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Статья посвящена экспериментальному исследованию теплообмена и развитию кризиса при кипении 

на бифильной поверхности кремния, созданной с помощью комплекса методов, включая химическое осажде-

ние из газовой фазы и лазерное текстурирование. Показано, что использование бифильной поверхности с пред-

ложенной конфигурацией гидрофобных зон на супергидрофильном основании приводит одновременно к ин-

тенсификации теплообмена на 60 % и повышению критического теплового потока на 76 % по сравнению 

с немодифицированной поверхностью.  

Ключевые слова: кипение, бифильная поверхность, интенсификация теплообмена, критический теп-

ловой поток. 

Развитие устройств с высокой интенсивностью тепловыделения, например, высо-

копроизводительных компьютерных чипов, силовых установок, инверторов электромо-

билей и т.д. привело к необходимости отводить немыслимые ранее тепловые потоки 

вплоть до 10
3
 – 10

5
 Вт/см

2
 [1]. Существующие традиционные однофазные теплообмен-

ные системы даже при достижении их максимальной эффективности уже не могут быть 

использованы для отвода такого количества тепла. Использование двухфазных систем, 

в том числе основанных на кипении теплоносителя, является одним из наиболее пер-

спективных методов для безопасного, надежного охлаждения и термостабилизации. 

По этой причине ведется активный поиск и апробация способов повышения эффектив-

ности кипения.  

На сегодняшний день подавляющее большинство методов интенсификации тепло-

обмена и повышения критических тепловых потоков (КТП) при кипении жидкости ос-

нованы на модификации теплообменной поверхности. Одним из наиболее перспектив-

ных и обсуждаемых подходов является использование поверхностей и покрытий с раз-

личными свойствами смачивания. В частности, известно, что использование гидрофобных 
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поверхностей (угол смачивания θ > 90º) позволяет существенно снизить температуру 

начала кипения и в ряде случаев повысить коэффициент теплоотдачи (КТО) в области 

низких тепловых потоков [2]. Однако существенным недостатком такого подхода явля-

ется заметное снижение КТП и ранний переход к режиму пленочного кипения. В свою 

очередь, уменьшение контактного угла смачивания вплоть до супергидрофильного со-

стояния (θ < 5º) приводит к повышению величины КТП при кипении жидкости [3, 4]. 

По этой причине в последнее время внимание исследователей направлено на использо-

вание так называемых бифильных поверхностей, представляющих собой гидрофобные 

(или супергидрофобные) участки на гидрофильном (или супергидрофильном) основа-

нии. Такие поверхности позволяют объединить вышеописанные преимущества гидро-

фобных и гидрофильных свойств и одновременно добиться повышения КТО и КТП [5, 6]. 

Тем не менее актуальным остается поиск наиболее технологичных методов создания 

бифильных поверхностей, а также их оптимальных конфигураций. Цель представленной 

работы заключается в исследовании теплообмена и развития кризиса кипения воды на 

бифильной поверхности, созданной на кремниевой подложке с помощью методов хими-

ческого осаждения (HWCVD) и лазерной абляции.  

Для исследования теплообмена и локальных характеристик при кипении использо-

валась установка, подробное описание которой приводилось в работе [3]. Данная уста-

новка позволяет одновременно проводить высокоскоростную термографическую съемку 

с нижней стороны нагревателя, регистрируя нестационарное поле температур, а также 

высокоскоростную видеосъемку с его боковой стороны для исследования динамики 

парообразования. В качестве теплоотдающей поверхности была использована подложка 

из монокристаллического кремния размером 46×36 мм
2
 и толщиной 460 мкм с напылен-

ным с обратной стороны тонкопленочным нагревателем из оксида индия-олова (ITO) 

толщиной 1 мкм и площадью 20×20 мм
2
.  

Бифильная поверхность создавалась с помощью комплекса методов в три этапа. 

На первом этапе подложка из кремния (Sq = 0,61 мкм) обрабатывалась методом лазерной 

абляции [3] для придания супергидрофильных свойств поверхности, а также для повы-

шения адгезии при дальнейшем нанесении гидрофобного материала. На втором этапе 

на поверхность текстурированного кремния (среднеквадратичное отклонение профиля 

Sq = 0,95 мкм) наносилось гидрофобное фторполимерное покрытие методом химическо-

го осаждения из газовой фазы (HWCVD) [7]. На заключительном этапе для создания за-

данной конфигурации бифильной поверхности проводилось удаление фторполимерной 

пленки с помощью лазерного луча, последовательно проходящего по всей поверхности 

кроме отмеченных гидрофобных участков. Анализ смачивания показал, что поверх-

ность, покрытая фторполимером, имеет контактный угол 130° (рис. 1а), в то время как 

модифицированная лазером поверхность обладает супергидрофильными свойствами 

с характерным углом смачивания < 5° (рис. 1b). Конфигурация созданной бифильной 

поверхности имела следующие параметры: квадратные гидрофобные пятна со стороной 

d = 500 мкм располагались в узлах треугольной сетки со стороной l = 4 мм (рис. 1с). Ос-

новным критерием при выборе конфигурации было условие l > Dотр (где Dотр — отрыв-

ной диаметр паровых пузырей), поскольку слияние паровых пузырей может приводить 

к образованию крупных паровых конгломератов и снижению критического теплового 

потока. В качестве рабочей жидкости в экспериментах использовалась деионизирован-

ная вода, очищенная с помощью установки Milli-Q Synergy. Эксперименты выполнялись 

при атмосферном давлении в условиях насыщения. Высокоскоростная видеосъемка 
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динамики парообразования проводилась с помощью камеры Phantom VEO410 (частота 

съемки — 4000 Гц, разрешение — 0,09 мм/пикс.). Запись температурного поля ITO-

нагревателя проводилась с помощью высокоскоростной термографической камеры FLIR 

T650sс с частотой 1500 Гц и разрешением 0,18 мм/пикс. Следует отметить, что для би-

фильной поверхности было проведено несколько серий экспериментов при увеличении 

и понижении тепловой нагрузки. Их сравнение показало, что вид кривых кипения не ме-

няется со временем, что свидетельствует о сохранении свойств использованных поверх-

ностей. 

Как показал анализ кадров высокоскоростной визуализации (рис. 2а), для бифиль-

ной поверхности, уже начиная с величины теплового потока q = 21 кВт/м
2
, наблюдается 

непрерывная генерация паровых пузырей на всех гидрофобных участках, что связано 

с понижением температуры начала кипения при увеличении контактного угла смачи-

вания [2]. В то же время, на немодифицированной поверхности кремния (рис. 2b) режим 

развитого пузырькового кипения начинается при заметно больших тепловых нагрузках 

(q > 90 кВт/м
2
). Кроме того, парообразование на бифильной поверхности характери-

зуется заметным увеличением плотности потока отрывающихся пузырей по сравнению 

с немодифицированной поверхностью при близких тепловых потоках, что связано 

со значительным увеличением плотности центров парообразования за счет присутству-

ющих на поверхности искусственных гидрофобных участков с непрерывной генерацией 

пузырей, повышением частоты отрыва пузырей (на 10 – 15 %) и снижением их отрывных 

диаметров (на 30 %). Такое изменение динамики парообразования при кипении на би-

фильной поверхности безусловно оказывает положительный эффект на интенсивность 

теплообмена, что и демонстрируют температурные измерения, описание которых пред-

ставлено ниже.  

Сравнение усредненных по времени кадров высокоскоростной термографии пока-

зывает, что для бифильной поверхности (рис. 2c) температурное поле более однородно. 

Это обусловлено равномерным распределением центров нуклеации (темные области — 

«холодные» пятна на термограммах) по сравнению с базовой (немодифицированной) 

поверхностью (рис. 2d). При этом конфигурация центров парообразования при указанных 

 
 

Рис. 1. Углы смачивания на гидрофобном покрытии из тефлона (а), 

на текстурированной лазером поверхности кремния (b) 

и конфигурация бифильной поверхности 

на подложке из кремния (с). 
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тепловых потоках полностью соответствует заданной конфигурации гидрофобных пятен 

на бифильной поверхности (рис. 1c). 

На рис. 3 представлены кривые кипения для базовой и бифильной поверхностей. 

Сравнительный анализ показывает, что для бифильной поверхности наблюдается значи-

тельное снижение температуры начала кипения, а также снижение интегральной темпе-

ратуры в среднем на 5 – 7 K по сравнению с немодифицированным кремнием в режиме 

развитого пузырькового кипения, что свидетельствует о повышении коэффициента 

теплоотдачи до 60 %. Полученные кривые также показывают, что при кипении на би-

фильной поверхности величина КТП (1514 кВт/м2) на 76 % превышает величину КТП 

для базовой поверхности (858 кВт/м
2
), а также величину КТП для воды, рассчитанную 

по гидродинамической модели кипе-

ния С.С. Кутателадзе [8]. Наблюда-

емое значительное повышение КТП 

связано в первую очередь с эффектом 

капиллярного всасывания [3, 9] за счет 

наличия обширных супергидрофиль-

ных зон с иерархической пористой 
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Рис. 2. Кадры кипения воды при q = 90 кВт/м2 на бифильной (а) и базовой (b) 

поверхностях кремния, а также усредненные по времени поля температур 

нагревателя (q = 172 кВт/м2) с бифильной поверхностью теплообмена (c) 

и немодифицированным кремнием (d). 
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Рис. 3. Кривые кипения воды 

при атмосферном давлении 

на немодифицированном кремнии (1) 

и бифильной поверхности (2). 
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микронаноструктурой, формирующейся при лазерной абляции, обеспечивающей эффек-

тивное замывание нестационарных сухих пятен.  

Таким образом, продемонстрировано, что предложенная конфигурация бифильной 

поверхности, реализованная с использованием комплекса методов лазерного текстури-

рования и HWCVD, позволяет одновременно существенно снизить температуру начала 

кипения, повысить интенсивность теплообмена и величину критического теплового 

потока по сравнению с немодифицированным кремнием. Более того, предварительные 

тесты демонстрируют повторяемость кривых кипения в различных сериях опытов, что 

свидетельствует об устойчивости бифильной поверхности и перспективности использо-

вания вышеуказанных методов управления свойствами смачивания для модификации 

кремния, являющегося основным материалом современной микро-наноэлектроники. 
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