедливо неравенство

δ(C; Ber)
appr (M) = ‖fξ − L(M)fξ‖C[0,1] ≤ L/(2

√
M).

Рассуждения этого пункта, таким образом, достаточно детально обосновывают реко-
мендации работ [1–7] по выбору в качестве базиса χ(M) из (1.3) и коэффициентов W(M)

из (1.5), (1.6) мультилинейных функций (2.4) с коэффициентами (2.5), для них

K(stab ;r=1) = K(χ(M); r=1) = K(W(M); r=1) = 1. (4.13)

5. Некоторые замечания по конструированию
и оптимизации ядерного алгоритма 1

и проекционного алгоритма 2

Усиливая вывод предыдущего пункта, можно предположить, что не только базисные
функции и коэффициенты (2.5), но и в целом алгоритм 3 является наиболее предпочти-
тельным с точки зрения возможности оптимизации и целесообразности практического
применения.

Так, для приближения из алгоритма 3 справедливо следующее утверждение.

Утверждение 4. Для алгоритма 3 при fξ ∈ C2(X) справедливо неравенство

δ
(C,pol)
bias (M) ≤

[
H(h→M)

]2
24

d∑
s=1

max
y∈X

∣∣∣∣∣ ∂2

∂
(
y(s)
)2 fξ(y)

∣∣∣∣∣ M−2/d. (5.1)

Доказательство. Из соотношений (4.10), (4.13) имеем

δ
(C,pol)
bias (M) ≤ max

i=1,...,M

∣∣∣∣∣fξ(yi)−
EI(∆(yi))(ξ)

hd

∣∣∣∣∣ ≤ sup
y∈X

∣∣∣∣ 1

hd

∫
∆(y)

[
fξ(y)− fξ(z)

]
dz

∣∣∣∣ . (5.2)

По аналогии с рассуждениями из п. 4.1 рассмотрим сначала одномерный случай (d = 1):

1

hd

∣∣∣∣∫
∆(y)

[
fξ(y)− fξ(z)

]
dz

∣∣∣∣ =
1

h

∣∣∣∣∣
∫ y+h/2

y−h/2

[
fξ(y)− fξ(z)

]
dz

∣∣∣∣∣ . (5.3)

Рассмотрим разложение Тейлора функции fξ(z) в точке y с учетом условия fξ ∈ C2(X):

fξ(z) = fξ(y) + f ′ξ(y)(z − y) +D1; z ∈ [y − h/2, y + h/2],

|D1| ≤
(z − y)2

2
max

z∈[y−h/2,y+h/2]

∣∣f ′′ξ (z)
∣∣ .

С учетом того, что
∫ y+h/2
y−h/2 f

′
ξ(y)(z−y) dz = 0, из соотношений (5.2), (5.3) для случая d = 1

получаем
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δ
(C,pol)
bias (M) ≤ 1

2h
max
z∈[a,b]

∣∣f ′′ξ (z)
∣∣ ∫ y+h/2

y−h/2
(z − y)2 dz =

h2

24
max
z∈[a,b]

∣∣f ′′ξ (z)
∣∣ .

Простой индуктивный переход по размерности d и соотношение (4.7) дают неравен-
ство (5.1). Утверждение доказано.

Сравнивая соотношения (4.6) и (5.1), отметим, что верхние границы погрешностей
δ

(C,pol)
appr (M) и δ(C,pol)

bias (M) имеют одинаковый порядок по параметру M , что оказывается
весьма важным при применении оптимизационного метода 1 для алгоритма 3 (см. далее
формулу (5.8)).

Для алгоритмов 1 и 2 из соотношений (4.10), (4.13) мы можем только получить соот-
ношения

δ
(C,ker)
bias (M) ≤ sup

y∈X

∣∣∣∣ 1

mesX

∫
X

[
fξ(z)κ(y)(z) mesX − fξ(y)

]
dz

∣∣∣∣ , (5.4)

δ
(C,pr)
bias (M,K) ≤ sup

y∈X

∣∣∣∣∣
∞∑

k=K+1

[∫
X
fξ(z)ψ(k)(z) dz

]
ψ(k)(y)

∣∣∣∣∣ . (5.5)

Оценка правых частей полученных неравенств (5.4), (5.5) требует отдельного исследо-
вания для каждого конкретного выбора функций κ(x)(z) и Ψ(K) =

{
ψ(1)(y), . . . , ψ(K)(y)

}
соответственно. Важно также отметить, что правые части соотношений (5.4) и (5.5) явно
не зависят от параметра M .

Используя соотношения (4.11), (4.13) и ряд утверждений из теории порядковых ста-
тистик [20], удается получить следующий результат.

Утверждение 5 [5,6]. Для многомерного аналога полигона частот (алгоритм 3) в пред-
положении непрерывности приближаемой плотности fξ(x) на компакте X справедливо
утверждение: для любого ε > 0 существуют положительные действительные константы
H

(C,pol)
stoch,1 (ε), H

(C,pol)
stoch,2 (ε) и натуральное число M̂ такие, что для любого M > M̂ существует

натуральное число N̂(ε,M) такое, что для всех n > N̂(ε,M) выполнено

P

{
δ

(C,pol)
stoch (M,n) ≤

H
(C,pol)
stoch,1 (ε)

√
M

√
n

[
√

2 lnM +
H

(C,pol)
stoch,2 (ε)− ln lnM

2√
2 lnM

]}
> 1− ε. (5.6)

Для алгоритма 3 удается получить выражения для условно-оптимальных параметров
по методу 1, что является весомым аргументом в пользу практического применения этой
численной схемы. Приведем соответствующие рассуждения (см. также [5, 6]).

Отметим прежде всего важную отличительную (и весьма позитивную) особенность
алгоритма 3, состоящую в том, что затраты S(pol) этого алгоритма пропорциональны
величине n× t, где t — время определения того, в какой из кубов ∆(yi) попадает очеред-
ное выборочное значение ξj случайной величины (вектора) ξ; i = 1, . . . ,m, j = 1, . . . , n.
Несложно добиться того, чтобы время t не зависело от числа M кубов ∆(yi). Таким
образом, затраты оптимизированных версий алгоритма 3 явно не зависят от M . В опти-
мизационных процедурах метода 1 зависимость затрат S(pol) от параметра M возникает
из-за наличия уравнений вида (3.2), определяющих зависимость параметра n (а значит,
и затрат S(pol)) от M .

Рассмотрим такую процедуру для C-подхода. Здесь требуется решать следующую
оптимизационную задачу: найти значения M (C),pol

opt (L) и n(C,pol)
opt (L), для которых дости-

гается минимум
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min
M,n

S(pol)(M,n) = min
M,n

[t× n(M,L) + S0] , (5.7)

здесь S0 — время вычисления 2d ненулевых слагаемых f̃ (yi)

ξ
(n)χ̂(i,1)(x) в сумме (2.6) для

заданной точки x ∈ X, при условии

A
(C)
1

M2/d
+
A

(C)
2 ×

√
M√

n

[
√

2 lnM +
A

(C)
3 − ln lnM

2√
2 lnM

]
= L, (5.8)

где A(C)
1 =

[
H(h→M)

]2

6

∑d
s=1 maxx∈X

∣∣∣∣ ∂2

∂ (x(s))
2 fξ(x)

∣∣∣∣ , A(C)
2 = H

(C,pol)
stoch,1 (ε), A

(C)
3 = H

(C,pol)
stoch,2 (ε)

(см. соотношения (3.4), (4.6), (5.1), (5.6)).
Выражение в левой части уравнения (5.8) является относительно сложным и мы

применим следующий прием из [21], позволяющий заменить это выражение на более
простое. Используя промежуточный результат из доказательства теоремы 1.5.3 из [20],
вместо (5.8) можно рассмотреть соотношение

A
(C)
1

M2/d
+
A

(C)
2 ×

√
M√

n

√
2 lnM − ln lnM + 2A

(C)
3 = L. (5.9)

Несложно показать, что для любых фиксированных M̄ ∈ N и a > 0 найдется b > 0
такое, что при M > M̄ выполнено√

2 lnM − ln lnM + 2A
(C)
3 ≤ bMa. (5.10)

С учетом соотношений (5.9), (5.10) заменим соотношение (5.8) на следующее:

A
(C)
1

M2/d
+
A

(C)
2 ×

√
M√

n
bMa = L. (5.11)

Из формул (5.7), (5.11) имеем

n =

[
A

(C)
2

]2
b2M2a+1[

L−A(C)
1 /M2/d

]2 , S̃(C,L)(M) =
t
[
A

(C)
2

]2
b2M2a+1[

L−A(C)
1 /M2/d

]2 + S0. (5.12)

Дифференцируем S̃(C,L)(M) по M

∂S̃(C,L)(M)

∂M
=
t
[
A

(C)
2

]2
b2(2a+ 1)M2a+1[

L−A(C)
1 /M2/d

]3
(
L− A

(C)
1 × [(2a+ 1)d+ 4]

M2/d × (2a+ 1)× d

)
и найдем точку минимума, она же — условно-оптимальное значение параметра M мно-
гомерного аналога полигона частот (алгоритм 3) для C-подхода:

M
(C,pol)
opt (L) =

(
A

(C)
1 [(2a+ 1) d+ 4]

(2a+ 1) d

)d/2
L−d/2. (5.13)

Несколько слов о том, как выбирать параметр b. С одной стороны, его следует брать
по возможности малым, так как множитель b2 входит в выражение для трудоемко-
сти (5.12). С другой стороны, для значения M

(C,pol)
opt (L) должно выполняться неравен-

ство (5.10). Поэтому выберем b из условия равенства в соотношении (5.10) при M =

M
(C,pol)
opt (L):
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b2 =
2 lnM

(C,pol)
opt (L)− ln lnM

(C,pol)
opt (L) + 2A

(C)
3[

M
(C,pol)
opt (L)

]2a . (5.14)

Из соотношений (5.12)–(5.14) получаем условно-оптимальное значение параметра n
многомерного аналога полигона частот (алгоритм 3) для C-подхода:

n
(C,pol)
opt (L) =

[
A

(C)
1

]d/2 [
A

(C)
2

]2
[(2a+ 1)d+ 4]2+d/2

16 [(2a+ 1)× d]d/2
×[

2 lnM
(C,pol)
opt (L)− ln lnM

(C,pol)
opt (L) + 2A

(C)
3

]
L−2−d/2.

Наконец, для важного предельного случая a = 0 имеем

M
(C,pol)
opt (L) =

[
A

(C)
1 × (d+ 4)

d

]d/2
L−d/2,

n
(C,pol)
opt (L) =

[
A

(C)
1

]d/2[
A

(C)
2

]2
(d+ 4)2+d/2

16 dd/2

[
2 lnM

(C)
opt (L)− ln lnM

(C)
opt (L) + 2A

(C)
3

]
L−2−d/2.

Что касается алгоритмов 1 и 2, то для них в общем случае получить аналоги при-
веденных в данном пункте рассуждений для алгоритма 3 не удается. Здесь видится
целесообразным применение следующей известной технологии (см., например, [6]) выбо-
ра параметров алгоритмов: n — число используемых выборочных значений (1.1), M —
число узлов сетки (1.4) и функций κ(x)(z) и Ψ(K) =

{
ψ(1)(y), . . . , ψ(K)(y)

}
.

Метод 2. Для выбора параметров n, M и функций κ(x)(z),Ψ(K) =
{
ψ(1)(y), . . . , ψ(K)(y)

}
полагаем:
– для алгоритма 1

UP (C)
appr(M) = UP (C,ker)

appr (M) = UP (C,pr)
appr (M) = H(C)

apprM
− 2
d =

L

3
, (5.15)

где H
(C)
appr =

[
H(h→M)

]2

8

∑d
s=1 maxx∈X

∣∣∣∣ ∂2

∂ (x(s))
2 fξ(x)

∣∣∣∣, UP (C,ker)
bias (M) = supy∈X

∣∣∣ 1

mesX
×∫

X

[
fξ(z)κ(y)(z) mesX − fξ(y)

]
dz
∣∣∣ =

L

3
, UP

(C,ker)
stoch (M,n) =

L

3
;

– для алгоритма 2 выполнение соотношений (5.15) и

UP
(C,pr)
bias (K) = sup

y∈X

∣∣∣∣∣
∞∑

k=K+1

[∫
X
fξ(z)ψ(k)(z) dz

]
ψ(k)(y)

∣∣∣∣∣ =
L

3
,

UP
(C,pr)
stoch (M,n,K) =

L

3
.

Получение выражений для верхних границ UP
(C,ker)
stoch (M,n) и UP

(C,pr)
stoch (M,n,K) сто-

хастических компонент погрешностей δ(C,ker)
stoch (M,n) и δ(C,pr)

stoch (M,n,K) требует отдельных
специальных исследований.

Отметим, что метод 2 гарантирует заданный уровень погрешности L > 0, но не обес-
печивает, вообще говоря, минимальность затрат S(M,n) соответствующего алгоритма.
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6. Заключение

В данной работе сформулирована задача построения экономичного компьютерного
алгоритма приближения (с фиксированной точностью) неизвестной вероятностной плот-
ности по заданной выборке. В связи с решением этой задачи проведен анализ многомер-
ных аппроксимационных базисов (1.3) с точки зрения возможности их применения в
ядерных и проекционных функциональных компьютерных алгоритмах 1 и 2. Отмече-
на целесообразность применения мультипликативных конструкций (4.1) и, в частности,
устойчивых базисов аппроксимации Стренга–Фикса (4.2) (в первую очередь, мультили-
нейного базиса (2.4) совместно с простейшими коэффициентами (2.5)). Особо выделен
общий частный случай алгоритмов 1 и 2 для кусочно-постоянных ядерных функций (2.1)
и ортонормированных функций (2.2) соответственно — многомерный аналог полигона
частот (алгоритм 3). Приведенные в работе соображения теории условной оптимизации
функциональных алгоритмов обосновывают целесообразность широкого практического
применения алгоритма 3 при решении задачи экономичной компьютерной непараметри-
ческой оценки плотности с фиксированной точностью по заданной выборке.
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