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A Quantitative Structure — Property Relationship (QSPR) model based on Genetic Algorithm 
(GA), Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) techniques 
was developed for the prediction of water-to-polydimethylsiloxane partition coefficients 
(log KPDMS—water) of 139 organic compounds. A suitable set of molecular descriptors was cal-
culated and important descriptors were selected by genetic algorithm and stepwise multiple re-
gression. These descriptors were: Minimum Atomic Orbital Electronic Population (P��), Kier 
Shape Index (order 3) (3�), Polarity Parameter / Square Distance (PP), and Complementary In-
formation Content (order 2) (2CIC). In order to find a better way to depict the nonlinear nature 
of the relationships, these descriptors were used as inputs for a generated ANN. The root mean 
square errors for the neural network calculated log KPDMS—water of training, test, and validation 
sets were 0.116, 0.179, and 0.183, respectively, which are smaller than those obtained by MLR 
model (0.422, 0.425, and 0.480, respectively). The results obtained showed the ability of de-
veloped artificial neural network to predict water-to-polydimethylsiloxane partition coeffi-
cients of various organic compounds. Also, the results revealed the superiority of the artificial 
neural network over the multiple linear regression model. 
 
K e y w o r d s: quantitative structure-property relationship, water-to-polydimethylsiloxane 
partition coefficient, artificial neural network, multiple linear regression, genetic algorithm. 

INTRODUCTION 

Partition coefficients of organic compounds are of remarkable importance because their bioavail-
ability as well as residual concentrations in atmosphere, water and soil strictly depends on partition 
properties [ 1, 2 ]. When an apolar substance (polydimethylsiloxane, PDMS) is selected as extracting 
phase vs. water, the partition coefficient (KPDMS—water) of an organic compound can be defined as its 
index of hydrophobicity. Recently, solid-phase microextraction (SPME) method was applied to meas-
ure water-to-polydimethylsiloxane partition coefficients. SPME is a versatile analytical technique de-
veloped by Pawliszyn and coworkers [ 3, 4 ] that combines sampling and sample preparation into a 
single step. Successful implementation of a feasible SPME-based method is strongly dependent upon 
an accurate determination of KPDMS—water values between the SPME sorbent phase and sample matrix. 
When an aqueous sample of volume VW is equilibrated with a volume VPDMS of extraction phase, con-
tinually renewed each time, the following formula can be applied: 

 PDMS-water
+1 PDMS

= 1 (isothermal),i W

i

C VK
C V

� �� �
� 	
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 �� �� �
 (1) 

where Ci and Ci+1 are the analyte equilibrium concentrations in the aqueous phase for two consecutive  
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extractions performed on the same (unchanged) sample aliquot. The integer value i indicates how 
many identical batch equilibrium extractions have been carried out. Of course, Ci is always greater 
than Ci+1, and in theory their ratio is a constant. 

There are some experimental methods to determine air/water-to-polydimethylsiloxane partition 
coefficients of organic compounds [ 5—10 ] but these methods are time-consuming and require high-
purity samples and skilled operators, so the development of an alternative method such as Quantitative 
Structure — Property Relationship (QSPR) would be useful for the theoretical calculation of 
log KPDMS—water values. QSPR methods represent an attempt to correlate structural descriptors of mole-
cules with their desired chemical properties and/or activities. The advantages of this approach lie in 
the fact that it requires only the knowledge of chemical structure and is not dependent on any experi-
ment properties. QSPR studies can be used for the selection of principal structural characteristics (de-
scriptors), finding their relation to property values and the derivation of mathematical models that in-
volve these multivariate data in order to be applied for predictive purposes in every chemical system. 

A number of attempts to model the relationship between partition coefficients and the property of 
organic compounds have been performed. Klopman et al. [ 11 ] developed a relationship between the 
structure of diverse organic compounds and gas-to-olive oil partition coefficient. Lu et al. [ 12 ] pre-
dicted octanol—water partition coefficients of 133 polychlorinated biphenyls using heuristic method 
(HM) implemented in CODESSA. Puzyn and Falandysz [ 13 ] estimated octanol—water and oc-
tanol—air partition coefficients of 75 chloronaphtalene congeners by means of six chemometrics ap-
proaches. Ohlenbusch et al. [ 14 ] investigated the sorption of various phenols to Aldrich-HA and BSA 
by a QSAR study based on a linear free energy relationship (LFER) model. Metivier-Pignon et al. 
[ 15 ] used QSPRs to determine the structural features that influence most adsorption processes of 22 
commercial dyes onto activated carbon cloths using multiple linear regressions method. Sprunger et al. 
[ 16 ] predicted water-to-PDMS and gas-to-PDMS partition coefficients for various gaseous and or-
ganic solutes. They also correlated the partition coefficients for solute transfer to 1,2-dichloroethane 
from both water gas phase using Abraham solvation parameter model [ 17 ]. Hierleman et al. [ 18 ] ex-
amined the performance of the Abraham linear free energy relationship to describe the sorption coeffi-
cients of organic vapors on thickness-shear-mode resonators coated with different polymers. 

Recently Artificial Neural Networks (ANNs) have been used for investigation of a wide variety 
of chemical problems such as spectral analysis [ 19 ], prediction of dielectric constants [ 20 ] and mass 
spectral search [ 21 ]. ANNs have been applied to QSPR analysis since the late 1980s due to their 
flexibility in the modeling of nonlinear problem, mainly in response to increased accuracy demands. 
They have been widely used to predict many physicochemical properties [ 22—26 ]. In this investiga-
tion, the descriptors calculated from structures were utilized as the only source to predict the water-to-
PDMS partition coefficients of 139 organic compounds using the ANN and QSPR methods. 

METHODS 

Data set. The water-to-polydimethylsiloxane partition coefficients (log KPDMS—water) of 139 or-
ganic compounds taken from [ 16 ] were used as a data set. The list of molecules of the data set includ-
ing hydrocarbons, alkylhalides, alcohols, ethers, esters, ketones, nitriles, halobenzenes, polycyclic aro-
matic hydrocarbons, heterocyclic compounds and benzene derivatives are given in Table 1. The parti-
tion coefficients fall in the range between 0.12 and 7.48 values for phenethyl alcohol and tetradecane, 
respectively. The data set was randomly divided into three separate sections: the training, test, and ex-
ternal validation sets, consisting of 93, 23, and 23 members, respectively. The training and test sets 
were used to build and optimize the QSPR model and the external validation set was used to evaluate 
the prediction power of the obtained model. 

Molecular descriptors generation. Molecular descriptors are mathematical values that describe 
the structure or shape of molecules and help to predict the activity and properties of molecules in 
complex experiments [ 27 ]. A wide variety of descriptors have been repoted for using in QSPR/QSAR 
analysis [ 28—34 ]. Due to the diversity of the molecules studied, various descriptors were calculated. 
The calculation procedure for obtaining the molecular descriptors was as follows. First, all molecules 
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T a b l e  1  
The data set and the corresponding experimental, and MLR and ANN predicted values of  log KPDMS—water 

N Name Exp MLR ANN N Name Exp MLR ANN
1 2 3 4 5 6 7 8 9 10 

Training set 
  1 Methane 1.16 1.42 1.24 45 1,2,4-Trichlorobenzene 3.48 3.07 3.32
  2 Propane 2.32 2.37 2.29 46 1,2,3,4-Tetrachlorobenzene 3.90 3.69 3.79
  3 2-Methylpropane 2.88 2.79 2.69 47 1,2,4,5-Tetrachlorobenzene 4.09 3.61 4.16
  4 2,2-Dimethylpropane 3.23 3.48 3.41 48 Bromobenzene 2.51 2.34 2.33
  5 Octane 4.70 4.79 4.95 49 Iodobenzene 2.73 2.51 2.64
  6 Nonane 5.40 5.29 5.28 50 Phenyl methyl ether 1.71 1.76 1.61
  7 Decane 5.82 5.80 5.92 51 4-Chloroanisole 2.37 2.41 2.23
  8 Undecane 6.27 6.31 6.46 52 2-Chloroaniline 1.04 1.12 0.98
  9 Tridecane 7.27 7.34 7.18 53 4-Chloroaniline 0.84 1.48 0.92
10 Tetradecane 7.48 7.86 7.29 54 2,4-Dichloroaniline 1.69 1.56 1.59
11 Cyclopropane 1.43 1.33 1.49 55 3,5-Dimethylphenol 0.42 0.68 0.46
12 Ethene 1.34 1.42 1.46 56 4-Ethylphenol 0.60 0.63 0.55
13 Propene 1.80 1.73 1.62 57 2-Chlorophenol 0.56 0.26 0.58
14 1-Butene 2.31 2.16 2.22 58 Pentachlorophenol 2.65 2.29 2.64
15 2-Methyl-1-propene 2.16 2.32 2.18 59 Naphthalene 2.83 2.86 2.81
16 Trichloromethane 1.71 1.87 1.84 60 1-Methylnaphthalene 3.26 3.18 3.11
17 Tetrachloromethane 2.84 2.98 2.92 61 2-Methylnaphthalene 3.17 3.21 3.15
18 1,1,1-Trichloroethane 2.75 2.51 2.59 62 2,6-Dimethylnaphthalene 3.59 3.66 3.66
19 1,2-Dichloropropane 2.10 2.90 2.25 63 Fluorene 3.72 3.52 3.54
20 Trichloroethylene 2.24 2.60 2.31 64 Anthracene 3.84 3.78 3.78
21 Tetrachloroethylene 3.27 3.41 3.21 65 Fluoranthene 4.26 4.09 4.11
22 Dibromochloromethane 2.16 1.73 2.00 66 Benz[a]anthracene 4.77 4.75 4.70
23 Pentan-2-one 0.41 0.52 0.46 67 Chrysene 4.69 4.78 4.72
24 Hexan-2-one 0.86 0.97 0.92 68 Benzo[b]fluoranthene 5.16 5.04 5.25
25 Hexan-3-one 0.98 1.11 1.02 69 Perylene 4.98 4.95 5.02
26 Heptan-2-one 1.35 2.55 1.41 70 Benzonitrile 1.04 2.18 1.12
27 Acetophenone 1.04 0.76 1.12 71 Tetrafluoromethane 1.57 0.25 1.39
28 4-Chloroacetophenone 1.64 1.27 1.43 72 Sulfur hexafluoride 2.10 2.03 1.99
29 Isobutyl acetate 1.66 1.41 1.62 73 Phenethyl alcohol 0.12 0.36 0.14
30 Phenyl acetate 0.86 1.44 0.95 74 3-Methylbenzyl alcohol 0.17 0.54 0.20
31 Methyl benzoate 1.65 1.36 1.46 75 2-Chlorobiphenyl 3.97 3.74 3.91
32 Benzene 2.10 2.04 2.21 76 2,4,4�-Trichlorobiphenyl 4.70 4.79 4.81
33 Toluene 2.24 2.38 2.36 77 2,2�,4,5,5�-Pentachlorobiphenyl 5.71 5.77 5.79
34 Ethylbenzene 2.71 2.79 2.74 78 2,2�,5,5�-Tetrachlorobiphenyl 5.30 5.71 5.44
35 1,2-Dimethylbenzene 2.50 2.87 2.68 79 Limonene 4.14 3.32 4.00
36 1,3-Dimethylbenzene 2.95 2.82 2.83 80 3,4-Dichloroaniline 1.39 2.58 1.45
37 1,4-Dimethylbenzene 2.76 2.89 2.93 81 2,3,3�,4,4�-Pentachlorobiphenyl 5.89 5.88 5.88
38 Propylbenzene 3.14 3.22 3.18 82 2,2�,3,4,4�,5-Hexachlorobiphenyl 6.20 6.29 6.07
39 Isopropylbenzene 3.25 3.28 3.29 83 2,3�,4,4�,5-Pentachlorobiphenyl 5.87 5.79 5.80
40 1,3,5-Trimethylbenzene 3.25 3.37 3.28 84 Bromoform 1.87 2.09 1.96
41 Styrene 2.86 2.66 2.65 85 2,2�,4,5,5�-Pentachlorobiphenyl 5.71 5.70 5.72
42 Chlorobenzene 2.40 2.05 2.21 86 2,2�,4,4�,5,5�-Hexachlorobiphenyl 6.16 6.54 6.28
43 1,2-Dichlorobenzene 2.87 2.67 2.65 88 1,2-Dichloroethane 1.16 2.41 1.19
44 1,4-Dichlorobenzene 2.93 2.75 2.70 89 Benzonitrile 0.86 2.00 0.91
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C o n t i n u e d  T a b l e  1
1 2 3 4 5 6 7 8 9 10 

Training set 
  90 Diethyl ether 0.66 1.84 0.65   92 2-Chlorotoluene 3.07 2.45 3.04
  91 2,3,5,6-Tetrachlorobiphenyl 5.34 5.20 5.34   93 2,4,5-Trichloroaniline 2.08 2.93 2.18

Test set 
  94 Ethane 1.71 2.01 1.82 106 3,4-Dimethylaniline 1.07 1.70 1.14
  95 Pentane 3.47 3.30 3.26 107 4-Chlorotoluene 2.87 2.46 2.61
  96 Heptane 4.61 4.29 4.41 108 Camphor 1.48 1.39 1.34
  97 Cyclohexane 3.52 3.12 3.37 109 Biphenyl 3.37 3.71 3.16
  98 1,1,1,2-Tetrachloroethane 2.66 3.23 2.89 110 Acenaphthene 3.63 3.11 3.40
  99 Trifluoromethane 0.60 0.41 0.56 111 Pyrene 4.32 4.04 4.12
100 Ethyl acetate 0.27 0.49 0.31 112 Benz[a]pyrene 5.24 4.95 5.02
101 Ethyl benzoate 2.12 1.57 2.01 113 2,2�,3,4,4�,5-Hexachlorobiphenyl 6.20 5.68 6.05
102 1,2,4-Trimethylbenzene 2.94 3.32 3.12 114 4,4�-Dichlorobiphenyl 4.59 4.50 4.41
103 1,3-Dichlorobenzene 3.29 2.60 3.48 115 2,2�,3,4,4�,5,5�-Heptachloro- 6.40 6.81 6.21
104 1,2,3,5-Tetrachlorobenzene 4.18 3.58 4.40  biphenyl    
105 Hexachlorobenzene 5.01 5.42 5.27 116 Thiophene 1.75 1.24 1.61

Validation set 
117 Butane 2.93 2.85 2.70 129 Phenanthrene 4.00 3.78 3.81
118 Hexane 4.04 3.80 3.88 130 Benzo[k]fluoranthene 5.33 5.05 5.13
119 Dodecane 6.82 6.82 6.99 131 1-Methylphenanthrene 4.50 4.10 4.32
120 1,3-Butadiene 1.78 2.05 1.96 132 2,4�,6�-Trichlorobiphenyl 5.00 4.72 4.80
121 1,1,2,2-Tetrachloroethane 2.17 3.13 2.03 133 Hexafluoroethane 2.40 2.18 2.21
122 Methyl 2-methylbenzoate 2.15 1.63 2.00 134 2,2�,4,4�,6,6�-Hexachlorobiphenyl 6.03 6.36 6.26
123 1,3,5-Trichlorobenzene 3.64 3.11 3.42 135 Ethanethiol 1.12 1.66 1.24
124 Pentachlorobenzene 4.62 4.09 4.41 136 1,2,3-Trichlorobenzene 3.45 3.13 3.26
125 3-Chlorophenol 0.31 0.24 0.34 137 2,4,5-Trichlorotoluene 4.17 3.50 4.36
126 Nitrobenzene 1.21 2.45 1.44 138 Acridine 3.17 3.39 3.37
127 3-Bromophenol 0.46 0.32 0.41 139 Benzo[ghi]perylene 5.50 5.31 5.29
128 1,2-Dimethylnaphthalene 3.47 3.21 3.25      

 
were drawn with Hyperchem (Version 7) [ 35 ] and then they were pre-optimized using MM+ molecu-
lar mechanics force field. A more precise optimization was then done with the semiempirical AM1 
method in Mopac (Version 6) [ 36 ]. All calculations were carried out at a restricted Hartree-Fock level 
with no configuration interaction. As a next step, the Mopac output files were used by the CODESSA 
program [ 37, 38 ] to calculate five classes of descriptors including constitutional, geometrical, topo-
logical, electrostatic, and quantum-chemical descriptors. The software CODESSA, developed by Kar-
titzky group, enables the calculation of a large number of quantitative descriptors based lonely on the 
molecular structure information and codes the chemical information into a mathematical form 
[ 37, 38 ]. CODESSA combines diverse methods for quantifying the structural information about the 
molecule with advanced statistical analysis to establish quantitative structure-property relationship.  

Variable Selection Using Genetic Algorithm. Genetic Algorithms (GAs) are adaptive heuristic 
search algorithms that can be applied when the dimension of the data space is too large for an exhaus-
tive search. They have been proved to be an efficient method in the feature selection problems 
[ 39, 40 ]. GAs have several advantages in comparison with other optimization algorithms. They have 
the ability to move from local optima present on the response surface. They require no knowledge or 
gradient information about the response surface and can be employed for a wide variety of optimiza-
tion problems [ 41 ]. The major drawbacks of GAs are potential difficulties in finding the exact global 
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optimum, which requires a large number of response (fitness) function evaluations and configuring the 
problem is not straightforward [ 42 ]. There are some basic steps in genetic algorithms as follow:  
(1) a chromosome is represented by a binary bit string and an initial population of chromosomes is 
created in a random way; (2) a value for the fitness function of each chromosome is evaluated; (3) ac-
cording to the values of fitness function, the chromosomes of the next generation are reproduced by 
selection, crossover and mutation operations. In this paper, GA program was written with MATLAB 
7.0 [ 43 ] and based on Leardi�s method [ 44 ] with a few minor modifications in our laboratory. The 
size of population was 30, the probability of cross over was 0.5, the probability of mutation was 0.01 
and the number of evaluations was 200. For each set of data 100 runs were performed. Here, we try to 
use varieties of fitness functions which are proportional to the residual error of the training set, test set 
and the number of selected variables according to the following equation: 

 1fitness = .
SEC + SEP + ( )wm

 (2) 

In this equation, SEC and SEP are standard error of calibration (training) and test set, respectively; m 
is the number of variables in the represented model and w is a numerical value that implies the weights 
of m in the value of fitness. In fact, the value of w determines the number of variables presented in a 
selected chromosome. Some experiments were done using different values of w. Acquired results 
showed that for a small value of w, the number of variables in the fittest individual was high and on 
the other hand if the value of w was to be high, the number of variables in the best chromosome was 
small. Hence, after some experiments the value of w was set to be 0.3. It is worth noting that the pa-
rameter of w was determined in a preliminary study, before the overall genetic algorithm optimization 
had been carried out.  

Multiple Linear Regression (MLR). Multiple linear regression is a common method used in 
QSPR study. The equation linking the structural features to the log KPDMS—water is developed in the 
form: 
 PDMS water 0 1 1 2 2log = + + + + ,n nK a a x a x a x� �  (3) 
where a0 is the intercept and a1, a2, … an are the regression coefficients of the descriptors. The descrip-
tors (x1, x2, … xn) included in the equation are used to describe chemical structure of compounds and n 
is the number of the descriptors to find the best regression model. The main goal of the generation of 
the MLR model was to choose a set of suitable descriptors that could be used as inputs for the genera-
tion of the ANN model. From pairs of variables with R > 0.90, only one of them was used in the mod-
eling and the variables that more than in 90 % cases were equal to zero were eliminated. Remaining 
descriptors were used to generate the models using the SPSS/PC software package [ 45 ]. A stepwise 
procedure was used for selection of the descriptors. This method combines the forward and backward 
procedures. Due to the complexity of inter-correlations, the variance caused by certain variables will 
change when new variables enter the equation. Sometimes a variable that is qualified to enter loses 
some of its predictive validity when other variables enter. If this takes place, the stepwise method will 
remove the weakened variable. A final set of selected equations was then tested for stability and valid-
ity through a variety of statistical methods. The choice for an equation suitable for further considera-
tion was made by using four criteria, namely, multiple correlation coefficients (R), standard error (SE), 
F-statistics and the number of descriptors in the model. The best Multiple Linear Regression (MLR) 
model is the one that has high R and F-values, low standard error, least number of descriptors and high 
ability for prediction. The best model selected in this work is presented in Table 2.  

Artificial Neural Network. ANNs are basically a data-driven black-box model capable of solv-
ing highly non-linear complex problems. They have the ability to capture the relationship between in-
put and output variables from given patterns (historical data or measured data on input and output 
variables of the system of the concern) and this enables them to solve large-scale complex problems. 
The network learns basically by finding the optimal network-connection-weights that would generate 
an output vector as close as possible to the target values of the output vector, with a desired accuracy. 
A detailed description of the theory behind a neural network has been adequately described elsewhere 
[ 46—48 ]. Therefore, only the points relevant to this work are described here. A fundamental process- 
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T a b l e  2  

Specification of  best multiple linear regression models 

Descriptor Notation Coefficient Mean effect 

Minimum Atomic Orbital Electronic Population P�� 10.065�1.276   8.480 
Kier Shape Index (order 3) 3� 0.411�0.019   2.969 
Polarity Parameter / Square Distance PP –6.383�0.802 –0.289 
Complementary Information Content (order 2) 2CIC 0.007�0.002   0.207 
Constant  –8.355�1.129  

 
sion element of an ANN is a node. Each node has a series of weighted inputs, Wij, and acts as a sum-
ming point of weighted input signals. The summed signals pass through a transfer function that may 
be in sigmoidal form. The output of node j, Oj, is given by  
 1/[1 exp( )],jO X� � �  (4) 
where X is defined by the following equation: 
 .ji i jX W O B� ��  (5) 
In Eq. (5), Bj is a bias term, Oi is the output of the node of the previous layer and Wji represents the 
weight between the nodes of i and j. 

A feedforward neural network consists of three layers. The first layer (input layer) consists of 
nodes and acts as an input buffer for the data. Signals introduced to the network, with one node per 
element in the sample data vector, pass through the input layer to the layer called the hidden layer. 
Each node in this layer sums the inputs and forwards them through a transfer function to the output 
layer. These signals are weighted and then pass to the output layer. In the output layer the processes of 
summing and transferring are repeated. The output of this layer now represents the calculated value for 
the node k of the network. 

The training of back-propagation neural network requires the comparison of the network output 
with an expected value. This comparison may be presented in an iterative fashion to the network with 
a weighted adjustment after each run. The differences between the output and the expected value back-
propagated to the network and followed by adjustment of the weights and biases. The adjusted weights 
and biases can be calculated according to  
 � ( ) �  ( 1),kj pk pj kjW n O W n� �� �� �  (6) 
 �  ( ) .kj pk pjB n O� ��  (7) 
In these equations, �Wkj and �Bkj are the changes in the weights and biases between the node j in the 
hidden layer and the node k in the output layer, respectively; �pk is the error term obtained from the 
differences between the output and the expected value. The parameters �and � are learning rate of the 
weight and bias, respectively; � represents the momentum and n and n – 1 refer to the present and the 
previous iterations, respectively. 

Equations similar to the Eqs. (6) and (7) were used to adjust weights and biases connecting the 
hidden layers to the input one. The criterion for stopping the iteration during the training process could 
be a predefined number of iterations (p) or a desired difference between the output and its expected 
value. In order to obtain a parsimonious model, the network architecture was modified and tested. The 
number of hidden layer nodes, learning rates and momentum parameters were optimized. 

In the present work, an ANN program was written with MATLAB 7. This network was feed-
forward fully connected with three layers with sigmoidal transfer function. Descriptors selected by 
MLR methods were used as inputs of network and its output signal represented the water-to-
polydimethylsiloxane partition coefficients for the compounds of interest. Thus this network has four 
nodes in input layer and one node in output layer. The values of each input were divided by their mean 
value to bring them into dynamic range of the sigmoidal transfer function of the network. The initial 
values of weights were randomly selected from a uniform distribution that ranged between –0.3 to 
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+0.3 and the initial values of biases were set to be unity. These values were optimized during the net-
work training. The back-propagation algorithm was used for the training of the network. During the 
training, the network parameters would be optimized. These parameters were: the number of nodes in 
the hidden layer, weights and biases of learning rates and the momentum. Procedures for the optimiza-
tion of these descriptors were reported elsewhere [ 49, 50 ]. Then the optimized network was trained 
using a training set for adjustment of weights and biases values. To maintain the predictive power of 
the network at a desirable level, training was stopped when the value of error for the test set started to 
increase. Since the test error is not a good estimation of the generalization error, the prediction poten-
tial of the model was evaluated on a third set of data, named validation set. Compounds in the valida-
tion set were not used during the training process and were reserved to evaluate the predictive power 
of the generated ANN. 

EVALUATION OF THE PREDICTABILITY OF THE QSPR MODEL 

For the optimized QSPR model, several parameters were selected to test the prediction ability of 
the model. A real QSPR model may have a high predictive ability when it is close to ideal. This may 
imply that the correlation coefficient R between the experimental y and predicted y�  properties must be 
close to 1 and regression of y against y�  or y�  against y through the origin, i.e. 0ry ky� �  and 0 ,ry k y���  
respectively, should be characterized by at least either k or k � close to 1 [ 51 ]. Slopes k and k � were 
calculated as follows: 

 2 ,i i

i

y y
k

y
� �
�
�
�

 (8) 

 2 .i i

i

y y
k

y
� � �

�
�

 (9) 

The criteria formulated above may not be sufficient for a QSPR model to be truly predictive. Regres-
sion lines through the origin defined by 0ry ky� �  and 0ry k y���  (with the intercept set to unity) should 
be close to optimum regression lines ry ay b� ��  and ry a y b� �� ��  (b and b� are intercepts). Correla-
tion coefficients for these lines 2

0R  and 2
0R�  are calculated as follows: 
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R

y y
�
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�

�
�

�
 (11) 

where y  and y�  are the average values of the observed and predicted properties, respectively and the 
summations are over all n compounds in the validation set. 

A difference between R2 and 2
0R  values 2( )mR  needs to be studied to explore the prediction poten-

tial of a model [ 52 ]. This term was defined in the following manner: 
 2 2 2 2

0(1 | |).mR R R R� � �  (12) 
Finally, the following criteria for evaluation of the predictive ability of QSPR models should be con-
sidered: 

1. High value of cross-validated R2 (q2 > 0.5). 
2. Correlation coefficient R between the predicted and actual properties from an external test set 

close to 1. 2
0R or 2

0R�  should be close to R2. 

3. At least one slope of regression lines (k or k �) through the origin should be close to 1. 
4. 2

mR  should be greater than 0.5. 
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The predictive power of the ANN models developed on the selected training sets was estimated 
from the predictions of validation set chemicals, by calculating the q2 that is defined as follows: 

 
2

2
2

ˆ( )
1 ,

( )
i i

i

y y
q

y y
�

� �
�

�
�

 (13) 

where yi and ˆiy  are the experimental and predicted values of the dependent variable (water-to-
polydimethylsiloxane partition coefficient), respectively, y  is the averaged value of dependent vari-
able of the training set and the summations cover all the compounds.  

RESULTS AND DISCUSSION 

Table 1 shows the data set used and the corresponding observed, and predicted MLR and ANN 
values of water-to-polydimethylsiloxane partition coefficients for all the molecules studied in this 
work. It can be seen from Table 2 that four descriptors appeared in the MLR model. These descriptors 
were: Minimum Atomic Orbital Electronic Population (P��), Kier Shape Index (order 3) (3�), Polarity 
Parameter / Square Distance (PP), and Complementary Information Content (order 2) (2CIC). The nu-
merical values of these descriptors are listed in Table 3. Table 4 represents the correlation matrix for 
these descriptors.  

By interpreting the descriptors in the models, it is possible to gain some insight into the factors 
that are likely related to the water-to-PDMS partition coefficients for the organic compounds. For the 
inspection of the relative importance and contribution of each descriptor in the model, the value of 
mean effect (ME) was calculated for each descriptor using the following equation:  

 1ME ,
n

j iji
j m n

j ijj i

d

d
��

�
�

�
� �

 (14) 

where MEj is the mean effect for a considered descriptor j, �j is the coefficient of the descriptor j and 
dij is the value of interested descriptors for each molecule, and m is the number of descriptors in the 
model. The calculated values of MEs are represented in the last column of Table 2 and are also plotted 
in Fig. 1. The value and sign of the mean effect shows the relative contribution and direction of influ-
ence of each descriptor on the partition coefficient. As shown in Table 2 the most relevant descriptor 
based on its mean effect is Minimum Atomic Orbital Electronic Population (P��), a quantum-chemical 
descriptor. This descriptor describes the nucleophilicity of the molecule. Molecules with high P�� are 
more able to donate their electrons and hence are relatively reactive compared to molecules with low 
P��. A molecule with higher reactivity will be adsorbed stronger into the polymer phase. Thus, an in-
crease in the descriptor value leads to an increase in the dispersion forces during the sorption process. 

The second descriptor in this model, Kier Shape Index (order 3) (3�) [ 53, 54 ], is defined as:  
 3 2 3 2( 1)( 3) ( )SA SAN N P� � � � � � � � � �  if NSA is odd, (15) 

 3 2 3 2( 3)( 2) ( )SA SAN N P� � � � � � � � � �  if NSA is even, (16) 
 

where NSA is the number of non-hydrogen atoms in the mole-
cule, 3P is the number of paths of the length 3 in the molecular 
graph and � is the sum of the ai parameters for all skeletal atoms 
minus 1. This descriptor shows the effect of molecule�s shape in 
sorption process and, as it can be seen in Table 2, it has positive 
sign. Water molecules have strong hydrogen-bonding ability 
and considerable parts of them are combined with one another 
to form three-dimensional networks. Due to network formation,  
 

Fig. 1. Plot of descriptor�s mean effects 
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T a b l e  3  

The values of the descriptors that were used in this work 

N * P�� 3� PP 2CIC N * P�� 3� PP 2CIC 
1 2 3 4 5 6 7 8 9 10 

  1 0.9335 1.0000 0.0389 8.0000 45 0.8489 5.9282 0.0194 16.0000 
  2 0.9236 3.0000 0.0101 19.5098 46 0.8476 5.9282 0.0067 20.0000 
  3 0.9164 4.0000 0.0102 33.2842 47 0.8341 7.2000 0.0096 13.5098 
  4 0.9274 5.0000 0.0037 51.0195 48 0.8403 8.4763 0.0098 16.0000 
  5 0.9213 8.0000 0.0018 70.5293 49 0.8302 8.4763 0.0072 20.0000 
  6 0.9213 9.0000 0.0018 84.4224 50 0.8540 4.8493 0.0108 18.3645 
  7 0.9213 10.0000 0.0011 99.0195 51 0.8564 5.0939 0.0034 18.3645 
  8 0.9212 11.0000 0.0011 114.2199 52 0.8020 5.3193 0.0485 23.1194 
  9 0.9212 13.0000 0.0008 146.1466 53 0.7983 6.5881 0.0125 16.7549 
10 0.9212 14.0000 0.0006 162.7682 54 0.7993 5.6039 0.1652 12.0000 
11 0.8924 1.3333 0.0085 20.2647 55 0.8316 5.6039 0.1690 14.0000 
12 0.8910 1.7400 0.0095 10.0000 56 0.7934 6.8742 0.1653 8.7549 
13 0.8834 2.7400 0.0101 6.7549 57 0.7834 6.3023 0.2767 26.2647 
14 0.8816 3.7400 0.0064 8.7549 58 0.7832 6.3023 0.2765 18.7549 
15 0.8888 3.7400 0.0038 19.5098 59 0.7789 5.6039 0.2725 10.0000 
16 0.8422 4.8700 0.0562 4.7549 60 0.7615 10.7092 0.2649 18.3645 
17 0.8422 4.8700 0.0562 4.7549 61 0.8680 5.4822 0.0016 26.0000 
18 0.8932 6.1600 0.0633 8.0000 62 0.8675 6.4127 0.0076 21.5098 
19 0.8573 5.8700 0.0541 9.5098 63 0.8679 6.4127 0.0067 23.5098 
20 0.8820 5.5800 0.0108 6.7549 64 0.8683 7.3545 0.0013 27.0196 
21 0.8655 5.6100 0.0260 2.0000 65 0.8651 6.9029 0.0020 42.0000 
22 0.8255 5.6100 0.0260 2.0000 66 0.8659 7.5714 0.0017 37.5098 
23 0.8837 6.9000 0.0248 10.0000 67 0.8638 8.1164 0.0012 55.2193 
24 0.8152 5.2500 0.0529 2.0000 68 0.8655 9.6658 0.0017 54.7549 
25 0.7137 5.6700 0.1050 13.5098 69 0.8664 9.6658 0.0012 57.0196 
26 0.7138 6.6700 0.1050 19.5098 70 0.8625 10.2190 0.0025 70.1390 
27 0.7225 6.6700 0.1053 25.5098 71 0.8659 10.2190 0.0008 47.5489 
28 0.8116 7.6700 0.1050 27.0196 72 0.7859 8.2190 0.1608 27.5489 
29 0.7182 6.0167 0.1062 23.1194 73 0.7599 4.7200 0.1701 8.0000 
30 0.7196 7.2889 0.1066 16.7549 74 0.7891 6.9300 0.0849 15.5098 
31 0.7253 7.6300 0.1270 24.2647 75 0.7604 6.3023 0.2828 22.3645 
32 0.7516 6.9630 0.1238 23.1194 76 0.7788 6.3023 0.2817 16.7549 
33 0.7455 6.9630 0.1253 23.1194 77 0.8530 8.3338 0.0462 44.8939 
34 0.8699 3.4116 0.0025 31.0196 78 0.8369 10.8155 0.0029 35.9161 
35 0.8699 4.3808 0.0066 23.1194 79 0.8324 13.3247 0.0025 33.2193 
36 0.8673 5.3585 0.0030 25.1194 80 0.8712 12.0674 0.0048 39.5098 
37 0.8704 5.3585 0.0022 31.5098 81 0.8289 7.5855 0.0014 29.5098 
38 0.8698 5.3585 0.0067 29.5098 82 0.8060 6.8742 0.0122 10.7549 
39 0.8702 5.3585 0.0023 35.5098 83 0.8422 13.3247 0.0023 31.9742 
40 0.8676 6.3417 0.0021 27.1194 84 0.8345 14.5862 0.0025 27.5098 
41 0.8688 6.3417 0.0030 35.8743 85 0.8358 13.3247 0.0025 29.2193 
42 0.8700 6.3417 0.0017 47.5489 86 0.8277 5.4400 0.0315 4.7549 
43 0.8676 5.1037 0.0029 20.3645 87 0.8295 13.3247 0.0038 27.2193 
44 0.8534 4.6636 0.0462 18.3645 88 0.8516 14.5862 0.0052 39.5098 
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C o n t i n u e d  T a b l e  3 
1 2 3 4 5 6 7 8 9 10 

  89 0.8296 14.5862 0.0023 27.5098 116 0.8511 9.5703 0.0017 46.0000 
  90 0.8763 4.5800 0.0172 12.0000 117 0.8310 15.8513 0.0054 35.1613 
  91 0.8520 4.8590 0.0672 18.3645 118 0.8305 3.0370 0.0133 8.0000 
  92 0.8213 4.9600 0.0503 27.5098 119 0.9225 4.0000 0.0063 27.5098 
  93 0.8305 12.0674 0.0074 34.2647 120 0.9215 6.0000 0.0028 45.5098 
  94 0.8542 5.6432 0.0461 14.7549 121 0.9212 12.0000 0.0008 129.9483 
 95 0.7884 8.1495 0.0094 10.7549 122 0.8789 3.4800 0.0062 14.0000 
  96 0.9294 2.0000 0.0099 17.5098 123 0.8468 7.1600 0.0214 12.0000 
  97 0.9214 5.0000 0.0063 35.0196 124 0.7338 7.9515 0.1245 19.5098 
  98 0.9213 7.0000 0.0028 57.4839 125 0.8344 7.2000 0.0088 19.0196 
  99 0.9220 4.1667 0.0028 58.5293 126 0.8275 9.7557 0.0101 18.3645 
100 0.8620 7.1600 0.0280 6.7549 127 0.7795 5.6039 0.2753 8.0000 
101 0.7992 3.7900 0.1483 4.7549 128 0.8290 5.9085 0.0192 18.3645 
102 0.7247 5.6300 0.1273 11.5098 129 0.7797 5.7905 0.2756 8.0000 
103 0.7283 7.9515 0.1290 25.1194 130 0.8679 6.4127 0.0067 23.5098 
104 0.8704 6.3417 0.0067 42.0391 131 0.8669 7.5714 0.0011 34.2647 
105 0.8382 5.9282 0.0087 14.0000 132 0.8626 10.2190 0.0017 71.7744 
106 0.8310 8.4763 0.0080 14.0000 133 0.8662 8.4853 0.0079 31.7744 
107 0.8894 11.0372 0.0078 31.0196 134 0.8345 10.8155 0.0089 35.1613 
108 0.8194 6.3022 0.1693 26.2647 135 0.7591 7.5800 0.0490 17.5098 
109 0.8539 5.6432 0.0462 16.7549 136 0.8325 14.5862 0.0029 43.5098 
110 0.7167 7.3261 0.1077 40.5293 137 0.8775 3.3500 0.0560 6.7549 
111 0.8653 7.1087 0.0016 58.7291 138 0.8452 7.2000 0.0213 13.5098 
112 0.8664 6.2419 0.0013 17.5098 139 0.8349 8.1891 0.0096 13.5098 
113 0.8664 8.1164 0.0011 42.0000 140 0.8490 7.5079 0.0167 23.6096 
114 0.8649 10.2190 0.0024 51.0195 141 0.8653 10.8079 0.0006 66.7290 
115 0.8656 11.7622 0.0008 62.7291      

 

 

 

The definitions of the descriptors are given in Table 2. 
* The numbers refer to the numbers of the molecules given in Table 1. 

 
molecules which are large in size are often difficult to dissolve in water, so the sorption process into 
PDMS can perform easily for these molecules. Thus as the value of Kier shape index increases, the 
water-to-polydimethylsiloxane partition coefficient increases.  

The third descriptor was PP [ 55 ] which defines as: 

 max min
2 ,
mm

Q QPP
R
�

�  (17) 

where Qmax is the most positive atomic partial charge in the molecule, Qmin is the most negative atomic 
partial charge in the molecule and Rmm is the distance between the most positive and the most negative 
atomic partial charges in the molecule. As it can be seen from Table 2, the polarity parameter has a 
negative effect in the model proposed. There is an old principle �like dissolves like�, so there will be a 
strong interaction between molecules with high polarity parameter and water as a polar solvent. Thus 
as polarity parameter of molecules increases, the tendency of sorption into PDMS will decrease.  

The last descriptor was Complementary Information Content (order 2) (2CIC) [ 56 ] which was 
calculated as follows: 
 2CIC log IC,k kn� �  (18) 
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T a b l e  4  

Correlation matrix between selected descriptors 

 P�� 3� PP 2CIC 

P�� 1 –0.053   0.634   0.407 
3�  1 –0.182   0.522 
PP   1 –0.299 

2CIC    1 
 
 
 
where n is the total number of atoms in the molecule, k is the number of atomic layers in the coordina-
tion sphere around a given atom and the information content (IC) is equal to average information con-
tent multiplied by the total number of atoms. This descriptor describes the connectivity and branching 
in a molecule and can be related to molecular shape and symmetry. The relative number of rings in the 
fragments can also be related to molecular shape. The positive mean effect for 2CIC reflects the fact 
that molecules with lower symmetry have weaker sorption ability that leads to lower KPDMS—water. 

From the above discussion, it can be seen that all descriptors involved in the QSPR model have 
physical meaning, and these descriptors can account for structural features that affect the water-to-
polydimethylsiloxane partition coefficients of the compounds studied. 

The next step was the construction of an artificial neural network. During the training of the 
ANNs, the parameters of the network including the number of nodes in the hidden layer, weights and 
biases learning rates and momentum values were optimized. Table 5 shows the architecture and speci-
fications of the optimized network. After the optimization of the network parameters, the network was 
trained by using the training set for adjustment of the weights and biases values by back-propagation 
algorithm. It is known that neural network can become overtrained. An overtrained network has usu-
ally learned perfectly the stimulus pattern it has seen but cannot give accurate prediction for unseen 
stimuli. There are several methods to overcome this problem. One method is to use a test set to evalu-
ate the prediction power of the network during its training. In this method after each 1000 training it-
erations the network was used to calculate log KPDMS—water of molecules included in the test set. To 
maintain the predictive power of the network at a desirable level, training was stopped when the value 
of errors for the test set started to increase. The results obtained showed that overtraining began after 
23 000 iterations. Table 1 represents the experimental, and MLR and ANN calculated values of water-
to-polydimethylsiloxane partition coefficients for the training, test and validation sets. The statistical 
parameters obtained by the ANN and MLR models for these sets are shown in Table 6. The standard 
errors of training, test and validation sets for the MLR model were 0.422, 0.425 and 0.480, respec-
tively. These values could be compared with the values of 0.116, 0.179, and 0.183, respectively, for 
the ANN model. The comparison between these values and other statistical parameters in Table 6 re-
veals the superiority of the ANN model over MLR. The key strength of neural networks, unlike MLR  
 

T a b l e  6  

Statistical parameters obtained using the ANN and MLR models * 

Model SEc SEt SEv Rc Rt
 Rv

 Fc Ft Fv 

ANN 0.116 0.179 0.183 0.998 0.995 0.995 21122 1919 2030 
MLR 0.422 0.425 0.480 0.971 0.969 0.964   1512   321   277 

 

 

 

* The index c refers to the calibration (training) set; t refers to the test set; v refers to the validation set; R is the 
correlation coefficient; SE is the standard error and F is the statistical F value. 
 

T a b l e  5  

Architecture and specifications of optimized ANN model 

Number of nodes in the input layer 4 
Number of nodes in the hidden layer 5 
Number of nodes in the output layer 1 
Weights learning rate 0.2 
Biases learning rate 0.1 
Momentum 0.5 
Transfer function Sigmoid 
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Fig. 2. Plot of ANN calculated water-to-poly-
dimethylsiloxane partition coefficient against experi-
                                 mental values 

  
Fig. 3. Plot of residual of ANN calculated versus ex-
perimental values of water-to-polydimethylsiloxane 
                           partition coefficient 

 
analysis, is their ability for flexible mapping of the selected features by manipulating their functional 
dependence implicitly. 

The statistical values of the validation set for the ANN model was characterized by q2 = 0.989, 
R2 = 0.990 (R = 0.995), 2

0R = 0.988, 2
mR = 0.956 and k = 1.015. These values and other statistical pa-

rameters shown in Table 6 reveal a high predictive ability of the model. Fig. 2 shows the plot of the 
ANN predicted versus experimental values for water-to-polydimethylsiloxane partition coefficients for 
all of the molecules in data set. The residuals of the ANN calculated values of the water-to-
polydimethylsiloxane partition coefficients are plotted against the experimental values in Fig. 3. The 
propagation of the residuals on both sides of zero line indicates that no systematic error exists in the 
constructed QSPR model. 

CONCLUSION 

In the present work GA as a feature selection tool and MLR and ANN as feature mapping tech-
niques were used for prediction of the water-to-polydimethylsiloxane partition coefficients of 139 or-
ganic compounds. The optimized 4-5-1 ANN model showed a remarkable improvement over the lin-
ear model. The GA-based MLR approach is especially useful for modeling large variable data sets. 
The physical meaning of the selected descriptors, which are, according to the GA method, are the most 
predictive and informative, was identified. The water-to-polydimethylsiloxane partition mechanisms 
of investigated compounds were interpreted rationally with these four descriptors. The result obtained 
indicate that while the GA and MLR method could be more powerful in precise selecting of important 
parameters and assuming the significance of each of the descriptors, the introduction of a neural net-
work gives a significant improvement in prediction quality. 
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